国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

干細(xì)胞在肝臟疾病治療中的臨床應(yīng)用及分子機(jī)制

2015-01-22 09:40周霞韓英
關(guān)鍵詞:臍帶肝細(xì)胞骨髓

周霞 韓英

干細(xì)胞在肝臟疾病治療中的臨床應(yīng)用及分子機(jī)制

周霞 韓英

干細(xì)胞是指一群具有自我更新和多向分化潛能的細(xì)胞,是最有治療潛力的細(xì)胞資源,已成為再生醫(yī)學(xué)領(lǐng)域的研究熱點(diǎn)。目前,已有多種干細(xì)胞用于肝臟疾病的治療,能有效改善患者血清指標(biāo),減少并發(fā)癥發(fā)生,并提高生活質(zhì)量。這些干細(xì)胞在細(xì)胞來源、移植途徑及治療效果等多個(gè)方面各有特點(diǎn),但其治療肝臟疾病的機(jī)制尚不清楚。本文將對目前已用于肝病治療的各種干細(xì)胞的臨床應(yīng)用以及可能的分子機(jī)制進(jìn)展進(jìn)行闡述。

干細(xì)胞; 肝?。?臨床醫(yī)學(xué); 分子機(jī)制

干細(xì)胞是一類具有自我更新和分化為多種組織和器官能力的細(xì)胞。早在2005年有研究第一次報(bào)道干細(xì)胞移植用于治療肝病患者,顯示了干細(xì)胞治療對于肝臟疾病的支持作用[1]。根據(jù)干細(xì)胞的不同性質(zhì)和不同來源,目前臨床上干細(xì)胞移植治療失代償期肝硬化的方式分為6種:自體骨髓干細(xì)胞移植、自體外周血干細(xì)胞移植、自體造血干細(xì)胞移植、自體骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)移植、異基因臍血干細(xì)胞移植和異基因臍帶MSC移植。本文將對這些干細(xì)胞在肝臟疾病方面的實(shí)驗(yàn)研究和臨床研究以及分子機(jī)制進(jìn)行闡述。

一、骨髓來源干細(xì)胞

骨髓干細(xì)胞通常是指來源于骨髓的單個(gè)核細(xì)胞,該群細(xì)胞為混合細(xì)胞群,主要包括MSC、造血干細(xì)胞和內(nèi)皮祖細(xì)胞等。骨髓干細(xì)胞已被報(bào)道運(yùn)用于多種疾病研究,如血液系統(tǒng)疾病、心血管再生[2]、骨骼肌損傷修復(fù)[3]以及神經(jīng)再生[4]等。骨髓干細(xì)胞用于肝臟疾病的治療主要包括乙肝相關(guān)肝硬化、酒精性肝病和急慢性肝功能衰竭。

為了明確骨髓干細(xì)胞治療肝臟疾病的可行性,研究者進(jìn)行了系列骨髓干細(xì)胞治療動(dòng)物肝臟疾病模型的臨床前研究。將骨髓干細(xì)胞輸入急性肝衰竭的小鼠體內(nèi)后,細(xì)胞可遷移并滯留于損傷的肝臟,對肝臟起修復(fù)作用[5]。自體骨髓干細(xì)胞移植可以減輕肝切除和肝移植所造成的肝損傷,并且提高肝纖維化小鼠的生存率[6]。為了進(jìn)一步確認(rèn)干細(xì)胞對肝臟疾病的治療作用,研究者通過熒光標(biāo)記干細(xì)胞,并追蹤和定位移植入動(dòng)物體內(nèi)的干細(xì)胞。其中有一項(xiàng)研究用綠色熒光蛋白(green fl uorescent protein,GFP)標(biāo)記骨髓干細(xì)胞,并通過尾靜脈注入四氯化碳肝損傷的小鼠體內(nèi),結(jié)果顯示這些細(xì)胞定居在損傷肝臟內(nèi),并且轉(zhuǎn)分化為可分泌白蛋白的有功能肝細(xì)胞樣細(xì)胞[7]。這些臨床前研究所取得的治療效果為骨髓干細(xì)胞治療肝病的臨床應(yīng)用提供了一定的理論和證據(jù)支持。

一項(xiàng)研究以9例肝硬化患者為研究對象,經(jīng)外周靜脈對患者進(jìn)行骨髓干細(xì)胞移植治療,術(shù)后患者的白蛋白等生化指標(biāo)水平得到了顯著改善[8]。對于失代償期終末期肝病患者,肝移植是最理想的治療手段。但由于肝源有限,不能滿足患者的需求。有研究發(fā)現(xiàn)自體外周血干細(xì)胞移植可以促進(jìn)肝臟再生,顯著改善患者的臨床病程。在30個(gè)月的隨訪中,沒有出現(xiàn)明顯的并發(fā)癥,進(jìn)一步證實(shí)這一治療的安全性和有效性,提示自體外周血干細(xì)胞治療可以成為肝移植前的過渡治療手段[9]。但是,也有部分研究顯示骨髓干細(xì)胞移植的治療效果有限。Laurent等[10]將58例肝病患者隨機(jī)分組分別接受標(biāo)準(zhǔn)治療、聯(lián)合集落刺激因子和骨髓單個(gè)核細(xì)胞移植治療。結(jié)果發(fā)現(xiàn):與標(biāo)準(zhǔn)治療組相比,干細(xì)胞治療并沒有顯著改善患者的肝功能。因此,還需要更進(jìn)一步的研究,為骨髓干細(xì)胞治療肝病的臨床應(yīng)用提供依據(jù)。

