王進(jìn)波 初佳麗 韓 菲 楊 靜 齊莉莉
(浙江大學(xué)寧波理工學(xué)院,寧波 315100)
鐵(Fe)是生命有機(jī)體的必需營養(yǎng)素,在能量代謝、DNA復(fù)制、氧的運(yùn)輸、抗體生成、肝臟解毒及保護(hù)機(jī)體免受氧化應(yīng)激等諸多生理過程中發(fā)揮著重要作用[1]。微生物也不例外,F(xiàn)e參與微生物的電子傳遞、糖酵解、DNA合成及對(duì)抗自由基損傷等諸多生理代謝過程,對(duì)微生物的正常生長、增殖具有重要意義[2]。從宿主體內(nèi)獲取生長、繁殖所必需的Fe,是病原菌侵染宿主的前提。因此,控制病原菌的Fe攝取在機(jī)體抵抗病原菌侵染中發(fā)揮著關(guān)鍵作用。
哺乳動(dòng)物細(xì)胞攝取Fe的方式主要有3種[2](圖1):1)細(xì)胞通過膜上的轉(zhuǎn)鐵蛋白受體(transferrin receptor,TFR)與血液中的轉(zhuǎn)鐵蛋白結(jié)合攝取Fe[3];2)腸腔中游離的 Fe3+經(jīng)十二脂腸細(xì)胞色素b還原酶(duodenal cytochrome b reductase,DCYTB)還原成Fe2+后,通過小腸黏膜細(xì)胞刷狀緣上的二價(jià)金屬轉(zhuǎn)運(yùn)載體1(divalent metal transporter 1,DMT1)轉(zhuǎn)入胞內(nèi);3)血紅素鐵(血紅蛋白或結(jié)合珠蛋白形式)可通過巨噬細(xì)胞膜上的血紅蛋白清道夫受體——分化抗原簇163(cluster of differentiation 163,CD163)進(jìn)入胞內(nèi)。Fe進(jìn)入胞內(nèi)后,有的進(jìn)入線粒體,用以合成血紅素、鐵硫簇(Fe-S cluster)等,進(jìn)而參與機(jī)體氧的轉(zhuǎn)運(yùn)及電子傳遞等代謝過程;有的以鐵蛋白的形式存在于胞內(nèi);還有部分Fe經(jīng)轉(zhuǎn)運(yùn)進(jìn)入血液循環(huán)系統(tǒng),參與機(jī)體多種生理機(jī)能。腸上皮細(xì)胞內(nèi)Fe的轉(zhuǎn)出主要由腸絨毛上皮細(xì)胞膜上的鐵轉(zhuǎn)運(yùn)蛋白(ferroportin,F(xiàn)PN)完成,轉(zhuǎn)出的Fe2+在血漿銅藍(lán)蛋白或小腸細(xì)胞膜鐵轉(zhuǎn)運(yùn)輔助蛋白作用下成為Fe3+。此過程受肝臟分泌的鐵調(diào)激素調(diào)控,當(dāng)體內(nèi)Fe濃度增高時(shí),鐵調(diào)激素表達(dá)量增加,誘導(dǎo)FPN降解,抑制胞內(nèi)Fe轉(zhuǎn)出,同時(shí)抑制Fe吸收;當(dāng)體內(nèi)Fe濃度低時(shí),鐵調(diào)激素表達(dá)量減少,F(xiàn)PN將胞內(nèi)Fe轉(zhuǎn)出進(jìn)入循環(huán)系統(tǒng),同時(shí)增加腸黏膜Fe的吸收率[4]。
Fe在微生物的生長、繁殖、代謝過程中具有很重要的作用。研究指出,病原菌在Fe濃度極低的環(huán)境中亦能正常生長,并感染宿主。這是由于這些病原菌具有高效的Fe攝取機(jī)制,能夠從周圍環(huán)境中攝取 Fe,滿足自身需要[5-6]。目前已知的3種病原菌Fe攝取機(jī)制為:嗜鐵素系統(tǒng)、血紅素獲取系統(tǒng)和轉(zhuǎn)鐵蛋白/乳鐵蛋白受體[1](圖2)。嗜鐵素與Fe的結(jié)合常數(shù)超過1050,使細(xì)菌能夠高效獲取環(huán)境中的Fe。負(fù)載Fe的嗜鐵素能與細(xì)菌表面的受體共價(jià)結(jié)合,將Fe-嗜鐵素復(fù)合物攝入細(xì)胞內(nèi),然后再釋放出游離Fe作為細(xì)菌的營養(yǎng)物質(zhì)。血紅素獲取系統(tǒng)主要通過細(xì)菌表面的血紅素結(jié)合蛋白受體,從血紅蛋白中獲取血紅素,轉(zhuǎn)運(yùn)進(jìn)入細(xì)菌胞內(nèi),然后在血紅素氧化酶或逆鐵螯合酶的作用下,將Fe從血紅素上解離下來。有些細(xì)菌具有轉(zhuǎn)鐵蛋白和乳鐵蛋白受體,可以直接識(shí)別宿主轉(zhuǎn)鐵蛋白和乳鐵蛋白,從宿主細(xì)胞中獲取Fe[6-7]。
