李巍巍,王群,郭安臣,王擁軍,李俊發(fā)
卒中具有高患病率、高復(fù)發(fā)率、高致殘率和高死亡率的特點(diǎn),目前已成為世界公認(rèn)的第三大致死性疾病[1-2]。卒中分為出血性和缺血性兩大類,其中發(fā)病率較高的為缺血性卒中,占卒中總數(shù)的60%~80%[3]。近20年監(jiān)測(cè)結(jié)果顯示,我國約有700萬缺血性卒中患者,年死亡人數(shù)逾200萬,且年增長速率達(dá)8.7%。缺血性卒中急性期治療的主要有效手段為發(fā)病4.5 h內(nèi)給予重組組織型纖溶酶原激活劑(recombinant tissue plasminogen activator,rt-PA)溶栓,但由于受時(shí)間窗限制,即使像美國這樣醫(yī)療發(fā)達(dá)的國家,也只有3.4%~5.2%缺血性卒中患者有機(jī)會(huì)接受rt-PA溶栓治療[4]。此外,到目前為止已超過2000種神經(jīng)保護(hù)性藥物臨床前期試驗(yàn)失敗。為此,開發(fā)用于缺血性卒中治療的新藥物、新靶點(diǎn)是一項(xiàng)亟待解決的工作。Wen等[5]研究表明,細(xì)胞自噬在腦缺血后激活且可能成為一種治療缺血性卒中的新靶點(diǎn)。但自噬和腦缺血之間的關(guān)系仍存在爭(zhēng)議,如Carloni等[6]研究表明,自噬的激活可以對(duì)抗神經(jīng)元死亡,但Koike等[7]則發(fā)現(xiàn)細(xì)胞自噬具有更大的破壞性作用。據(jù)此,本文主要介紹細(xì)胞自噬在腦缺血/低氧損傷中的作用及其可能的信號(hào)轉(zhuǎn)導(dǎo)通路。
自噬是真核細(xì)胞廣泛存在的降解/再循環(huán)系統(tǒng),細(xì)胞通過自身形成的囊泡,吞噬胞質(zhì)內(nèi)變性蛋白質(zhì)和細(xì)胞器,通過微管相關(guān)蛋白,以動(dòng)力依賴性的方式轉(zhuǎn)運(yùn)至溶酶體并與之融合,降解其所包裹的內(nèi)容物,是一種通過蛋白質(zhì)和受損細(xì)胞器重復(fù)利用來維持細(xì)胞穩(wěn)態(tài)的過程[8-9]。根據(jù)細(xì)胞內(nèi)底物運(yùn)送到溶酶體腔方式的不同,哺乳動(dòng)物細(xì)胞自噬可分為3種主要方式:巨自噬、微自噬和分子伴侶介導(dǎo)的自噬[10-11]。巨自噬指細(xì)胞受到信號(hào)誘導(dǎo)后,在胞內(nèi)產(chǎn)生雙層膜,膜包裹部分細(xì)胞質(zhì)和需要降解的細(xì)胞器及蛋白質(zhì)形成自噬體,雙膜結(jié)合囊泡與溶酶體融合形成自噬溶酶體隨后降解蛋白質(zhì)。微自噬指溶酶體直接吞噬胞質(zhì)成分的一種方式。分子伴侶介導(dǎo)的自噬指通過一些分子伴侶如熱休克蛋白70(hot shock protein,HSP70)幫助未折疊蛋白轉(zhuǎn)位入溶酶體,參與自噬。分子伴侶介導(dǎo)的自噬具有高度選擇性,不能降解細(xì)胞器,只能降解特定蛋白,如HSP70識(shí)別底物蛋白分子的特定氨基端序列并與之結(jié)合,分子伴侶-底物復(fù)合物與溶酶體膜上的受體溶酶體相關(guān)膜蛋白2A(lysosome-associated membrane protein 2a,LAMP-2A)結(jié)合后,底物去折疊,溶酶體腔中的另外一種分子伴侶介導(dǎo)底物在溶酶體膜的轉(zhuǎn)位,進(jìn)入溶酶體腔中的底物在水解酶作用下分解為其組成成分,被細(xì)胞再利用(圖1)。
自噬在腦缺血后數(shù)小時(shí)內(nèi)發(fā)生,Zhu等[13]在小鼠低氧暴露及缺血(hypoxic ischemia,HI)損傷8 h后,檢測(cè)到自噬體標(biāo)志分子微管相關(guān)蛋白1輕鏈3(microtubule-associated protein 1 light chain 3,LC3-Ⅱ)表達(dá)的增加及大量自噬體形成,24~72 h尤為明顯。Xia等[14]在大鼠腦缺血預(yù)適應(yīng)(ischemic preconditioning,IPC)模型中發(fā)現(xiàn)IPC可通過誘導(dǎo)細(xì)胞自噬來減輕缺血損傷,而3-甲基腺嘌呤(3-methyladenine,3-MA)可通過抑制細(xì)胞自噬,解除IPC的神經(jīng)保護(hù)作用。同樣Yan等[15]也發(fā)現(xiàn),細(xì)胞自噬參與高壓氧預(yù)適應(yīng)對(duì)大鼠缺血腦組織的保護(hù)作用。Yang等[16]也發(fā)現(xiàn)傳統(tǒng)中藥雷公藤甲素在大鼠局灶腦缺血后的神經(jīng)保護(hù)作用也是通過上調(diào)自噬水平而實(shí)現(xiàn)。
圖1 自噬的3種方式[12]注:LAMP-2A:溶酶體相關(guān)膜蛋白