二、外周血干細(xì)胞

外周血干細(xì)胞是來源于外周血的一群單個(gè)核細(xì)胞,主要是將骨髓中的干細(xì)胞用集落刺激因子動(dòng)員到外周血循環(huán)中,再通過專用的單個(gè)核細(xì)胞分離機(jī)從外周血中富集、分離富含造血干細(xì)胞的單個(gè)核細(xì)胞。這群細(xì)胞可以分化為血細(xì)胞、內(nèi)皮細(xì)胞、骨細(xì)胞、神經(jīng)細(xì)胞和肝細(xì)胞等,促進(jìn)損傷組織的修復(fù)和再生,目前已被報(bào)道用于治療急性白血病、多發(fā)性硬化癥[11]和肺部疾?。?2]。

本課題組在國際上首次證實(shí)失代償肝硬化患者的外周血干細(xì)胞在體內(nèi)外均可被誘導(dǎo)分化為肝細(xì)胞樣細(xì)胞[13]。隨后,本研究用集落刺激因子連續(xù)3 ~ 5 d對肝硬化患者進(jìn)行動(dòng)員,收集分離外周血干細(xì)胞,用PKH26-GL(紅色熒光)進(jìn)行標(biāo)記,經(jīng)尾靜脈輸入裸鼠體內(nèi),結(jié)果顯示這些移植的細(xì)胞遷移至裸鼠的肝臟并表達(dá)肝細(xì)胞表面標(biāo)志[14]。進(jìn)一步,從小鼠外周血干細(xì)胞中富集CD14+單核細(xì)胞,經(jīng)肝動(dòng)脈輸入到肝硬化模型小鼠體內(nèi),發(fā)現(xiàn)其能顯著改善小鼠血清生化指標(biāo)并降低門靜脈壓力[15]。這些臨床前研究提示自體外周血干細(xì)胞移植可以為失代償肝硬化患者提供一種新的替代治療方式。

基于動(dòng)物實(shí)驗(yàn)的發(fā)現(xiàn),本研究小組進(jìn)一步開展了外周血干細(xì)胞移植治療失代償期肝硬化的臨床研究。將40例患者(男31例和女9例)隨機(jī)分為2組:一組在接受4 d集落刺激因子動(dòng)員后,收集外周血干細(xì)胞后進(jìn)行移植治療;而對照組只接受集落刺激因子動(dòng)員。比較治療6個(gè)月以后兩組患者的肝功能改善情況。發(fā)現(xiàn)與對照組相比,干細(xì)胞移植組患者的白蛋白水平上升,CTP評分下降,并且沒有發(fā)現(xiàn)明顯的副作用[16]。

和其他類型的干細(xì)胞相比,外周血干細(xì)胞有其獨(dú)特的優(yōu)勢。它的分離創(chuàng)傷性更小且無需麻醉。另外,自體外周血干細(xì)胞移植很好的避免了免疫排斥及倫理學(xué)問題[17-18]。

三、造血干細(xì)胞

造血干細(xì)胞是骨髓干細(xì)胞的主要組成部分,能夠自我更新和分化為其他祖細(xì)胞,或者形成集落單元。CD34是人造血干細(xì)胞的主要標(biāo)志,也有少部分造血干細(xì)胞不表達(dá)CD34但表達(dá)另一標(biāo)志分子CD133。造血干細(xì)胞的獲得需要采集骨髓血或借助分離機(jī),然后在干細(xì)胞實(shí)驗(yàn)室內(nèi)進(jìn)行造血干細(xì)胞的分離與擴(kuò)增。通常借助CD34或CD133抗體和免疫磁珠從骨髓血中分離造血干細(xì)胞,也可借助流式細(xì)胞儀分選CD34或CD133陽性的造血干細(xì)胞,之后在體外對造血干細(xì)胞進(jìn)行適當(dāng)?shù)臄U(kuò)增,再收集細(xì)胞進(jìn)行移植[19-20]。

肝硬化是指進(jìn)展性肝纖維化的晚期,伴有肝組織結(jié)構(gòu)的破壞和假小葉的形成。原位肝移植是治療終末期肝病的唯一有效手段,但是其臨床應(yīng)用受到很多限制。因此,研究治療肝硬化新的治療方法十分必要。目前,最有研究前景的領(lǐng)域就是再生醫(yī)學(xué),尤其是干細(xì)胞治療。大量的動(dòng)物研究表明造血干細(xì)胞具有減輕肝臟損傷和促進(jìn)肝臟再生的能力[21-23]。

在臨床研究中,Gordon等[24]從自體外周血?jiǎng)訂T得到的1 × 106~ 2 × 108CD34+造血干細(xì)胞輸入5例慢性肝病患者體內(nèi)。其中3例是在CT引導(dǎo)下經(jīng)門靜脈輸入,另2例經(jīng)肝動(dòng)脈輸入。結(jié)果顯示:干細(xì)胞移植后,患者的肝功能得到了顯著改善,并且沒有出現(xiàn)明顯的并發(fā)癥。另一項(xiàng)研究對經(jīng)門靜脈輸入CD133+造血干細(xì)胞治療的6例終末期肝病患者進(jìn)行了6個(gè)月和24個(gè)月的跟蹤觀察。結(jié)果顯示:盡管細(xì)胞移植沒有明顯改善肝功能的指標(biāo),但也沒有并發(fā)癥的報(bào)道[25]。提示造血干細(xì)胞移植治療是安全可行的。但是,也有研究報(bào)道肝硬化患者經(jīng)肝動(dòng)脈移植骨髓來源的造血干細(xì)胞以后,1例患者出現(xiàn)了肝功能指標(biāo)的惡化,另1例則出現(xiàn)腎病癥狀,并發(fā)展為1型肝腎綜合征,最終死于肝功衰竭[26]。這意味著對失代償期肝硬化患者,經(jīng)肝動(dòng)脈進(jìn)行造血干細(xì)胞移植的安全性問題還需要進(jìn)一步的研究和探索。

