国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

白念珠菌感染分子機制研究

2015-01-28 19:21:06康燁周密閻瀾沈陽軍區(qū)總醫(yī)院北陵臨床部沈陽00解放軍第5醫(yī)院平頂山467000第二軍醫(yī)大學藥學院新藥研究中心上海004
中國真菌學雜志 2015年5期
關(guān)鍵詞:分子機制感染

康燁周密閻瀾(.沈陽軍區(qū)總醫(yī)院北陵臨床部,沈陽00;.解放軍第5醫(yī)院,平頂山467000;.第二軍醫(yī)大學藥學院新藥研究中心,上海004)

?

白念珠菌感染分子機制研究

康燁1周密2閻瀾3
(1.沈陽軍區(qū)總醫(yī)院北陵臨床部,沈陽110031;2.解放軍第152醫(yī)院,平頂山467000;3.第二軍醫(yī)大學藥學院新藥研究中心,上海200433)

【摘要】白念珠菌是臨床上最常見的條件致病真菌。白念珠菌在感染宿主時會遭遇機械阻礙(如上皮細胞),生物、化學和物理拮抗(如膽汁、黏液、pH)及宿主免疫細胞(如吞噬細胞)的殺傷。白念珠菌生物化學、形態(tài)學的靈活性及逃逸宿主天然免疫的能力對其發(fā)揮致病性至關(guān)重要。該文就白念珠菌感染宿主過程中涉及的分子機制做一綜述,為進一步探索新的治療藥物提供參考。

【關(guān)鍵詞】白念珠菌;感染;分子機制

Research on molecular mechanisms of Candida albicans infectionKANG Ye

1

,ZHOU Mi

[Chin J Mycol,2015,10(5):312?316]

白念珠菌是人體常見的定植菌,可以在潮濕的黏膜表面如口腔、陰道及胃腸道黏膜與宿主共生[1]。白念珠菌具有多態(tài)性:酵母態(tài)、假菌絲態(tài)、菌絲態(tài)。在全身系統(tǒng)性感染中,白念珠菌酵母態(tài)參與病原體在血液中的散播,而菌絲態(tài)主要對侵襲宿主發(fā)揮作用[2]。研究表明,只有在宿主虛弱或定植環(huán)境發(fā)生改變時,白念珠菌才會感染宿主并產(chǎn)生致病性[3]。因此,了解白念珠菌感染宿主的過程及分子機制,有助于為臨床念珠菌病的預(yù)防及治療提供參考。