但也有研究提出相反的結(jié)論認(rèn)為細(xì)胞自噬加重缺血性卒中的損傷。Gao等[17]在大鼠缺血后適應(yīng)模型中使用雷帕霉素誘導(dǎo)自噬,發(fā)現(xiàn)雷帕霉素抑制了缺血后適應(yīng)誘導(dǎo)的腦保護(hù)作用。Puyal等[18]在大鼠腦局灶性缺血再灌注3 h內(nèi)注射3-MA,梗死體積明顯減小,因此,該研究認(rèn)為局灶性腦缺血再灌注后,抑制自噬可以保護(hù)神經(jīng)組織。Zheng等[19]運(yùn)用核糖核酸干擾技術(shù)((ribonucleic acid interference,RNAi),采用側(cè)腦室注射連結(jié)有Beclin-1干擾片段的慢病毒載體技術(shù),發(fā)現(xiàn)缺血大鼠腦內(nèi)自噬相關(guān)分子Beclin-1表達(dá)下調(diào),可減輕缺血性腦損傷。Koike等[7]證明,在小鼠缺血低氧模型中發(fā)現(xiàn),LC3-II蛋白水平顯著升高,海馬錐體細(xì)胞層自噬體的形成和海馬神經(jīng)元廣泛死亡,而Atg7基因(誘導(dǎo)自噬的必需基因)缺陷小鼠的神經(jīng)元死亡顯著減少,由此認(rèn)為自噬導(dǎo)致神經(jīng)元損傷。Yang等[20]在小鼠局灶缺血模型中抑制小膠質(zhì)細(xì)胞自噬可減輕神經(jīng)炎癥反應(yīng),改善小鼠神經(jīng)功能缺失的評(píng)分,該研究同樣支持自噬加重神經(jīng)元損傷的觀點(diǎn)。Wu等[21]報(bào)道也指出,電針刺預(yù)適應(yīng)所產(chǎn)生的對(duì)缺血損傷的耐受性也是因?yàn)樽允杀灰种啤=陙黻P(guān)于自噬的研究逐年增加,它在腦缺血中發(fā)揮的作用已引起廣泛關(guān)注,盡管其作用可能是對(duì)神經(jīng)元的保護(hù)也可能是加重?fù)p傷,但無論如何,基于自噬的研究都將為卒中治療提供新思路。
腦缺血可以激活多條信號(hào)通路并隨之伴發(fā)自噬。哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是一種分子量為289kDa的絲氨酸/蘇氨酸蛋白激酶,通過與不同的輔助分子結(jié)合參與調(diào)控轉(zhuǎn)錄、細(xì)胞骨架組裝、細(xì)胞生長和存活等功能。Chong等[22]研究表明,PI3K/Akt/mTOR信號(hào)通路參與調(diào)控腦缺血過程中的急性神經(jīng)損傷,PI3K磷酸化激活A(yù)kt使其磷酸化,抑制結(jié)節(jié)硬化復(fù)合物(tuberous sclerosis complex 1/2,TSC1/2)活化,TSC1/2失活后激活Ras蛋白腦組織同源類似物(Ras homolog enriched in brain,Rheb),mTOR隨之被激活,自噬被活化的mTOR所抑制,PI3K由組件Ⅰ、組件Ⅱ和組件Ⅲ三部分組成,Beclin-1是組件Ⅲ中的組成成分,在自噬的起始階段發(fā)揮重要作用,并通過與PI3K信號(hào)通路中的其他組分相互作用在腦缺血過程中激活自噬[23-24]。過氧化物酶體增殖物激活受體γ(peroxisome proliferatoractivated receptor-γ,PPAR-γ)作為核激素受體超家族中的一員,是配體激活的轉(zhuǎn)錄因子。PPAR-γ活化通過上調(diào)B淋巴細(xì)胞瘤相關(guān)蛋白2(B-cell lymphoma-2,BCL-2)/B淋巴細(xì)胞瘤特大型蛋白(B-cell lymphoma-extra large,BCL-XL)表達(dá)拮抗Beclin-1介導(dǎo)的自噬[25]。Bcl-2磷酸化激活自噬并減輕線粒體損傷[26]。
AMP活化蛋白激酶[adenosine 5’-monophosphate(AMP)-activated protein kinase,AMPK]是一種絲氨酸/蘇氨酸蛋白激酶,由3個(gè)亞基組成:α催化亞基、β和γ調(diào)節(jié)亞基。目前研究認(rèn)為,α催化亞基包含的一個(gè)蘇氨酸磷酸化位點(diǎn),當(dāng)其磷酸化時(shí),激活A(yù)MPK,AMPK的激活抑制mTOR活性以誘導(dǎo)自噬[27-28]。
核因子κB(nuclear factor kappa B,NF-κB)是一種轉(zhuǎn)錄因子,調(diào)節(jié)多種基因的表達(dá)[29]。Li等報(bào)道,在腦缺血過程中NF-κB1(p50)敲除可抑制mTOR活性而增強(qiáng)自噬[30]。NF-κB依賴的p53信號(hào)轉(zhuǎn)導(dǎo)途徑也與腦缺血再灌后的自噬和細(xì)胞凋亡相關(guān)[31]。MAPK是mTORC1的上游調(diào)節(jié)因子,腦缺血/再灌注過程中 MAPK-mTOR信號(hào)通路也可誘導(dǎo)自噬[32]。