圖1 宿主的Fe代謝Fig.1 Iron metabolism in the host[2]
正常生理?xiàng)l件下,哺乳動(dòng)物體內(nèi)游離Fe的濃度很低,使體內(nèi)細(xì)菌處于Fe饑餓狀態(tài),從而抑制其生長、繁殖,防止感染的發(fā)生,這是機(jī)體對(duì)抗病原菌侵染的第1道防線[8]。為了從宿主體內(nèi)獲取生長、繁殖、代謝所需要的Fe,細(xì)菌進(jìn)化出了高效的Fe攝取系統(tǒng)。對(duì)此,動(dòng)物機(jī)體也有一些競(jìng)爭(zhēng)機(jī)制,限制細(xì)菌對(duì)Fe的攝取,從而抑制細(xì)菌(尤其是病原菌)的增殖。因此,宿主與病原菌之間Fe的競(jìng)爭(zhēng)是機(jī)體對(duì)抗病原菌侵染的重要方式,對(duì)機(jī)體健康具有重要意義。
動(dòng)物機(jī)體參與Fe競(jìng)爭(zhēng)的蛋白因子有多種,二價(jià)金屬轉(zhuǎn)運(yùn)載體、細(xì)胞色素b、遺傳性血色病蛋白、鐵調(diào)節(jié)蛋白、鐵蛋白、FPN等參與機(jī)體Fe平衡代謝的蛋白因子均參與Fe競(jìng)爭(zhēng)。感染發(fā)生時(shí),機(jī)體會(huì)上調(diào)Fe攝入相關(guān)蛋白的表達(dá),下調(diào)FPN等Fe轉(zhuǎn)出相關(guān)蛋白的表達(dá),將體內(nèi)Fe大量轉(zhuǎn)入胞內(nèi),與鐵蛋白形成復(fù)合物貯存起來,降低細(xì)胞外液中Fe的濃度,抑制病原菌攝取Fe,從而抑制感染的發(fā)生。
脂質(zhì)運(yùn)載蛋白2(lipocalin-2,Lcn-2)是研究較為廣泛的一種參與Fe競(jìng)爭(zhēng)的蛋白因子,該蛋白因子又稱噬鐵蛋白、NGAL、24p3等。Flo等[9]運(yùn)用基因芯片篩選技術(shù)首次發(fā)現(xiàn)小鼠Lcn-2可與負(fù)載Fe的大腸桿菌嗜鐵素結(jié)合,抑制大腸桿菌對(duì)Fe的攝取,從而發(fā)揮抗菌作用。Saiga等[10]利用 Lcn-2基因缺陷型小鼠研究發(fā)現(xiàn),病原菌感染后,機(jī)體通過Toll樣受體信號(hào)通路激活Lcn-2表達(dá),抑制胞內(nèi)Fe的釋放,防止結(jié)核分枝桿菌對(duì)肺泡上皮細(xì)胞的感染。Bellmann-Weiler等[11]研究發(fā)現(xiàn),Lcn-2能夠顯著抑制硫酸鐵(FeSO4)刺激的小鼠胞內(nèi)肺炎衣原體(Chlamydia pneumoniae)增殖,這也說明了Lcn-2可能通過抑制病原菌攝取Fe的方式來發(fā)揮抑菌作用;該研究還發(fā)現(xiàn)白細(xì)胞介素-10也可以促進(jìn)胞內(nèi)鐵蛋白的合成,降低Fe的釋放,進(jìn)而發(fā)揮抑菌作用。Lcn-2亦在宿主對(duì)抗寄生蟲感染過程中發(fā)揮重要作用。Garénaux等[12]對(duì)禽致病性大腸桿菌的研究證明,雞Lcn-2同源蛋白Ex-FABP能顯著抑制大腸桿菌Fe的攝取,提示Ex-FABP是雞體內(nèi)重要的Fe競(jìng)爭(zhēng)蛋白,該蛋白通過與致病菌競(jìng)爭(zhēng) Fe,抑制病原菌的生長與增殖。Sazawal等[13]和 Zhao 等[14]研究發(fā)現(xiàn),F(xiàn)e 能刺激瘧原蟲的增殖,加快感染周期。在瘧原蟲感染初期,Lcn-2會(huì)抑制腸、肝、脾等的貯存Fe向血液中釋放,從而抑制瘧原蟲的生長與增殖;同時(shí),Lcn-2還會(huì)刺激單核細(xì)胞和巨噬細(xì)胞分裂,激活機(jī)體天然免疫系統(tǒng),發(fā)揮抗寄生蟲作用。Devireddy等[15]研究發(fā)現(xiàn),小鼠Lcn-2自身并無Fe結(jié)合能力,只有與嗜鐵素結(jié)合后才能與Fe結(jié)合;而哺乳動(dòng)物細(xì)胞自身也能產(chǎn)生類似細(xì)菌嗜鐵素的成分,幫助細(xì)胞結(jié)合環(huán)境中的Fe。
圖2 病原菌的Fe攝取機(jī)制Fig.2 Iron uptake mechanism of bacterial pathogens[1]