四、骨髓MSC

MSC是具有可塑性和多向分化潛能的一群細(xì)胞,來源于間充質(zhì)和其他相關(guān)組織。這些細(xì)胞可與多種免疫細(xì)胞相互作用進(jìn)而發(fā)揮其免疫調(diào)節(jié)作用[27]。Friedenstein等[28]第一次報(bào)道了分離和培養(yǎng)MSC的方法以及檢測其分化能力。MSC不僅大量存在于骨髓中,其他組織如脂肪組織、骨骼肌和骨膜等也有此類細(xì)胞的存在。國際細(xì)胞治療學(xué)會MSC委員會定義了MSC的特征:(1)具有貼壁生長的特性;(2)表達(dá)CD105、CD73和CD90,不表達(dá)CD34、CD45、CD14或CD11b,CD79a或CD19和HLA-DR;(3)體外具有成骨、成脂、成軟骨的分化特性[29]。

MSC具有分化為肝細(xì)胞樣細(xì)胞的能力為肝病的治療提供了新的思路。在臨床前研究中,將骨髓MSC經(jīng)尾靜脈移植入肝硬化模型鼠體內(nèi),發(fā)現(xiàn)小鼠的肝功能生化指標(biāo)顯著改善[30]。而對于原發(fā)性膽汁性肝硬化的小鼠,骨髓MSC移植可以調(diào)節(jié)全身免疫反應(yīng),促進(jìn)肝臟炎癥的好轉(zhuǎn)[31]。

在臨床實(shí)驗(yàn)中,Peng等[32]研究527例肝功能衰竭患者接受相同的常規(guī)治療,其中53例患者在早期常規(guī)治療基礎(chǔ)上輔以骨髓MSC移植治療。結(jié)果發(fā)現(xiàn)經(jīng)MSC治療的患者一定程度上緩解了肝臟損傷。雖然長期療效沒有顯著的差異,但是干細(xì)胞移植治療在改善肝硬化,減少肝癌的發(fā)生率和死亡率方面具有很大的潛力。另一項(xiàng)研究發(fā)現(xiàn)終末期肝病患者在進(jìn)行骨髓MSC移植治療后,其不僅能耐受治療,而且肝臟功能也得到了顯著改善[33]。一項(xiàng)關(guān)于骨髓MSC治療肝功能衰竭的試驗(yàn)研究也證實(shí)干細(xì)胞移植可以改善患者的肝臟功能,提高患者的生活質(zhì)量[34]。

盡管臨床研究的結(jié)果為MSC的應(yīng)用提供了良好的證據(jù),但也確實(shí)存在一些不足。首先,干細(xì)胞的準(zhǔn)備時(shí)間較長會使一部分患者錯(cuò)失治療時(shí)機(jī);其次,移植后體內(nèi)的顯蹤和定位還需要更多的研究。第三,有一部分研究存在小樣本、無對照、缺乏長期療效、安全和預(yù)后的觀察等不足之處,需要進(jìn)一步完善[35]。

五、臍帶MSC

MSC主要來源于骨髓,但其數(shù)量是有限,并且隨著年齡和增殖代數(shù)的增長細(xì)胞數(shù)目不斷減少[36]。而臍帶MSC以易獲得、來源廣等特點(diǎn)備受研究者青睞。臍帶取自健康足月胎兒,在取得父母授權(quán)同意后獲得,采用機(jī)械加酶學(xué)消化的方法將臍帶分離成單個(gè)細(xì)胞。對臍帶細(xì)胞進(jìn)行貼壁培養(yǎng),在培養(yǎng)過程中添加MSC生長因子,并通過流式細(xì)胞儀監(jiān)測MSC表型CD34-CD45-CD105+[37]。

Tsai等[38]將臍帶MSC直接輸入肝硬化大鼠肝臟內(nèi),發(fā)現(xiàn)大鼠的肝臟炎癥明顯減輕,肝臟功能改善并促進(jìn)肝臟再生。本課題組首次證實(shí)特異的一組microRNA可以誘導(dǎo)MSC分化為肝細(xì)胞樣細(xì)胞,并且這些肝細(xì)胞樣細(xì)胞可以減輕裸鼠急性肝損傷,促進(jìn)肝臟功能恢復(fù)[39-40]。

有研究報(bào)道45例慢性乙型肝炎肝硬化的患者,30例患者經(jīng)門靜脈移植臍帶MSC治療,而對照組15例患者則接受生理鹽水治療。在一年的觀察期內(nèi)發(fā)現(xiàn):與對照組相比,干細(xì)胞治療組的患者腹水顯著減輕,肝功能明顯改善[37]。這為臍帶MSC的臨床應(yīng)用提供了重要依據(jù)。在臍帶MSC治療自身免疫性疾病方面也取得了顯著療效。已經(jīng)應(yīng)用于治療系統(tǒng)性紅斑狼瘡[41]、免疫性血小板減少癥[42]和風(fēng)濕性關(guān)節(jié)炎[43]等的臨床探索治療。對于應(yīng)用熊去氧膽酸治療效果不好的原發(fā)性膽汁性肝硬化(primary biliary cirrhosis, PBC)患者,每4周輸入1次臍帶MSC,共3次,并繼續(xù)給與熊去氧膽酸治療?;颊叩姆αΠY狀明顯減輕,瘙癢癥狀也得到緩解[44]。此外,臍帶MSC還可用于改善慢加急肝功功能衰竭患者的生存期、MELD評分等[45]。