1  形態(tài)轉(zhuǎn)變

白念珠菌是人體常見的共生菌,一般說來,白念珠菌可在不損傷宿主細胞的情況下維持自身的正常生長[4]。白念珠菌在遭遇不利的生長條件如血清、高溫、饑餓、中性pH等時,可以從環(huán)境接收信號并促進自身菌絲生長[5],進而產(chǎn)生致病性。白念珠菌酵母態(tài)向菌絲態(tài)的轉(zhuǎn)變受一系列小分子影響,如細胞周期抑制劑,群體感應(yīng)分子,脂肪酸及組蛋白脫乙酰酶抑制劑[6]。白念珠菌形態(tài)學轉(zhuǎn)變通常分為兩步:菌絲萌生及菌絲維持[7]。菌絲萌生是對周圍環(huán)境做出的應(yīng)激反應(yīng),表現(xiàn)為從HAGs啟動子區(qū)去除絲狀體形成抑制劑Nrg1[8];菌絲維持是在缺乏Nrg1的情況下,GATA轉(zhuǎn)錄因子Brg1綁定到HAG(hypha?associatedgene)啟動子,從而募集組蛋白脫乙酰酶Hda1,發(fā)生染色質(zhì)重塑,確立絲狀體染色質(zhì)狀態(tài)以促進菌絲維持及HAGs表達[9]。Efg1是調(diào)控菌絲生長的重要因子,其在胃腸道高表達時幫助白念珠菌逃避宿主免疫,而低表達時可以促進共生作用的維持[10]。白念珠菌對N資源的利用可以影響其形態(tài)學轉(zhuǎn)換、孢子形成及毒力的產(chǎn)生。其中銨通透酶可以誘導(dǎo)白念珠菌酵母態(tài)向菌絲態(tài)或感染孢子態(tài)的過渡;脲酶可促進毒力因子的產(chǎn)生。銨通透酶與脲酶的編碼基因均受轉(zhuǎn)錄因子GATA的調(diào)控[11]。在酸性環(huán)境如吞噬細胞中,由于缺乏營養(yǎng)物質(zhì)葡萄糖,白念珠菌利用氨基酸為碳源,通過代謝作用排出氨基氮,升高周圍環(huán)境PH,調(diào)節(jié)菌絲的生長。STP2編碼調(diào)節(jié)氨基酸通透酶表達的轉(zhuǎn)錄因子;DUR1、2編碼尿素氨基水解酶,將尿素酶解為氨和CO2,其表達由GATA因子Gat1和Gln3共同調(diào)節(jié)[12]。STP2及DUR1、2突變可使白念珠菌自身pH調(diào)控受阻[13]。在巨噬細胞內(nèi)化作用中,精氨酸酶編碼基因CAR1被誘導(dǎo)表達,精氨酸在酶的作用下代謝為鳥氨酸及尿素,進一步促進DUR1、2的表達[14]。DUR1、2Δ/Δ突變菌表現(xiàn)出芽管形成缺陷,無法通過刺破巨噬細胞膜來逃避吞噬作用[15]。此外,白念珠菌自身可分泌葡聚糖酶,誘導(dǎo)細胞璧損傷下的菌絲形成[16]。

2  黏 附

白念珠菌黏附到宿主表面是感染的第一步。白念珠菌有一組特殊的蛋白,可以調(diào)節(jié)細胞黏附于其他微生物,非生物體表面及宿主細胞[17],稱為黏附素。白念珠菌黏附素主要是由包含8個成員(Als1?7,Als9)的凝集素樣(ALS)蛋白構(gòu)成。ALS(agglutinin?like sequence)基因家族編碼GPI錨定的表面糖蛋白,其中ALs3蛋白對黏附至關(guān)重要[18]。ALS3在體外口腔上皮細胞感染及體內(nèi)陰道念珠菌感染中表達上調(diào)[19?20]。Hwp1是另一個重要的白念珠菌黏附蛋白,同時也是菌絲相關(guān)的GPI錨定蛋白。Hwp1作為谷酰胺轉(zhuǎn)移酶的作用底物,可通過共價鍵將白念珠菌菌絲與宿主相連。Hwp1缺失可降低白念珠菌對口腔上皮細胞的黏附性并在系統(tǒng)性感染的鼠模型中表現(xiàn)出毒力下降[21]。Als3與Hwp1可以作為補足蛋白共同促進白念珠菌被膜形成[22]。此外,形態(tài)學獨立的蛋白也可以產(chǎn)生黏附作用,如GPI錨定蛋白Eap1、Iff4和Ecm33;非共價鍵細胞壁連接蛋白Mp65、Phr1,細胞表面蛋白酶Sap9,Sap10及整合素樣表面蛋白Int1[7,23]。其中Mp65參與維持細胞壁的完整性和菌絲形成,因此可能會間接影響其他白念珠菌黏附素在細胞表面表達[24]。De Bernardis等[25]在對抗體的研究中發(fā)現(xiàn),Mp65特異性抗體可在體外阻斷野生型白念珠菌對陰道上皮細胞的黏附,表明Mp65可直接發(fā)揮黏附作用。