近年來的研究發(fā)現(xiàn),鐵調(diào)激素也在機(jī)體與病原菌的Fe競(jìng)爭(zhēng)中發(fā)揮重要作用。綠膿桿菌、鏈球菌和伯氏疏螺旋體等病原菌均能刺激動(dòng)物肝臟、脾臟產(chǎn)生分泌鐵調(diào)激素,該激素進(jìn)一步誘導(dǎo)腸黏膜細(xì)胞、肝細(xì)胞、脾細(xì)胞FPN降解,顯著降低釋放入血的Fe總量;鐵調(diào)激素還會(huì)抑制腸黏膜Fe的吸收,從而抑制侵染進(jìn)入血液、內(nèi)臟器官的病原菌攝取 Fe[16-17]。Wang 等[18]和 Portugal等[19]研究發(fā)現(xiàn),在瘧原蟲感染過程中,肝臟鐵調(diào)激素的表達(dá)量顯著上升,血清Fe水平顯著下降,從而抑制血液中瘧原蟲的生長繁殖,這對(duì)機(jī)體對(duì)抗瘧疾發(fā)揮重要作用。機(jī)體Fe代謝因子在免疫應(yīng)答反應(yīng)中發(fā)揮重要的調(diào)節(jié)作用。研究發(fā)現(xiàn),Hfe基因缺陷型小鼠的鐵調(diào)激素水平顯著下降,導(dǎo)致巨噬細(xì)胞FPN的表達(dá)量顯著上升,這會(huì)引起腫瘤壞死因子-α、白細(xì)胞介素-6等因子的水平顯著下降,從而導(dǎo)致胞內(nèi)傷寒沙門氏菌的數(shù)量顯著增加[20-21]。進(jìn)一步研究發(fā)現(xiàn),F(xiàn)e代謝主要影響Toll樣受體4(Tolllike receptor 4,TLR4)介導(dǎo)的細(xì)胞免疫反應(yīng)[22]。
大多數(shù)微生物通過高效的Fe攝取系統(tǒng),從Fe濃度極低的宿主體內(nèi)獲取足夠的Fe,滿足自身生長、繁殖、代謝等的需要。嗜鐵素在細(xì)菌Fe競(jìng)爭(zhēng)中的作用極其重要[7-8]。大腸桿菌嗜鐵素與Fe的解離常數(shù)(Kd)為10-49,而轉(zhuǎn)鐵蛋白與Fe的 Kd則為10-20,嗜鐵素螯合Fe的能力遠(yuǎn)強(qiáng)于哺乳動(dòng)物的轉(zhuǎn)鐵蛋白。宿主肝臟細(xì)胞產(chǎn)生的Lcn-2能夠與嗜鐵素競(jìng)爭(zhēng)Fe,阻礙細(xì)菌攝取Fe[23]。為了逃避宿主Lcn-2的競(jìng)爭(zhēng),有些細(xì)菌的嗜鐵素發(fā)生糖基化修飾或分子線性化,改變分子構(gòu)象,避免被Lcn-2識(shí)別、結(jié)合,但其Fe螯合能力并未減弱[8]。此外,細(xì)菌還通過Fe2+轉(zhuǎn)運(yùn)蛋白AB(ferrous iron transport AB,F(xiàn)eoAB)、ATP 結(jié)合盒(ATP-binding cassette,ABC)轉(zhuǎn)運(yùn)蛋白、乳鐵蛋白/轉(zhuǎn)鐵蛋白/血紅素鐵轉(zhuǎn)運(yùn)系統(tǒng)等競(jìng)爭(zhēng)性攝取內(nèi)環(huán)境中的Fe,維持自身需要[7,24]。細(xì)菌具有極為精細(xì)的 Fe感知系統(tǒng),通過鐵吸收調(diào)節(jié)因子(ferric uptake regulator,F(xiàn)ur)參與細(xì)菌Fe代謝相關(guān)基因的表達(dá)調(diào)控。當(dāng)Fe含量豐富時(shí),F(xiàn)ur會(huì)結(jié)合到鐵調(diào)節(jié)相關(guān)基因的上游,抑制這些基因的表達(dá);而當(dāng)Fe缺乏時(shí),F(xiàn)ur對(duì)鐵調(diào)節(jié)相關(guān)基因的阻遏作用解除,鐵調(diào)節(jié)相關(guān)基因開始表達(dá),幫助細(xì)菌攝取Fe,這一機(jī)制在細(xì)菌Fe競(jìng)爭(zhēng)中具有重要作用[1]。Fur還可通過ryhB RNA的反義作用,調(diào)節(jié)細(xì)菌利用Fe相關(guān)基因的表達(dá)[25]。