六、臍血干細(xì)胞

臍血干細(xì)胞的獲得是選擇健康產(chǎn)婦,并經(jīng)產(chǎn)婦知情同意,同時(shí)排除乙型肝炎、丙型肝炎、艾滋病、梅毒及其他傳染性疾病,無病理妊娠等。在胎兒娩出斷臍后,消毒采血部位,應(yīng)用裝有血液保存液Ⅱ的一次性采血袋以封閉式采血法采血,每袋采臍血100 ml。在干細(xì)胞實(shí)驗(yàn)室內(nèi),用負(fù)收集法分離提取臍帶血干細(xì)胞。臍血MSC具有容易獲得,污染概率小和低免疫原性的特點(diǎn)[46]。臍血干細(xì)胞主要是CD271、CD29、CD90、CD105和CD73陽性的MSC,當(dāng)然也存在CD34+細(xì)胞,其數(shù)量甚至有可能超過骨髓或者外周血的量。這些CD34+細(xì)胞可依靠抗體或者磁珠從臍血中獲得[47]。

臍血MSC已經(jīng)被報(bào)道用于治療神經(jīng)膠質(zhì)瘤[46]、脊髓損傷[48]和肺部疾病[49]等。它們不僅可以緩解心肌梗死[50]、腦缺血[51]的癥狀,還可以促進(jìn)傷口修復(fù)愈合[52]。最近的一項(xiàng)研究發(fā)現(xiàn)臍血MSC過表達(dá)肝細(xì)胞生長因子可在體外實(shí)現(xiàn)肝細(xì)胞樣細(xì)胞分化。當(dāng)干細(xì)胞移植入肝硬化大鼠體內(nèi)后,大鼠的肝功能指標(biāo),甚至是組織學(xué)都得到了顯著改善[53]。也有研究報(bào)導(dǎo)臍血MSC在趨化因子的作用下遷移到損傷的肝臟內(nèi),可能通過分化為肝細(xì)胞樣細(xì)胞發(fā)揮其修復(fù)再生的功能[22]。而將臍血干細(xì)胞包裹在微膠囊中輸入急性肝衰竭的小鼠體內(nèi)則可以進(jìn)一步降低發(fā)生免疫排斥的風(fēng)險(xiǎn)[47]。盡管臍血干細(xì)胞免疫原性較低,但使用未處理的細(xì)胞仍存在風(fēng)險(xiǎn)。

關(guān)于臍血干細(xì)胞的動(dòng)物實(shí)驗(yàn)結(jié)果比較理想,但是鮮有臨床研究的報(bào)道。因此,相比其他干細(xì)胞,臍血干細(xì)胞的臨床應(yīng)用還需要付出更多的努力。

七、干細(xì)胞治療的分子機(jī)制

肝移植是治療終末期肝病的理想手段。但是,由于供體缺乏、費(fèi)用昂貴和不可預(yù)知的并發(fā)癥限制了肝移植的臨床應(yīng)用。細(xì)胞治療,尤其是干細(xì)胞治療,通過自我更新、多向分化、旁分泌以及與免疫細(xì)胞相互作用等方式成為治療肝臟疾病的新方式。回顧先前的研究,發(fā)現(xiàn)這些干細(xì)胞或直接移植入患者體內(nèi)或者在體外誘導(dǎo)分化為肝細(xì)胞樣細(xì)胞后進(jìn)行移植治療。但是,無論是干細(xì)胞還是肝細(xì)胞樣細(xì)胞,它們在進(jìn)入體內(nèi)之后的命運(yùn)并不清楚,是細(xì)胞融合、干細(xì)胞轉(zhuǎn)分化和微環(huán)境中免疫調(diào)節(jié),筆者將對這幾種可能機(jī)制進(jìn)行綜述。

1. 細(xì)胞融合:細(xì)胞融合在生命之初就已經(jīng)存在。而早在數(shù)十年前,就已經(jīng)報(bào)道細(xì)胞融合和干細(xì)胞密切相關(guān)[54]。近來,很多研究已經(jīng)在體內(nèi)和體外成功實(shí)現(xiàn)干細(xì)胞誘導(dǎo)分化為肝細(xì)胞樣細(xì)胞,而細(xì)胞融合則被認(rèn)為是這個(gè)細(xì)胞命運(yùn)轉(zhuǎn)變的可能機(jī)制。

在高酪氨酸引起的肝衰模型中,延胡索酰乙酰乙酸鹽水解酶基因(fumarylacetoacetate hydrolase gene, Fah)突變的小鼠在移植Fah+/+的骨髓干細(xì)胞后可以重新恢復(fù)其正常肝臟功能,并且形成表達(dá)Fah的再生小結(jié)。這些肝再生小結(jié)不僅表達(dá)本身的突變基因,也表達(dá)來自移植的野生基因型Fah,這與宿主基因和供體基因相互融合形成的多倍體基因組相一致[55]。Wang等[56]進(jìn)行了一系列骨髓來源的肝細(xì)胞樣細(xì)胞的移植研究,并通過Southern印跡雜交技術(shù)分析,發(fā)現(xiàn)這些定居肝臟的移植細(xì)胞是不同于供體細(xì)胞的雜合子。細(xì)胞遺傳學(xué)進(jìn)一步分析表明:將雌性小鼠肝細(xì)胞移植到雄鼠受者得到的是(80,XXXY)和(120,XXXXYY)肝細(xì)胞核型,這提示供體和宿主細(xì)胞之間的發(fā)生融合。另有研究表明,單獨(dú)移植造血干細(xì)胞可同時(shí)提供血細(xì)胞和肝細(xì)胞,即通過Cre/lox進(jìn)行DNA重組發(fā)現(xiàn)成熟的髓細(xì)胞和肝細(xì)胞發(fā)生自發(fā)融合,這意味著這些類似骨髓細(xì)胞的融合細(xì)胞可為多種組織的細(xì)胞療法提供新的策略[57]。骨髓單核細(xì)胞,例如巨噬細(xì)胞可以通過體內(nèi)融合產(chǎn)生功能型內(nèi)皮細(xì)胞,為器官再生提供細(xì)胞治療的新方法[58]。此外,臍帶干細(xì)胞已經(jīng)被報(bào)道可以通過細(xì)胞融合產(chǎn)生新的肝細(xì)胞樣細(xì)胞[59]。但是,也有研究提示在不同的微環(huán)境中,干細(xì)胞也可以不通過細(xì)胞融合而產(chǎn)生功能性肝細(xì)胞樣細(xì)胞[60]。