3  感染途徑

白念珠菌黏附于宿主表面后,主要通過兩種機制進行侵襲感染:誘導(dǎo)內(nèi)吞和積極滲透[7,26]。誘導(dǎo)內(nèi)吞作用是宿主細胞主動過程,其特征為在內(nèi)化的致病菌周圍積累肌動蛋白[27]。體外研究表明,內(nèi)吞作用發(fā)生在白念珠菌與宿主細胞相互作用早期,通常為4 h之內(nèi)[28]。在內(nèi)吞作用中,白念珠菌可在細胞表面表達特殊蛋白(侵襲素)來綁定宿主的配體(如上皮細胞E?鈣黏附蛋白[29]及內(nèi)皮細胞N?鈣黏附蛋白[30]),從而使致病菌被吞入到宿主細胞內(nèi),且該內(nèi)吞作用對已被殺死的細胞依然有效,進一步證實內(nèi)吞作用為宿主細胞主動過程[27]。目前已知的侵襲素有兩個,Als3及Ssa1[12,31]。als3Δ/Δ及ssa1Δ/Δ突變菌對上皮細胞的黏附及侵襲能力減弱,并在口咽念珠菌感染小鼠模型中表現(xiàn)出毒力下降[7,15]。

積極滲透作用為白念珠菌細胞主動過程,菌絲形成是其感染成功的必要因素。在此過程中,白念珠菌菌絲可直接穿透宿主細胞或細胞間連接點[6,26]。隨著細胞黏附宿主及菌絲的生長,白念珠菌可通過分泌水解酶來促進滲透作用[32],如分泌型天冬氨酸蛋白酶(Saps)[11],同時增加對胞外營養(yǎng)物質(zhì)的攝取[33]。白念珠菌侵襲開始后維持菌絲的延伸狀態(tài)對損傷宿主細胞至關(guān)重要。Zakikhany等[34]研究發(fā)現(xiàn),eed1Δ/Δ突變菌在初始菌絲態(tài)侵襲上皮細胞后逐漸恢復(fù)至假菌絲或酵母態(tài)繼續(xù)生長,無法橫向穿透上皮細胞引起宿主細胞損傷。同理,als3Δ/Δ突變菌可在口腔上皮形成正常菌絲,但該突變菌進入宿主細胞后菌絲延伸受阻,導(dǎo)致突變菌對宿主細胞的破壞能力大幅下降,證實菌絲的延伸是導(dǎo)致宿主細胞損傷的關(guān)鍵[4]。誘導(dǎo)內(nèi)吞和積極滲透作用雖然機制不同,但可在感染過程中根據(jù)上皮細胞的類型起到互補作用。如體外感染口腔上皮細胞是由兩種作用協(xié)同實現(xiàn),而胃腸道上皮細胞的感染完全依賴于積極滲透作用[35]。

4  水解酶分泌

白念珠菌主要分泌3種水解酶:蛋白酶、磷脂酶及脂肪酶。分泌型天冬氨酸蛋白酶(Saps)家族包含10個成員,Sap1?10。其中Sap1?8合成后被分泌到胞外,Sap9和Sap10通過C?末端保守的糖基磷脂酰肌醇錨定到細胞膜或細胞壁上[36]。Sap具有較高的蛋白水解酶活性,能水解多種宿主底物[37]。Sap可通過降解黏膜表面的多種保護分子(如黏蛋白等)為白念珠菌生長提供營養(yǎng),同時增加其黏附和侵襲能力;Sap可降解細胞外基質(zhì)蛋白(角蛋白、膠原蛋白和波形蛋白等)和細胞間黏連蛋白(E?鈣黏著蛋白等),為進一步侵襲宿主組織創(chuàng)造條件[35];Sap還可裂解宿主固有免疫應(yīng)答的多種因子(如補體、上皮防御蛋白、唾液乳鐵蛋白、乳過氧化物酶、組織蛋白酶等),在白念珠菌免疫逃避中起重要作用[33]。磷脂酶家族包含4個不同的類(A,B,C和D)[38]。Pla2可水解甘油三酯,產(chǎn)生溶血卵磷脂和花生四烯酸等炎癥介質(zhì),在介導(dǎo)白念珠菌引起的局部炎癥反應(yīng)中具有重要作用。在哺乳動物感染中,Pla2不僅參與營養(yǎng)獲取和組織侵襲,而且介導(dǎo)調(diào)控宿主免疫反應(yīng)[39]。Plb在白念珠菌感染的早期階段發(fā)揮作用,參與對宿主上皮細胞的黏附、損傷、溶解,從而促進菌體侵襲[40]。第三類水解酶,脂肪酶,包含10個成員(LIP1?10)。脂肪酶可與宿主巨噬細胞直接作用,通過影響其呼吸爆炸和精氨酸代謝途徑來發(fā)揮免疫調(diào)節(jié)作用[41]。lip8Δ/Δ突變菌在鼠系統(tǒng)性感染模型中表現(xiàn)出毒力下降[42],進一步證實了脂肪酶對黏附及感染過程的重要性。