動(dòng)物腸道中生存的大量微生物多數(shù)是益生菌,在營養(yǎng)物質(zhì)消化吸收、免疫機(jī)能調(diào)節(jié)以及防止病原微生物感染等過程中發(fā)揮著重要作用[26-27];同時(shí),動(dòng)物腸道中也存在少量的致病菌或條件性致病菌,在正常生理狀況下,它們不會(huì)引起感染性疾病,但在腸道應(yīng)激、機(jī)體免疫機(jī)能降低、飼糧改變等條件下會(huì)引起感染。許多研究表明,飼糧Fe水平對(duì)腸道微生物組成和腸道健康有顯著影響,對(duì)幼齡動(dòng)物的影響尤為明顯[13]。Sazawal等[13]臨床調(diào)查研究發(fā)現(xiàn),口服Fe會(huì)導(dǎo)致腸道感染幾率顯著增加,這是由于高濃度未被吸收的Fe會(huì)引起結(jié)腸菌群結(jié)構(gòu)發(fā)生變化,導(dǎo)致致病菌數(shù)量顯著增加,從而誘發(fā)感染。Werner等[28]分別以不同F(xiàn)e水平的飼糧飼喂小鼠,結(jié)果發(fā)現(xiàn)低Fe飼糧(或無Fe飼糧)使鼠腸道益生菌數(shù)量增加,而致病菌的數(shù)量顯著下降。腹瀉是全球范圍內(nèi)兒童最為重要的腸道疾病,世界衛(wèi)生組織(World Health Organization,WHO)和美國國立衛(wèi)生研究院(National Institutes of Health,NIH)均已就Fe對(duì)腸道感染的影響開展相關(guān)研究,為兒童合理補(bǔ) Fe提供科學(xué)依據(jù)[29]。Zimmermann等[30]研究指出,預(yù)防性補(bǔ) Fe會(huì)導(dǎo)致兒童腸道病原菌(如沙門氏菌)數(shù)量增加,誘發(fā)腸道疾病。Buhnik-Rosenblau等[31]利用 Irp2和 Hfe基因缺陷型小鼠進(jìn)行研究,發(fā)現(xiàn)Fe吸收代謝相關(guān)基因缺陷會(huì)導(dǎo)致小鼠腸道微生物區(qū)系發(fā)生顯著變化,進(jìn)一步證明了宿主Fe吸收代謝與腸道菌群之間的關(guān)系。
飼糧Fe影響腸道微生物的機(jī)制尚不清楚。某些益生菌[如植物乳桿菌(L.plantarum)]的生長繁殖并不嚴(yán)格依賴Fe,在缺Fe或低Fe環(huán)境中仍能較好生長繁殖,而致病菌幾乎都要依賴Fe才能大量繁殖[32]。多數(shù)益生菌與致病菌一樣,需通過攝取環(huán)境中的Fe以滿足自身需要。Valdebenito等[33]研究發(fā)現(xiàn),與致病性大腸桿菌類似,益生菌Nissle 1917株也產(chǎn)生系列嗜鐵素,獲取宿主腸道中的Fe,但其不具有致病菌的毒力因子,不會(huì)致病。Fe攝取代謝系統(tǒng)與致病菌的毒力密切相關(guān)。沙門氏菌Fur與Fe結(jié)合后,能夠激活HilD(hyperinvasive locus D)蛋白的表達(dá),HilD進(jìn)而激活其毒力相關(guān)蛋白沙門菌毒力島1(Salmonella pathogenicity island 1,SPI1)的表達(dá),通過Ⅲ型分泌系統(tǒng)增加細(xì)菌毒力,侵染宿主細(xì)胞[34-35]。
貧血與腹瀉是影響仔豬健康的兩大重要疾病,而且這2種疾病經(jīng)常同時(shí)發(fā)生,對(duì)養(yǎng)豬生產(chǎn)的危害極大。為預(yù)防仔豬貧血,生產(chǎn)中常通過注射Fe或飼糧添加Fe的方式給仔豬補(bǔ)Fe,然而,不合理地補(bǔ)Fe可能導(dǎo)致仔豬腸道菌群改變,弱化仔豬Fe競(jìng)爭(zhēng)機(jī)制,從而導(dǎo)致病原菌感染發(fā)生。因此,本文針對(duì)Fe對(duì)仔豬腸道菌群組成的影響、宿主細(xì)胞與細(xì)菌的Fe競(jìng)爭(zhēng)機(jī)制、益生菌與致病菌在Fe攝取過程中的異同點(diǎn)等問題進(jìn)行研究,為仔豬生產(chǎn)中合理補(bǔ)Fe提供科學(xué)依據(jù)。
[1] SKAAR E P.The battle for iron between bacterial pathogens and their vertebrate hosts[J].PLoS Pathogens,2010,6(8):e1000949.