低氧誘導(dǎo)因子1(hypoxia-inducible factor 1,HIF-1)是由一個(gè)組成型表達(dá)的HIF-1β亞基和一個(gè)可誘導(dǎo)表達(dá)的HIF-1α亞基構(gòu)成,在腦缺血期間響應(yīng)于低氧激活的關(guān)鍵轉(zhuǎn)錄因子[33]。由于泛素化在低氧條件下被抑制,HIF-1α可與HIF-1β形成二聚體,這些二聚體激活低氧反應(yīng)的若干下游基因,如血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、促紅細(xì)胞生成素(erythropoietin,EPO)、葡萄糖轉(zhuǎn)運(yùn)蛋白1和糖酵解酶等[34]。Bcl-2和腺病毒E1B 19 kDa的相互作用蛋白3(Bcl-2 and adenovirus E1B 19 kDa interacting proteins 3,BNIP3)具有一個(gè)Bcl-2的同源結(jié)構(gòu)域3(BH3),是Bcl-2家族的亞家族,也是HIF-1α的重要靶基因[35]。BNIP3可以和Beclin-1競(jìng)爭(zhēng)結(jié)合Bcl-2,而Beclin-1則被釋放出來而觸發(fā)自噬[23]。BNIP3也可抑制mTOR的上游活化劑Rheb,最終通過抑制mTOR活性激活自噬。然而,這些因子的相關(guān)作用仍然需要在體內(nèi)試驗(yàn)中證明[36]。HIF-1α也可通過上調(diào)另一靶基因——腫瘤蛋白p53在局部缺血后自噬激活中發(fā)揮重要作用[34]。
自噬樣細(xì)胞死亡在神經(jīng)系統(tǒng)氧化應(yīng)激情況下被激活[37]。氧化應(yīng)激發(fā)生在腦缺血過程,可引起活性氧自由基增多如超氧化物、羥基自由基和過氧化氫。Mehta等[38]研究報(bào)道,硒通過保護(hù)線粒體功能,減少活性氧生產(chǎn)和自噬而提供神經(jīng)保護(hù)。自噬也被興奮性毒性誘導(dǎo)[39]。雖然可興奮性谷氨酸可阻斷自噬,但也可能在海馬神經(jīng)元誘導(dǎo)自噬[40]。Ouyang[41]報(bào)道,腦缺血過程中內(nèi)質(zhì)網(wǎng)應(yīng)激,當(dāng)內(nèi)質(zhì)網(wǎng)周圍的興奮性神經(jīng)遞質(zhì)達(dá)到毒性水平,鈣離子通過蘭尼堿受體和IP3R的激活而釋放,從而導(dǎo)致線粒體內(nèi)Ca2+超載,激活細(xì)胞凋亡,期間內(nèi)質(zhì)網(wǎng)應(yīng)激,鈣內(nèi)流也可能激活自噬。
綜上,總結(jié)自噬在腦缺血損傷過程中可能參與的信號(hào)通路如圖2。
自噬是一把雙刃劍:一方面過度的自噬可誘導(dǎo)自噬性細(xì)胞死亡,并與凋亡信號(hào)存在交互作用;另一方面自噬作為自體修復(fù)的重要過程,適度激活可能在受損細(xì)胞幫助清除受損的細(xì)胞器和異常蛋白、防止蛋白聚集,從而對(duì)細(xì)胞損傷起保護(hù)作用。盡管自噬在腦缺血損傷中的作用仍存在爭(zhēng)議,但與自噬相關(guān)聯(lián)的信號(hào)通路可能為制訂新的神經(jīng)保護(hù)策略提供潛在靶點(diǎn)。
圖2 腦缺血/低氧損傷過程中可能參與自噬的信號(hào)通路注:HIF-1α:低氧誘導(dǎo)因子1;BNIP3:Bcl-2和腺病毒E1B 19 kDa的相互作用蛋白3;Beclin-1:哺乳動(dòng)物同源的酵母自噬相關(guān)基因Atg6;p53:腫瘤蛋白p53;PPAR-γ:過氧化物酶體增殖物激活受體γ;BCL-2:B淋巴細(xì)胞瘤相關(guān)蛋白2;BCL-XL:B淋巴細(xì)胞瘤特大型蛋白;AMP:腺苷-5’-單磷酸;AMPK:AMP活化蛋白激酶;PI3K:磷酸肌醇3-激酶;Akt:蛋白酶B;NF-κB:核因子κB;ROS:活性氧自由基,ER stress:內(nèi)質(zhì)網(wǎng)應(yīng)激;mTOR:哺乳動(dòng)物雷帕霉素靶蛋白
1 Marsh JD, Keyrouz SG. Stroke prevention and treatment[J]. J Am Coll Cardiol, 2010, 56:683-691.
2 Stemer A, Lyden P. Evolution of the thrombolytic treatment window for acute ischemic stroke[J]. Curr Neurol Neurosci Rep,2010, 10:29-33.