5  被膜形成

白念珠菌在非生物或生物體表面形成生物膜是其感染成功的必要因素[43]。白念珠菌被膜的形成是一個順序過程,包括酵母細胞與基質(zhì)的黏附,酵母細胞的增殖,被膜上端菌絲的形成,細胞外基質(zhì)的積累以及被膜復(fù)合物中酵母細胞的分散[44]。成熟的被膜中,分散的細胞表現(xiàn)出更強的毒性[45],其中熱休克蛋白Hsp90對白念珠菌被膜細胞的分散有關(guān)鍵的調(diào)節(jié)作用[46]。被膜形成受多種轉(zhuǎn)錄因子的調(diào)控,包括Bcr1、Tec1及Efg1[43]。Nobile等[47]在研究被膜形成的網(wǎng)絡(luò)調(diào)控中進一步發(fā)現(xiàn)Ndt80,Rob1及Brg1因子,BCR1,TEC1,EFG1,NDT80,ROB1,BRG1中任意一個缺失都會導(dǎo)致鼠感染模型中白念珠菌被膜形成缺陷。此外,另一些轉(zhuǎn)錄因子可以調(diào)控細胞外基質(zhì)水平,如Zap1可以負調(diào)控生物被膜主要成分β?1,3葡聚糖的生產(chǎn),而葡糖淀粉酶(Gca1、Gca2)、葡聚糖轉(zhuǎn)移酶(Bgl2、Phr1)和exo?葡聚酶(Xog1)可對β?1,3葡聚糖水平發(fā)揮正調(diào)控作用[48?49]。其中GCA1和GCA2的表達受Zap1的調(diào)

控,而Bgl2,Phr1及Xog1酶的功能不受其影響[49]。bgl2Δ/Δ,phr1Δ/Δ及xog1Δ/Δ突變菌形成的被膜在體內(nèi)、外均表現(xiàn)出對抗真菌藥物氟康唑敏感性升高[49]。同時有研究研究表明白念珠菌被膜可以抵抗中性粒細胞的殺傷作用,該作用主要與細胞外基質(zhì)中β?1,3葡聚糖有關(guān)[50]。