目前,大部分的研究顯示了干細(xì)胞融合在肝臟疾病治療中的積極作用。但是上述動(dòng)物模型的應(yīng)用性仍有待確定。而在Fah突變模型和酪氨酸血癥中發(fā)現(xiàn)了細(xì)胞遺傳學(xué)異常,包括異常核分裂和多核化,因此選擇遺傳學(xué)穩(wěn)定的動(dòng)物模型十分必要[61-62]。

2.轉(zhuǎn)分化:轉(zhuǎn)分化可能是干細(xì)胞治療肝臟疾病最簡單、最直接和最容易被接受的機(jī)制。而這種分化能力來自干細(xì)胞的可塑性,一種可以分化為不同胚層細(xì)胞的能力[63]。細(xì)胞融合曾被認(rèn)為是干細(xì)胞治療的主要機(jī)制,但研究發(fā)現(xiàn)臍帶干細(xì)胞可以不經(jīng)過融合而發(fā)生肝細(xì)胞轉(zhuǎn)化[64]。目前,有大量的研究都顯示了不同種干細(xì)胞都擁有分化為肝細(xì)胞樣細(xì)胞的能力。Lagasse等[65]第一次報(bào)道了造血干細(xì)胞在體內(nèi)可以誘導(dǎo)分化為肝細(xì)胞樣細(xì)胞。人骨髓MSC可以在肝損傷小鼠體內(nèi)分化為肝細(xì)胞樣細(xì)胞[66]。臍血干細(xì)胞也可以分化為肝細(xì)胞樣細(xì)胞,進(jìn)而減輕肝臟損傷[67]。本課題組則首次證明乙肝肝硬化患者的外周血單核細(xì)胞可轉(zhuǎn)分化為肝細(xì)胞樣細(xì)胞。誘導(dǎo)干細(xì)胞的轉(zhuǎn)分化最常用的方法是兩步法,主要是在誘導(dǎo)培養(yǎng)基中加入多種生長因子(內(nèi)皮生長因子,肝細(xì)胞生長因子等)、煙堿、抑瘤素、地塞米松等預(yù)先混合成分[68]。也有研究通過轉(zhuǎn)錄因子的組合(如Hnf4alpha, Foxa1, Foxa2 or Foxa3)實(shí)現(xiàn)肝細(xì)胞樣細(xì)胞轉(zhuǎn)分化。而本課題組利用一組七種microRNAs (mir-122, mor-1290, mir-148a, mir-424,mir-542-5p, mir-1246和mir-30a)成功實(shí)現(xiàn)了臍帶MSC體外誘導(dǎo)分化為肝細(xì)胞樣細(xì)胞,并將其移植入肝損傷裸鼠體內(nèi),發(fā)現(xiàn)裸鼠的肝損傷明顯減輕,白蛋白水平上升及轉(zhuǎn)氨酶的降低[40]。不管是在體內(nèi)還是體外誘導(dǎo)干細(xì)胞轉(zhuǎn)分化肝細(xì)胞樣細(xì)胞,這些細(xì)胞真正具有肝細(xì)胞的功能,才是細(xì)胞治療肝臟疾病的關(guān)鍵。

3. 免疫調(diào)節(jié):肝臟是富含免疫細(xì)胞的特殊器官。這些免疫細(xì)胞與肝臟免疫耐受、接受新移植物和肝臟病毒持久存在密切相關(guān)。枯否細(xì)胞是定植在肝臟的特殊巨噬細(xì)胞,占肝臟非實(shí)質(zhì)細(xì)胞的35%,這群細(xì)胞與肝臟損傷和肝臟再生息息相關(guān)。根據(jù)功能和表型的不同,枯否細(xì)胞可分為促炎的M1型和抗炎的M2型,這兩種細(xì)胞在肝臟疾病的進(jìn)程中發(fā)揮著不同的作用。研究發(fā)現(xiàn)人MSC可以改變枯否細(xì)胞的表型,從M1型變?yōu)镸2型[69]。淋巴細(xì)胞主要包括T細(xì)胞、B細(xì)胞和NK細(xì)胞等,參與肝臟的免疫反應(yīng)。在筆者課題組的研究中,發(fā)現(xiàn)乙肝肝硬化患者的血清IL-17水平顯著高于正常人群。但在自體干細(xì)胞移植治療以后,IL-17的水平顯著降低。另外,外源性IL-17處理可以惡化肝損傷小鼠的肝臟功能,而給予IL-17抗體處理則促進(jìn)肝臟功能改善。這些結(jié)果提示干細(xì)胞可能通過下調(diào)IL-17水平而發(fā)揮其對肝病的修復(fù)作用[70]。