[2] SCHAIBLE U E,KAUFMANN S H.Iron and microbial infection[J].Nature Reviews Microbiology,2004,2(12):946-953.
[3] HENTZE M W,MUCKENTHALER M U,AN-DREWS N C.Balancing acts:molecular control of mammalian iron metabolism[J].Cell,2004,117(3):285-297.
[4] HENTZE M W,MUCKENTHALER M U,GALY B,et al.Two to tango:regulation of mammalian iron metabolism[J].Cell,2010,142(1):24-38.
[5] WEINBERG E D.Iron availability and infection[J].Biochimica et Biophysica Acta,2009,1790(7):600-605.
[6] JOHNSON E E,WESSLING-RESNICK M.Iron metabolism and the innate immune response to infection[J].Microbes and Infection,2012,14(3):207-216.
[7] GARENAUX A,CAZA M,DOZOIS C M.The ins and outs of siderophore mediated iron uptake by extraintestinal pathogenic Escherichia coli[J].Veterinary Microbiology,2011,153(1/2):89-98.
[8] FISCHBACH M A,LIN H,ZHOU L,et al.The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin2[J].Proceedings of the National Academy of Sciences of the United States of A-merica,2006,103(44):16502-16507.
[9] FLO T H,SMITH K D,SATO S,et al.Lipocalin2 mediates an innate immune response to bacterial infection by sequestrating iron[J].Nature,2004,432(7019):917-921.
[10] SAIGA H,NISHIMURA J,KUWATA H,et al.Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium[J].The Journal of Immunology,2008,181(12):8521-8527.
[11] BELLMANN-WEILER R,SCHROLL A,ENGL S,et al.Neutrophil gelatinase-associated lipocalin and interleukin-10 regulate intramacrophage chlamydia pneumoniae replication by modulating intracellular iron homeostasis[J].Immunobiology,2012,218(7):969-978.
[12] GARéNAUX A,HOULE S,F(xiàn)OLCH B,et al.Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP[J].Veterinary Immunology and Immunopathology,2013,152(1/2):156-167.
[13] SAZAWAL S,BLACK R E,RAMSAN M,et al.Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting:community-based,randomised,placebo-controlled trial[J].The Lancet,2006,367(9507):133-143.