6  DNA修復(fù)

白念珠菌逃避和修復(fù)DNA損傷的能力對其感染至關(guān)重要。吞噬細胞膜結(jié)合的NADPH氧化酶氧化爆發(fā)生成的活性氧(ROS),如游離羥基(OH?),過氧化氫(H2O2),超氧化物離子(O2?)[51],可在體外增強對白念珠菌細胞的殺傷力[52];在小鼠系統(tǒng)性念珠菌感染模型中,缺乏超氧化物歧化酶及過氧化氫酶的突變菌sod5Δ/Δ,cta1Δ/Δ表現(xiàn)出對吞噬細胞的抵抗及致病性降低[53]。這些結(jié)果表明,白念珠菌對活性氧介導(dǎo)的DNA損傷的抵抗可能是重要的發(fā)病機制。Lorenz等[14]研究發(fā)現(xiàn),在體外巨噬細胞作用下,多個DNA損傷修復(fù)及氧化應(yīng)激基因表達上調(diào)。組蛋白H3賴氨酸56(H3K56)可通過真菌特異性組蛋白乙酰轉(zhuǎn)移酶Rtt109進行乙?;?,幫助真菌細胞在DNA損傷狀態(tài)下生存及維持基因組的完整性。rtt109Δ/Δ突變菌因缺乏乙?;腍3K56而表現(xiàn)出對基因毒性制劑及巨噬細胞的敏感性升高。此外,rtt109Δ/Δ突變菌可提高H2A絲氨酸129(γH2A)磷酸化水平,同時誘導(dǎo)DNA修復(fù)基因組成型表達[52]。在抑制NADPH氧化酶從而阻止氧化爆發(fā)時,rtt109Δ/Δ突變菌與野生型白念珠菌表現(xiàn)出對巨噬細胞相同的抗性[52]。白念珠菌可通過形成菌絲逃避吞噬細胞,在DNA損傷或復(fù)制受阻的基因毒性壓力下,菌絲形成能力取決于檢查點蛋白Rad53、Rad9,信號轉(zhuǎn)導(dǎo)通路對DNA損傷的感知及應(yīng)激[54]。

7  展 望

白念珠菌在臨床的感染率及耐藥性呈逐年上升趨勢,其致病機制復(fù)雜,涉及內(nèi)容廣泛。雖然目前對白念珠菌感染機制的研究已經(jīng)取得了一定的進展,但仍然存在很多疑問,如在感染過程中有無特異性的因子釋放,白念珠菌與其他致病真菌及病原微生物感染分子機制間的聯(lián)系與區(qū)別等。因而,更深入的研究白念珠菌感染相關(guān)分子機制可以為其他病原微生物發(fā)病機制的研究及臨床的診斷和治療提供借鑒。

參考文獻

[1] Peleg AY,Hogan DA,Mylonakis E.Medically important bacteri?al?fungal interactions[J].Nat Rev Microbiol,2010,8(5):340?349.

[2] Jacobsen ID,Wilson D,Wachtler B,et al.Candida albicans di?morphism as a therapeutic target[J].Expert Rev Anti Infect T?her,2012,10(1):85?93.

[3] Pfaller MA,Diekema DJ.Epidemiology of invasive mycoses in North America[J].Crit Rev Microbiol,2010,36(1):1?53.

[4] Gow NA,van de Veerdonk FL,Brown AJ.Netea MG.Candida al?bicans morphogenesis and host defence:discriminating invasion from colonization[J].Nat Rev Microbiol,2012,10(2):112?122.

[5] Inglis DO,Sherlock G.Ras signaling gets fine?tuned:regulation of multiple pathogenic traits of Candida albicans[J].Eukaryot Cell,2013,12(10):1316?1325.

[6] Shareck J,Belhumeur P.Modulation of morphogenesis in Candi?da albicans by various small molecules[J].Eukaryot Cell.2011,10(8):1004?1012.

[7] Sudbery PE.Growth of Candida albicans hyphae[J].Nat Rev Mi?crobiol,2011,9(10):737?748.

[8] Lu Y,Su C,Solis NV,F(xiàn)iller SG,et al.Synergistic regulation of hyphal elongation by hypoxia,CO(2),and nutrient conditions controls the virulence of Candida albicans[J].Cell Host&Mi?crobe,2013,14(5):499?509.

[9] Su C,Lu Y,Liu H.Reduced TOR signaling sustains hyphal de?velopment in Candida albicans by lowering Hog1 basal activity [J].Mol Biol Cell,2013,24(3):385?397.

[10] Pierce JV,Dignard D,Whiteway M,et al.Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p?dependent regulation of metabolic and host defense genes [J].Eukaryot Cell,2013,12(1):37?49.