干細(xì)胞,尤其是MSC,具有低免疫原性,很少表達(dá)HLA-1分子,不表達(dá)HLA-DR。共刺激因子CD40,CD80和CD86的表達(dá)缺乏,使MSC表現(xiàn)為免疫耐受狀態(tài)[71]。干細(xì)胞在治療肝臟疾病時(shí)還可抑制免疫細(xì)胞的增殖和成熟。干細(xì)胞可在其趨化受體的作用下遷移到損傷的肝臟,進(jìn)而分泌增殖或抗凋亡細(xì)胞因子,促進(jìn)肝細(xì)胞增殖。在生長因子的作用下,干細(xì)胞促進(jìn)肝臟再生和損傷的修復(fù)[72]。細(xì)胞外基質(zhì)的合成與降解失衡會導(dǎo)致肝硬化,這與肝星狀細(xì)胞關(guān)系密切。而干細(xì)胞移植治療可通過調(diào)節(jié)TGF-α和TGF-β抑制肝星狀細(xì)胞的活化,抑制肝硬化進(jìn)展[73]。另外,干細(xì)胞調(diào)節(jié)枯否細(xì)胞表型轉(zhuǎn)變,改善肝損傷和肝硬化。MSC移植治療則可顯著改善對傳統(tǒng)治療無效的PBC患者癥狀[44]。在動(dòng)物實(shí)驗(yàn)中,干細(xì)胞治療PBC小鼠后,發(fā)現(xiàn)血清 TGF-β1和IFN-γ顯著改變,從而調(diào)節(jié)肝臟炎癥,促進(jìn)肝臟損傷的緩解[74]。

盡管以往的這些研究結(jié)果顯示了干細(xì)胞治療肝病的巨大潛力,但是,其機(jī)制的明確還需要更多的深入研究。在基礎(chǔ)研究領(lǐng)域,還需要對不同類型及不同來源的干細(xì)胞對不同肝臟疾病模型動(dòng)物進(jìn)行干預(yù)研究,明確不同干細(xì)胞的干預(yù)效果及其機(jī)制,為人類干細(xì)胞治療肝臟疾病提供實(shí)驗(yàn)依據(jù)。

1 Hengstler JG, Brulport M, Schormann W, et al. Generation of human hepatocytes by stem cell technology: defi nition of the hepatocyte[J]. Expert Opin Drug Metab Toxicol,2005, 1(1):61-74.

2 Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial[J]. Lancet, 2002,360(9331):427-435.

3 Souza BS, Azevedo CM, Lima RS, et al. Bone marrow cells migrate to the heart and skeletal muscle and participate in tissue repair after Trypanosoma cruzi infection in mice[J]. Int J Exp Pathol, 2014, 95(5):321-329.

4 Salomone R, Bento RF, Costa HJ, et al. Bone marrow stem cells in facial nerve regeneration from isolated stumps[J]. Muscle Nerve, 2013, 48(3):423-429.

5 Shizhu J, Xiangwei M, Xun S, et al. Bone marrow mononuclear cell transplant therapy in mice with CCl4-induced acute liver failure[J]. Turk J Gastroenterol, 2012,23(4):344-352.

6 Xu T, Wang X, Chen G, et al. Autologous bone marrow stem cell transplantation attenuates hepatocyte apoptosis in a rat model of ex vivo liver resection and liver autotransplantation[J]. J Surg Res, 2013, 184(2):1102-1108.

7 Terai S, Sakaida I, Yamamoto N, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes[J]. J Biochem, 2003,134(4):551-558.

8 Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy[J]. Stem cells, 2006,24(10):2292-2298.

9 Yannaki E, Anagnostopoulos A, Kapetanos D, et al. Lasting amelioration in the clinical course of decompensated alcoholic cirrhosis with boost infusions of mobilized peripheral blood stem cells[J]. Exp Hematol, 2006,34(11):1583-1587.

10 Spahr L, Chalandon Y, Terraz S, et al. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial[J]. PloS one, 2013, 8(1):e53719.

11 Simpson S Jr, Stewart N, van der Mei I, et al. Stimulated PBMC-produced IFN-gamma and TNF-alpha are associated with altered relapse risk in multiple sclerosis: results from a prospective cohort study[J]. J Neurol Neurosurg Psychiatry,2015, 86(2):200-207.

12 Bahr TM, Hughes GJ, Armstrong M, et al. Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2013,49(2):316-323.

13 Yan L, Han Y, Wang J, et al. Peripheral blood monocytes from patients with HBV related decompensated liver cirrhosis can differentiate into functional hepatocytes[J]. Am J Hematol, 2007, 82(11):949-954.

14 Yan L, Han Y, Wang J, et al. Peripheral blood monocytes from the decompensated liver cirrhosis could migrate into nude mouse liver with human hepatocyte-markers expression[J]. Biochem Biophys Res Commun, 2008,371(4):635-638.

15 Wang J, Zhou X, Cui L, et al. The significance of CD14+monocytes in peripheral blood stem cells for the treatment of rat liver cirrhosis[J]. Cytotherapy, 2010,12(8):1022-1034.

16 Han Y, Yan L, Han G, et al. Controlled trials in hepatitis B virus-related decompensate liver cirrhosis: peripheral blood monocyte transplant versus granulocyte-colonystimulating factor mobilization therapy[J]. Cytotherapy,2008, 10(4):390-396.

17 Bensinger WI, Weaver CH, Appelbaum FR, et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colonystimulating factor[J]. Stem Cells,1996 ,14(1):90-105.

18 Hassan HT, Zeller W, Stockschlader M, et al. Comparison between bone marrow and G-CSF-mobilized peripheral blood allografts undergoing clinical scale CD34+cell selection[J]. Stem cells,1996,14(4):419-429.

19 Salama H, Zekri AR, Bahnassy AA, et al. Autologous CD34+and CD133+stem cells transplantation in patients with end stage liver disease[J]. World J Gastroenterol,2010, 16(42):5297-5305.

20 Salama H, Zekri AR, Ahmed R, et al. Assessment of healthrelated quality of life in patients receiving stem cell therapy for end-stage liver disease: an Egyptian study[J]. Stem Cell Res Ther, 2012, 3(6):49.

21 Zhan Y, Wang Y, Wei L, et al. Differentiation of hematopoietic stem cells into hepatocytes in liver fi brosis in rats[J]. Transpl P, 2006, 38(9):3082-3085.