[14] ZHAO H,KONISHI A,F(xiàn)UJITA Y,et al.Lipocalin 2 bolsters innate and adaptive immune responses to blood-stage malaria infection by reinforcing host iron metabolism[J].Cell Host Microbe,2012,12(5):705-716.
[15] DEVIREDDY L R,HART D O,GOETZ D H,et al.A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production[J].Cell,2010,141(6):1006-1017.
[16] PEYSSONNAUX C,ZINKERNAGEL A S,DATTA V,et al.TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens[J].Blood,2006,107(9):3727-3732.
[17] KOENING C L,MILLER J C,NELSON J M,et al.Toll-like receptors mediate induction of hepcidin in mice infected with Borrelia burgdorferi[J].Blood,2009,114(9):1913-1918.
[18] WANG H Z,HE Y X,YANG C J,et al.Hepcidin is regulated during blood-stage malaria and plays a protective role in malaria infection[J].The Journal of Immunology,2011,187(12):6410-6416.
[19] PORTUGAL S,CARRET C,RECKER M,et al.Hostmediated regulation of superinfection in malaria[J].Nature Medicine,2011,17(6):732-737.
[20] CHERAYIL B J.The role of iron in the immune response to bacterial infection[J].Immunological Research,2011,50(1):1-9.
[21] JOHNSON E E,SANDGREN A,CHERAYIL B J,et al.Role of ferroportin in macrophage-mediated immunity[J].Infection and Immunity,2010,78(12):5099-5106.
[22] WANG L J,HARRINGTON L,TREBICKA E,et al.Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice[J].Journal of Clinical Investigation,2009,119(11):3322-3328.
[23] WILES T J,KULESUS R R,MULVEY M A.Origins and virulence mechanisms of uropathogenic Escherichia coli[J].Experimental and Molecular Pathology,2008,85(1):11-19.
[24] ARYA G,NIVEN D F.Acquisition of haemoglobinbound iron by strains of the Actinobacillus minor/‘porcitonsillarum’complex[J].Veterinary Microbiology,2011,148(2/3/4):283-291.
[25] MASSE E,SALVAIL H,DESNOYERS G,et al.Small RNAs controlling iron metabolism[J].Current Opinion in Microbiology,2007,10(2):140-145.
[26] GAO Q X,QI L L,WU T X,et al.Ability of Clostridium butyricum to inhibit Escherichia coli-induced apoptosis in chicken enembryo intestinal cells[J].Veterinary Microbiology,2012,160(3/4):395-402.
[27] GAO Q X,QI L L,WU T X,et al.An important role of interleukin-10 in counteracting excessive immune response in HT-29 cells exposed to Clostridium butyricum[J].BMC Microbiology,2012,12:100.
[28] WERNER T,WAGNER SJ,MARTINEZ I,et al.Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis[J].Gut,2011,60(3):325-333.
[29] KORTMAN G A,BOLEIJ A,SWINKELS D W,et al.Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface[J].PLoS One,2012,7(1):e29968.
[30] ZIMMERMANN M B,CHASSARD C,ROHNER F,et al.The effects of iron fortification on the gut microbiota in African children:a randomized controlled trial in Coted'Ivoire[J].American Journal of Clinical Nutrition,2010,92(6):1406-1415.
[31] BUHNIK-ROSENBLAU K,MOSHE-BELIZOWSKI S,DANIN-POLEG Y,et al.Genetic modification of iron metabolism in mice affects the gut microbiota[J].Biometals,2012,25(5):883-892.
[32] DUHUTREL P,BORDAT C,WU T D,et al.Iron sources used by the nonpathogenic lactic acid bacterium Lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry[J].Applied and Environmental Microbiology,2010,76(2):560-565.
[33] VALDEBENITO M,CRUMBLISS A L,WINKELMANN G,et al.Environmental factors influence the production of enterobactin,salmochelin,aerobactin,and yersiniabactin in Escherichia coli strain Nissle 1917[J].International Journal of Medical Microbiology,2006,296(8):513-520.
[34] ELLERMEIER J R,SLAUCH J M.Fur regulates expression of the Salmonella pathogenicity island 1 typeⅢ secretion system through HilD[J].Journal of Bacteriology,2008,190(2):476-486.
[35] TEIXIDO L,CARRASCO B,ALONSO JC,et al.Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro[J].PLoS One,2011,6(5):e19711.