繆江芳++羅蔚鋒
[摘要] 尿酸是生理性的抗氧化劑,流行病學(xué)及臨床資料顯示低尿酸水平與帕金森?。≒D)發(fā)病率增高密切相關(guān),PD患者的血尿酸水平顯著降低,高血尿酸水平能夠降低PD的發(fā)病以及減慢PD的進(jìn)展速度。尿酸轉(zhuǎn)運(yùn)體在尿酸分泌和重吸收過(guò)程中發(fā)揮關(guān)鍵作用,從而影響尿酸水平。本文將從尿酸轉(zhuǎn)運(yùn)體的角度介紹尿酸轉(zhuǎn)運(yùn)體與PD的研究進(jìn)展。
[關(guān)鍵詞] 尿酸;轉(zhuǎn)運(yùn)體;基因;帕金森病
[中圖分類(lèi)號(hào)] R742.5 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 2095-0616(2014)16-30-05
Research advances in the association of urate transporters and Parkinson's disease
MIAO Jiangfang LUO Weifeng
Department of Neurology, the Second Affliated Hospital of Soochow University, Suzhou 215000, China
[Abstract] Uric acid is a kind of physiological antioxidants. The epidemiology and clinical studies indicate that its lower level is closely related to the higher incidence of Parkinson's Disease(PD). The serum urate concentrations of PD patients are much lower. Lower incidence and better prognosis have been observed on PD patients with higher serum urate. Urate transporters affect urate secretion and reabsorption, which have a strong and apparent impact on urate concentrations. This review discusses current information on the characteristics of urate transporters, with specific focus on their association with PD.
[Key words] Uric acid; Transporter; Gene; Parkinson's disease
帕金森?。≒D)是第二大中樞神經(jīng)系統(tǒng)退行性病變,是以中腦黑質(zhì)多巴胺能神經(jīng)元變性、缺失和路易小體形成為病理特征,臨床主要表現(xiàn)為錐體外系癥狀,包括運(yùn)動(dòng)遲緩、肌強(qiáng)直、靜止性震顫和姿勢(shì)步態(tài)異常等。PD具有隱性起病,緩慢進(jìn)展的特征,預(yù)計(jì)到2030年我國(guó)PD患者人數(shù)將近500萬(wàn)[1-2]。雖然帕金森病的發(fā)病機(jī)制仍不十分清楚,但目前研究認(rèn)為,帕金森病的發(fā)生、發(fā)展是遺傳和環(huán)境因素共同作用的結(jié)果。目前已有多項(xiàng)研究表明本病與LRRK2、Parkin、PINKI等基因的突變有關(guān)[3-5]。
尿酸(uric acid,UA)可作為PD臨床和影像學(xué)進(jìn)展的標(biāo)志物[6],是帕金森病防治的潛在新靶點(diǎn),研究發(fā)現(xiàn)尿酸對(duì)PD動(dòng)物模型具有保護(hù)作用,尿酸可減少6-羥基多巴胺對(duì)神經(jīng)元的毒性作用,提高細(xì)胞活力,穩(wěn)定細(xì)胞膜電位,表明尿酸能通過(guò)抗氧化應(yīng)激活性發(fā)揮其對(duì)多巴胺能神經(jīng)元的保護(hù)作用[7-9],
在PD動(dòng)物模型實(shí)驗(yàn)中表明,尿酸可以改善其學(xué)習(xí)記憶能力,其機(jī)制可能是尿酸發(fā)揮了抗氧化應(yīng)激、保護(hù)多巴胺能神經(jīng)元作用[10]。
1 尿酸的產(chǎn)生及其影響因素