22 Yu J, Cao H, Yang J, et al. In vivo hepatic differentiation of mesenchymal stem cells from human umbilical cord blood after transplantation into mice with liver injury[J]. Biochem Biophys Res Commun, 2012, 422(4):539-545.

23 Tsolaki E, Athanasiou E, Gounari E, et al. Hematopoietic stem cells and liver regeneration: Differentially acting hematopoietic stem cell mobilization agents reverse induced chronic liver injury[J]. Blood Cells Mol Dis, 2014,53(3):124-132.

24 Gordon MY, Levicar N, Pai M, et al. Characterization and clinical application of human CD34+stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor[J]. Stem cells, 2006,24(7):1822-1830.

25 Nikeghbalian S, Pournasr B, Aghdami N, et al. Autologous transplantation of bone marrow-derived mononuclear and CD133(+) cells in patients with decompensated cirrhosis[J]. Arch Iran Med, 2011, 14(1):12-17.

26 Mohamadnejad M, Namiri M, Bagheri M, et al. Phase 1 human trial of autologous bone marrowhematopoietic stem cell transplantation in patients with decompensated cirrhosis[J]. World J Gastroenterol, 2007,13(24):3359-3363.

27 Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease[J]. Nat Eev Immunol, 2008,8(9):726-736.

28 Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells[J]. J Embryol Exp Morphol, 1966, 16(3):381-390.

29 Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells[J]. Trends Mol Med,2012, 18(2):128-134.

30 Abdel Aziz MT, Atta HM, Mahfouz S, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis[J]. Clin Biochem, 2007,40(12):893-899.

31 Wang D, Zhang H, Liang J, et al. Effect of allogeneic bone marrow-derived mesenchymal stem cells transplantation in a polyI:C-induced primary biliary cirrhosis mouse model[J]. Clin Exp Med, 2011, 11(1):25-32.

32 Peng L, Xie DY, Lin BL, et al. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes[J]. Hepatology, 2011, 54(3):820-828.

33 Kharaziha P, Hellstrom PM, Noorinayer B, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial[J]. Eur J Gastroenterol Hepatol, 2009,21(10):1199-1205.

34 Park CH, Bae SH, Kim HY, et al. A pilot study of autologous CD34-depleted bone marrow mononuclear cell transplantation via the hepatic artery in fi ve patients with liver failure[J]. Cytotherapy, 2013, 15(12):1571-1579.

35 Shim WS, Tan G, Gu Y, et al. Dose-dependent systolic contribution of differentiated stem cells in post-infarct ventricular function[J]. J Heart Lung Transpl, 2010,29(12):1415-1426.

36 Zhong YS, Lin N, Deng MH, et al. Defi cient proliferation of bone marrow-derived mesenchymal stem cells in patients with chronic hepatitis B viral infections and cirrhosis of the liver[J]. Dig Dis Sci, 2010, 55(2):438-445

37 Zhang Z, Lin H, Shi M, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients[J]. J Gastroenterol Hepatol, 2012, 27 Suppl 2:112-120.

38 Tsai PC, Fu TW, Chen YM, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fi brosis, 2009,15(5):484-495.

39 Cui L, Zhou X, Li J, et al. Dynamic microRNA Profiles of Hepatic Differentiated Human Umbilical Cord Lining-Derived Mesenchymal Stem Cells[J]. 2012, 7(9):e44737.

40 Cui L, Shi Y, Zhou X, et al. A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes[J]. Cell Death Dis, 2013, 4:e918.

41 Sun L, Wang D, Liang J, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus[J]. Arthritis Rheum, 2010,62(8):2467-2475.

42 Ma L, Zhou Z, Zhang D, et al. Immunosuppressive function of mesenchymal stem cells from human umbilical cord matrix in immune thrombocytopenia patients[J]. Thromb Haemost, 2012, 107(5):937-950.

43 Liu Y, Mu R, Wang S, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis[J]. Arthritis Res Ther, 2010, 12(6): R210.

44 Wang L, Li J, Liu H, et al. Pilot study of umbilical cordderived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis[J]. J Gastroenterol Hepatol, 2013,28 Suppl 1:85-92.

45 Shi M, Zhang Z, Xu R, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acuteon-chronic liver failure patients[J]. Stem Cells Transl Med,2012, 1(10):725-731.

46 Kim SM, Lim JY, Park SI, et al. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma[J]. Cancer Res, 2008, 68(23):9614-9623.

47 Zhang FT, Wan HJ, Li MH, et al. Transplantation of microencapsulated umbilical-cord-blood-derived hepaticlike cells for treatment of hepatic failure[J]. World J Gastroenterol, 2011, 17(7):938-945.

48 Lim JH, Byeon YE, Ryu HH, et al. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs[J]. J Vet Sci, 2007, 8(3):275-282.

49 Kim ES, Chang YS, Choi SJ, et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coliinduced acute lung injury in mice[J]. Respir Res, 2011,12:108.

50 Kang BJ, Kim H, Lee SK, et al. Umbilical-cord-bloodderived mesenchymal stem cells seeded onto fibronectinimmobilized polycaprolactone nanofiber improve cardiac function[J]. Acta Biomater, 2014, 10(7):3007-3017.

51 Zhu Y, Guan YM, Huang HL, et al. Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits[J]. Acta Pharmacol Sin, 2014, 35(5):585-591.

52 Joyce NC, Harris DL, Markov V, et al. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium[J]. Molecular vision, 2012,18:547-64.

53 Seo KW, Sohn SY, Bhang DH, et al. Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood-derived mesenchymal stem cells on liver fibrosis in rats[J]. Cell biology international, 2014,38(1):106-116.

54 Alvarez-Dolado M. Cell fusion: biological perspectives and potential for regenerative medicine[J]. Front Biosci, 2007,12:1-12.