[11] Lee IR,Morrow CA,F(xiàn)raser JA.Nitrogen regulation of virulence in clinically prevalent fungal pathogens[J].FEMS Microbiol Lett,2013,345(2):77?84.

[12] Navarathna DH,Das A,Morschhauser J,et al.Dur3 is the major urea transporter in Candida albicans and is co?regulated with the urea amidolyase Dur1,2[J].Microbiology,2011,57(Pt 1):270?279.

[13] Vylkova S,Carman AJ,Danhof HA,et al.The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH[J].MBio,2011,2(3):e00055?11.

[14] Lorenz MC,Bender JA,F(xiàn)ink GR.Transcriptional response of Candida albicans upon internalization by macrophages[J].Eu?karyot Cell,2004,3(5):1076?1087.

[15] Ghosh S,Navarathna DH,Roberts DD,et al.Arginine?induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7[J].Infect Immu,2009,77(4):1596?1605.

[16] Xu H,Nobile CJ,Dongari?Bagtzoglou A.Glucanase induces fila?mentation of the fungal pathogen Candida albicans[J].PLoS One,2013,8(5):e63736.

[17] Garcia MC,Lee JT,Ramsook CB,et al.A role for amyloid in cell aggregation and biofilm formation[J].PLoS One,2011,6(3):e17632.

[18] Murciano C,Moyes DL,Runglall M,et al.Evaluation of the role of Candida albicans agglutinin?like sequence(Als)proteins in human oral epithelial cell interactions[J].PLoS One,2012,7 (3):e33362.

[19] Wachtler B,Wilson D,Haedicke K,et al.From attachment to damage:defined genes of Candida albicans mediate adhesion,invasion and damage during interaction with oral epithelial cells [J].PLoS One,2011,6(2):e17046.

[20] Naglik JR,Moyes DL,Wachtler B,et al.Candida albicans inter?actions with epithelial cells and mucosal immunity[J].Microbes Infect,2011,13(12?13):963?976.

[21] Sundstrom P,Cutler JE,Staab JF.Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus [J].Infect Immu,2002,70(6):3281?3283.

[22] Nobile CJ,Schneider HA,Nett JE,et al.Complementary adhesin function in C.a(chǎn)lbicans biofilm formation[J].Curr Biol,2008,18 (14):1017?1024.

[23] Zhu W,F(xiàn)iller SG.Interactions of Candida albicans with epitheli?al cells[J].Cell Microbiol.2010;12(3):273?82.

[24] Sandini S,La Valle R,De Bernardis F,et al.The 65 kDa manno?protein gene of Candida albicans encodes a putative beta?glu?canase adhesin required for hyphal morphogenesis and experi?mental pathogenicity[J].Cell Microbiol,2007,9(5):1223?1238.

[25] De Bernardis F,Liu H,O'Mahony R,et al.Human domain anti?bodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis[J].J Infect Dis,2007,195(1):149?157.

[26] Dalle F,Wachtler B,L'Ollivier C,et al.Cellular interactions of Candida albicans with human oral epithelial cells and entero?cytes[J].Cell Microbiol,2010,12(2):248?271.

[27] Park H,Myers CL,Sheppard DC,et al.Role of the fungal Ras?protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis[J].Cell Microbiol,2005,7 (4):499?510.

[28] Villar CC,Zhao XR.Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells[J].Mol Oral Microbiol,2010,25(3):215?225.

[29] Phan QT,Myers CL,F(xiàn)u Y,et al.Als3 is a Candida albicans in?vasin that binds to cadherins and induces endocytosis by host cells[J].PLoS Biol,2007,5(3):e64.

[30] Phan QT,F(xiàn)ratti RA,Prasadarao NV,et al.Filler SG.N?cadherin mediates endocytosis of Candida albicans by endothelial cells [J].J Biol Chem,2005,280(11):10455?10461.

[31] Sun JN,Solis NV,Phan QT,et al.Host cell invasion and viru?lence mediated by Candida albicans Ssa1[J].PLoS Pathog,2010,6(11):e1001181.