3 Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2014 update:a report from the American Heart Association[J].Circulation, 2014, 129:e28-e292.
4 Adeoye O, Hornung R, Khatri P, et al.Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States:a doubling of treatment rates over the course of 5 years[J]. Stroke, 2011, 42:1952-1955.
5 Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways[J]. Autophagy, 2008, 4:762-769.
6 Carloni S, Buonocore G, Balduini W.Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury[J].Neurobiol Dis, 2008, 32:329-339.
7 Koike M, Shibata M, Tadakoshi M, et al.Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury[J]. Am J Pathol, 2008, 172:454-469.
8 Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period[J]. Nature, 2004, 432:1032-1036.
9 Mizushima N, Klionsky DJ. Protein turnover via autophagy:implications for metabolism[J].Annu Rev Nutr, 2007, 27:19-40.
10 Klionsky DJ. The molecular machinery of autophagy:unanswered questions[J]. J Cell Sci,2005, 118:7-18.
11 Massey AC, Zhang C, Cuervo AM. Chaperonemediated autophagy in aging and disease[J].Curr Top Dev Biol, 2006, 73:205-235.
12 Mizushima N, Levine B, Cuervo AM, et al.Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451:1069-1075.13 Zhu C, Wang X, Xu F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia[J].Cell Death Differ, 2005, 12:162-176.
14 Xia DY, Li W, Qian HR, et al. Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition[J]. Brazi J Med Biol Res, 2013,46:580-588.
15 Yan W, Zhang H, Bai X, et al. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats[J].Brain Res, 2011, 1402:109-121.
16 Yang Y, Gao K, Hu Z, et al. Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia[J]. Mediators Inflamm, 2015,2015:120198.
17 Gao L, Jiang T, Guo J, et al. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats[J].PLoS one, 2012, 7:e46092.
18 Puyal J, Vaslin A, Mottier V, et al.Postischemic treatment of neonatal cerebral ischemia should target autophagy[J]. Ann Neurol, 2009, 66:378-389.
19 Zheng YQ, Liu JX, Li XZ, et al. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats[J]. Acta Pharmacol Sin, 2009, 30:919-927.