55 Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion[J]. Nature, 2003,422(6934):901-904.

56 Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes[J]. Nature, 2003, 422(6934):897-901.

57 Camargo FD, Finegold M, Goodell MA. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners[J]. J Clin Invest, 2004, 113(9):1266-1270.

58 Willenbring H, Bailey AS, Foster M, et al. Myelomonocytic cells are suffi cient for therapeutic cell fusion in liver[J]. Nat Med, 2004, 10(7):744-748.

59 Tanabe Y, Tajima F, Nakamura Y, et al. Analyses to clarify rich fractions in hepatic progenitor cells from human umbilical cord blood and cell fusion[J]. Biochem Biophys Res Commun, 2004, 324(2):711-718.

60 Jang YY, Collector MI, Baylin SB, et al. Hematopoietic stem cells convert into liver cells within days without fusion[J]. Nat Cell Biol, 2004, 6(6):532-539.

61 Wilson KS, Timmons CF, Hilton DS, et al. Chromosomal instability in hereditary tyrosinemia type I[J]. Pediatr Pathol, 1994, 14(6):1055-1057.

62 Jorquera R, Tanguay RM. Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia,activates the ERK pathway and induces mitotic abnormalities and genomic instability[J]. Hum Mol Genet,2001, 10(17):1741-1752.

63 Wagers AJ, Weissman IL. Plasticity of adult stem cells[J]. Cell, 2004, 116(3):639-648.

64 Newsome PN, Johannessen I, Boyle S, et al. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion[J]. Gastroenterology, 2003, 124(7):1891-1900.

65 Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo[J]. Nat Med, 2000, 6(11):1229-1234.

66 Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion[J]. Blood, 2005,106(2):756-763.

67 Moon YJ, Yoon HH, Lee MW, et al. Multipotent progenitor cells derived from human umbilical cord blood can differentiate into hepatocyte-like cells in a liver injury rat model[J]. Transplant Proc, 2009, 41(10):4357-4360.

68 Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells[J]. Hepatology, 2004, 40(6):1275-1284..

69 Dayan V, Yannarelli G, Billia F, et al. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/ macrophages after acute myocardial infarction[J]. Basic Res Cardiol, 2011, 106(6):1299-1310.

70 Zheng L, Chu J, Shi Y, et al. Bone marrow-derived stem cells ameliorate hepatic fibrosis by down-regulating interleukin-17[J]. Cell Biosci., 2013, 3(1):46.

71 Cui L, Shi Y, Han Y, et al. Immunological basis of stem cell therapy in liver diseases[J]. Expert Rev Clin Immunol,2014, 10(9):1185-1196.

72 Li Q, Zhou X, Shi Y, et al. In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury[J]. PLoS One, 2013, 8(4):e62363.

73 Tanimoto H, Terai S, Taro T, et al. Improvement of liver fi brosis by infusion of cultured cells derived from human bone marrow[J]. Cell Tissue Res, 2013, 354(3):717-728.

74 Snykers S, Henkens T, De Rop E, et al. Role of epigenetics in liver-specifi c gene transcription, hepatocyte differentiation and stem cell reprogrammation[J]. J Hepatol,2009, 51(1):187-211.

Clinical application and molecular mechanisms of stem cell therapy for liver disease

ZhouXia, Han Ying. Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an 710032, China

Han Ying, Email:hanying@fmmu.edu.cn

Stem cells (SCs) are cells that can renew themselves and transform into the specialized cell types of tissues or organs, including hepatocyte-like cells. They provide promising potential therapy for patients with liver disease, including the improvement of serum parameters, the recovery of hepatic function, and even the improvement of quality of life, with few adverse effects. Recently, different stem cells have been used for liver disease therapy. These stem cells differ in cell sources, transplantation routes, and treatment effects. Moreover,the mechanisms of stem cell therapy for liver diseases are still not clear. Thus, we will review the clinical application and molecular mechanisms of stem cell therapy, in order to figure out the optimal treatment for liver diseases.

Stem cell; liver diseases; clinical medicine; molecular mechanism

2014-10-08)

(本文編輯:李少婷)

10.3877/cma.j.issn.2095-1221.2015.02.012

71003 西安,第四軍醫(yī)大學(xué)西京醫(yī)院消化病醫(yī)院

韓英,Email:hanying@fmmu.edu.cn

猜你喜歡
臍帶肝細(xì)胞骨髓
肝臟脾植入誤診為肝細(xì)胞癌1例
16排螺旋CT在肝細(xì)胞癌診斷中的應(yīng)用分析
外泌體miRNA在肝細(xì)胞癌中的研究進(jìn)展
鋅指蛋白與肝細(xì)胞癌的研究進(jìn)展
骨髓18F-FDG攝取模式在初診彌漫大B細(xì)胞淋巴瘤診斷骨髓浸潤的價(jià)值
胎兒臍帶繞頸,如何化險(xiǎn)為夷
骨髓中缺氧誘導(dǎo)因子1α和血小板衍生生長因子B在骨髓增生異常綜合征的表達(dá)
臍帶先露與臍帶脫垂對胎兒有影響嗎
贊美骨髓
胎兒臍帶繞頸,如何化險(xiǎn)為夷
株洲市| 湖州市| 德保县| 洛隆县| 高陵县| 清远市| 中超| 钟祥市| 五寨县| 团风县| 馆陶县| 个旧市| 左权县| 宜丰县| 鲁甸县| 财经| 吉隆县| 扶风县| 寿阳县| 扶余县| 麦盖提县| 女性| 温泉县| 富锦市| 陵川县| 耿马| 三原县| 宁德市| 肃南| 枞阳县| 兴隆县| 本溪| 汤阴县| 扬州市| 边坝县| 滦南县| 德化县| 沅江市| 封开县| 铜鼓县| 阿拉善左旗|