[32] Wachtler B,Citiulo F,Jablonowski N,et al.Candida albicans?epithelial interactions:dissecting the roles of active penetration,induced endocytosis and host factors on the infection process [J].PLoS One,2012,7(5):e36952.

[33] Naglik JR,Challacombe SJ,Hube B.Candida albicans secreted aspartyl proteinases in virulence and pathogenesis[J].Microbiol Mol Biol Rev,2003,67(3):400?428,table of contents.

[34] Zakikhany K,Naglik JR,Schmidt?Westhausen A,et al.In vivo transcript profiling of Candida albicans identifies a gene essen?tial for interepithelial dissemination[J].Cell Microbiol,2007,9 (12):2938?2954.

[35] Villar CC,Kashleva H,Nobile CJ,et al.Mucosal tissue invasion by Candida albicans is associated with E?cadherin degradation,mediated by transcription factor Rim101p and protease Sap5p [J].Infect Immu,2007,75(5):2126?2135.

[36] Borelli C,Ruge E,Lee JH,et al.X?ray structures of Sap1 and Sap5:structural comparison of the secreted aspartic proteinases from Candida albicans[J].Proteins,2008,72(4):1308?1319.

[37] Gropp K,Schild L,Schindler S,et al.The yeast Candida albi?cans evades human complement attack by secretion of aspartic proteases[J].Mol Immunol,2009,47(2?3):465?475.

[38] Niewerth M,Korting HC.Phospholipases of Candida albicans [J].Mycoses,2001,44(9?10):361?367.

[39] Yang P,Du H,Hoffman CS,et al.The phospholipase B homolog Plb1 is a mediator of osmotic stress response and of nutrient?de?pendent repression of sexual differentiation in the fission yeast Schizosaccharomyces pombe[J].Mol Genet Genomics,2003;269(1):116?125.

[40] K?ohler GA,Brenot A,Haas?Stapleton E,et al.Phospholipase A2 and phospholipase B activities in fungi[J].Biochim Biophys Acta,2006,1761(11):1391?1399.

[41] Paraje MG,Correa SG,Albesa I,et al.Lipase of Candida albi?cans induces activation of NADPH oxidase and L?arginine path?ways on resting and activated macrophages[J].Biochem Biophys Res Commun,2009,390(2):263?268.

[42] Gacser A,Stehr F,Kroger C,et al.Lipase 8 affects the pathogen?esis of Candida albicans[J].Infect Immun,2007,75(10):4710?4718.

[43] Fanning S,Mitchell AP.Fungal biofilms[J].PLoS Pathog,2012,8(4):e1002585.

[44] Finkel JS,Mitchell AP.Genetic control of Candida albicans bio?film development[J].Nat Rev Microbiol,2011,9(2):109?118.

[45] Uppuluri P,Chaturvedi AK,Srinivasan A,et al.Dispersion as an important step in the Candida albicans biofilm developmental cycle[J].PLoS Pathog,2010,6(3):e1000828.

[46] Robbins N,Uppuluri P,Nett J,et al.Hsp90 governs dispersion and drug resistance of fungal biofilms[J].PLoS Pathog,2011,7 (9):e1002257.

[47] Nobile CJ,F(xiàn)ox EP,Nett JE,et al.A recently evolved transcrip?tional network controls biofilm development in Candida albicans [J].Cell,2012,148(1?2):126?138.

[48] Nobile CJ,Nett JE,Hernday AD,et al.Biofilm matrix regulation by Candida albicans Zap1[J].PLoS Biol,2009,7(6):e1000133.

[49] Taff HT,Nett JE,Zarnowski R,et al,Sanchez H,Cain MT,et al.A Candida biofilm?induced pathway for matrix glucan delivery:implications for drug resistance[J].PLoS Pathog,2012,8(8):e1002848.

[50] Xie Z,Thompson A,Sobue T,et al.Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing [J].J Infect Dis,2012,206(12):1936?1945.