20 Yang Z, Zhong L, Zhong S, et al. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model[J]. Exp Mole Pathol, 2015,98:219-224.
21 Wu Z, Zou Z, Zou R, et al. Electroacupuncture pretreatment induces tolerance against cerebral ischemia/reperfusion injury through inhibition of the autophagy pathway[J]. Mol Med Rep, 2015, 11:4438-4446.
22 Chong ZZ, Shang YC, Wang S, et al. A critical kinase cascade in neurological disorders:PI3K,Akt, and mTOR[J]. Future Neurol, 2012, 7:733-748.
23 Glick D, Barth S, Macleod KF.Autophagy:cellular and molecular mechanisms[J]. J Pathol, 2010, 221:3-12.
24 Xingyong C, Xicui S, Huanxing S, et al.Upregulation of myeloid cell leukemia-1 potentially modulates beclin-1-dependent autophagy in ischemic stroke in rats[J]. BMC Neurosci, 2013, 14:56.
25 Xu F, Li J, Ni W, et al. Peroxisome proliferator-activated receptor-gamma agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury[J].PLoS One, 2013, 8:e55080.
26 Qi Z, Dong W, Shi W, et al. Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke[J]. Transl Stroke Res, 2015, Mar 7. [Epub ahead of print].
27 Poels J, Spasic MR, Callaerts P, et al.Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy[J]. Bioessays,2009, 31:944-952.
28 Li J, McCullough LD. Effects of AMP-activated protein kinase in cerebral ischemia[J]. J Cereb Blood Flow Metab, 2010, 30:480-492.
29 Chen AC, Arany PR, Huang YY, et al. Low-level laser therapy activates NF-κB via generation of reactive oxygen species in mouse embryonic fibroblasts[J]. PLoS One, 2011, 6:e22453.
30 Li WL, Yu SP, Chen D, et al. The regulatory role of NF-kappaB in autophagy-like cell death after focal cerebral ischemia in mice[J]. Neuroscience,2013, 244:16-30.
31 Cui DR, Wang L, Jiang W, et al. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-kappaB/p53 signaling pathway[J].Neuroscience, 2013, 246:117-132.
32 Wang PR, Wang JS, Zhang C, et al. Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway[J].J Ethnopharmacol, 2013, 149:270-280.
33 Althaus J, Bernaudin M, Petit E, et al.Expression of the gene encoding the proapoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1alpha (HIF-1alpha)protein following focal cerebral ischemia in rats[J]. Neurochem Int, 2006, 48:687-695.
34 Xin XY, Pan J, Wang XQ, et al.2-methoxyestradiol attenuates autophagy activation after global ischemia[J]. Can J Neurol Sci, 2011, 38:631-638.
35 Cho B, Choi SY, Park OH, et al. Differential expression of BNIP family members of BH3-only proteins during the development and after axotomy in the rat[J]. Mol Cells, 2012, 33:605-610.
36 Zhang J, Ney PA. Mechanisms and biology of B-cell leukemia/lymphoma 2/adenovirus E1B interacting protein 3 and Nip-like protein X[J].Antioxid Redox Signal, 2011, 14:1959-1969.
37 Kubota C, Torii S, Hou N, et al. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity[J]. J Biol Chem, 2010, 285:667-674.
38 Mehta SL, Kumari S, Mendelev N, et al.Selenium preserves mitochondrial function,stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia[J]. BMC Neurosci, 2012, 13:79.
39 Puyal J, Ginet V, Grishchuk Y, et al.Neuronal autophagy as a mediator of life and death:contrasting roles in chronic neurodegenerative and acute neural disorders[J]. Neuroscientist, 2012, 18:224-236.
40 Kulbe JR, Mulcahy Levy JM, Coultrap SJ, et al.Excitotoxic glutamate insults block autophagic flux in hippocampal neurons[J]. Brain Res,2014, 1542:12-19.
41 Ouyang YB, Giffard R. ER-mitochondria crosstalk during cerebral ischemia:molecular Chaperones and ER-mitochondrial calcium transfer[J]. Int J Cell Biol, 2012, 2012:493934.
【點(diǎn)睛】
本文對(duì)自噬在腦缺血/低氧神經(jīng)損傷中雙重作用及其可能的信號(hào)通路進(jìn)行綜述。
敬請(qǐng)關(guān)注!《中國卒中雜志》公共微信平臺(tái)訂閱號(hào):CJStroke(安紐醫(yī)學(xué))