[51] Missall TA,Lodge JK,McEwen JE.Mechanisms of resistance to oxidative and nitrosative stress:implications for fungal survival in mammalian hosts[J].Eukaryot Cell,2004,3(4):835?846.

[52] Lopes da Rosa J,Boyartchuk VL,Zhu LJ,et al.Histone acetyl?transferase Rtt109 is required for Candida albicans pathogenesis [J].Proc Natl Acad Sci USA,2010,107(4):1594?1599.

[53] Frohner IE,Bourgeois C,Yatsyk K,et al.Candida albicans cell surface superoxide dismutases degrade host?derived reactive oxy?gen species to escape innate immune surveillance[J].Mol Mi?crobiol,2009,71(1):240?252.

[54] Shi QM,Wang YM,Zheng XD,et al.Critical role of DNA check?points in mediating genotoxic?stress?induced filamentous growth in Candida albicans[J].Mol Biol Cell,2007,18(3):815?826.

[本文編輯] 施 慧

·綜述·

2

,YAN Lan

3

(1.General Hospital of Shenyang Military Region,Beiling Clinical Department,Shenyang 110031,China;2.The people’s liberation ar?my 152 hospital,Pingdingshan 467000,China;3.Center for New Drug Research,School of Pharmacy,Second Military Medical Univer?sity,Shanghai 200433,China)

【Abstract】Candida albicans is the most common human opportunistic fungal pathogen which have to cope with mechanical(e.g.,epithelial)barriers,biochemical,chemical,and physical antagonists(e.g.,bile,mucus,pH),and the innate and adaptive immune system of thehost during its invading.Candida albicans’s biochemistry,morphology flexibility and the ability to escape the host innate immunity plays crucial pathogenic roles.In this review we present an update on current understanding of the molecular mechanisms of infection of this pathogen in order to provide the reference to further explore new drugs.

【Key words】Candida albicans;infection;molecular mechanisms

[收稿日期]2015?06?11

基金項目:國家自然科學基金(81470158)

【文章編號】1673?3827(2015)10?0312?05

【文獻標識碼】A

【中圖分類號】R 379.4

通訊作者:閻瀾,E?mail:ylan20001228@sina.com

作者簡介:康燁,女(漢族),碩士,主管藥師.E?mail:kangye1011@163.com

猜你喜歡
分子機制感染
長鏈非編碼RNA與肝癌的關(guān)系及其研究進展
自噬調(diào)控腎臟衰老的分子機制及中藥的干預(yù)作用
自噬調(diào)控腎臟衰老的分子機制及中藥的干預(yù)作用
縮泉丸補腎縮尿的分子機制探討
旌陽區(qū)婦幼保健計劃生育服務(wù)中心近5年孕期“三病”檢測統(tǒng)計
今日健康(2016年12期)2016-11-17 19:39:57
培育情感之花 鋪就成功之路
小兒支氣管哮喘與小兒肺炎支原體感染相關(guān)性分析
骨三相顯像對人工關(guān)節(jié)置換術(shù)后松動與感染的鑒別診斷價值研究
降鈣素原在外科感染性疾病中的臨床應(yīng)用價值
婦產(chǎn)科護理中感染問題的分析和探討
巴彦县| 博湖县| 南乐县| 建瓯市| 文安县| 瑞丽市| 吴川市| 温州市| 乌拉特后旗| 讷河市| 高州市| 稻城县| 尼勒克县| 临汾市| 龙海市| 泰顺县| 灯塔市| 准格尔旗| 瓦房店市| 营口市| 绥中县| 玉龙| 宣恩县| 霍邱县| 抚顺县| 旺苍县| 山东省| 贵州省| 文成县| 丘北县| 博野县| 绵竹市| 专栏| 宜城市| 麻江县| 巴彦淖尔市| 水城县| 宜川县| 特克斯县| 贵德县| 兴文县|