尿酸通過(guò)嘌呤代謝通路由黃嘌呤氧化酶分解嘌呤產(chǎn)生,主要在肝臟產(chǎn)生,2/3由腎臟排泄,其余1/3由腸道和皮膚等排泄[11-12]。體內(nèi)尿酸濃度由嘌呤的攝入量、尿酸的生物合成及其排泄速率決定,基因編碼的酶的異常會(huì)導(dǎo)致過(guò)度的內(nèi)源性嘌呤合成。血尿酸水平主要受腎小球?yàn)V過(guò)作用、重吸收作用以及分泌作用調(diào)節(jié)。研究表明腦脊液中的尿酸水平與血尿酸水平呈線性相關(guān),約為血尿酸水平的1/10。尿酸鹽是尿酸存在的主要形式,主要分布于細(xì)胞外液,主要通過(guò)人尿酸轉(zhuǎn)運(yùn)蛋白(human urate transporter protein,hUTP)進(jìn)行細(xì)胞內(nèi)外的跨膜轉(zhuǎn)運(yùn),hUTP是具有高選擇性的貫穿細(xì)胞膜脂質(zhì)的離子通道,其三種亞型可見(jiàn)于人體內(nèi)多種組織細(xì)胞中,故其基因編碼異常會(huì)顯著影響人體尿酸水平。
近年來(lái),全基因組相關(guān)性研究(genome-wide association studies,GWAS)已經(jīng)證實(shí)尿酸濃度與九個(gè)基因位點(diǎn)的單核苷酸多態(tài)性有顯著聯(lián)系,其中包括編碼尿酸鹽轉(zhuǎn)運(yùn)體基因ABCG2(BCRP),SLC2A9(GLUT9),SLC16A9(MCT9),SLC17A1(NPT1),SLC17A3(NPT4),SLC17A4(NPT5),SLC22A11(OAT4),SLC22A12(URAT1)以及尿酸鹽轉(zhuǎn)運(yùn)體相關(guān)支架蛋白PDZK1[11,13-22]。
2 影響人體尿酸水平的主要尿酸轉(zhuǎn)運(yùn)體
2.1 BCRP(ABCG2)
乳腺癌耐藥相關(guān)蛋白(breast cancer resistance protein,BCRP)由ATP-結(jié)合盒(ATP-binding cassetle,ABC)半轉(zhuǎn)運(yùn)蛋白超家族的著名成員ABCG2編碼?;蚨ㄎ挥?q22,在胎盤(pán)、腦、肝臟、咽、腎臟、膀胱以及小腸表達(dá)。ABCG2主要表達(dá)于腎近曲小管的管腔膜側(cè),形成同型二聚體的ABCG2才具有發(fā)揮轉(zhuǎn)運(yùn)尿酸作用的活性,該轉(zhuǎn)運(yùn)體屬于分泌型尿酸轉(zhuǎn)運(yùn)體[23]。在GWA研究中,ABCG2單核苷酸多態(tài)性已經(jīng)被證實(shí)與血尿酸濃度相關(guān)[13,24]。另外,ABCG2也是高尿酸血癥的候選基因之一[13]。考慮到BCRP蛋白在血腦屏障(the blood-brain barrier,BBB)內(nèi)皮細(xì)胞上的表達(dá),以及腦脊液(cerebrospinal fluid,CSF)尿酸水平由血尿酸水平以及血腦屏障完整性決定[25],很明顯,BCRP尿酸轉(zhuǎn)運(yùn)體與腦脊液尿酸水平是緊密相關(guān)的。目前研究表明,血尿酸已經(jīng)可以被當(dāng)作PD臨床和影像學(xué)進(jìn)展的可靠指標(biāo)[6]。盡管腦脊液平均尿酸水平只有血尿酸水平的1/10,但是腦脊液尿酸作為中樞神經(jīng)系統(tǒng)抗氧化劑在PD發(fā)病以及進(jìn)程中必然發(fā)揮著舉足輕重的作用[25]。以中樞神經(jīng)系統(tǒng)轉(zhuǎn)運(yùn)體包括BCRP轉(zhuǎn)運(yùn)體為治療靶點(diǎn)的新技術(shù)已經(jīng)被發(fā)現(xiàn)以減少大腦病理改變以及神經(jīng)退行性疾病如PD和阿爾茨海默?。╝lzheimers disease,AD)[26]。由此可見(jiàn),中樞神經(jīng)系統(tǒng)轉(zhuǎn)運(yùn)體BCRP與PD密切相關(guān),可以為PD提供可靠和穩(wěn)定的治療或緩解的方向。endprint
2.2 MRP1(ABCC1),MRP3(ABCC3)和MRP4(ABCC4)
多重耐藥蛋白(multidrug resistance protein,MRP)是由ABC家族ABCC基因編碼,由ABCC4編碼的MRP4主要表達(dá)于腎臟、睪丸、卵巢、肝臟、小腸、肺等器官的細(xì)胞膜上,該基因位于13號(hào)染色體長(zhǎng)臂上。MRP4屬于分泌型尿酸轉(zhuǎn)運(yùn)體,位于腎小管管腔膜上的MRP4將腎小管上皮細(xì)胞內(nèi)的尿酸分泌入小管腔。另外,表達(dá)于肝細(xì)胞的基側(cè)膜上的MRP4則參與肝臟對(duì)尿酸的轉(zhuǎn)運(yùn)。而ABCC1編碼的MRP1以及ABCC3編碼的MRP3則主要表達(dá)于肝細(xì)胞的基側(cè)膜參與尿酸的轉(zhuǎn)運(yùn),其編碼基因分別定位于16號(hào)染色體的短臂和17號(hào)染色體的長(zhǎng)臂上。
2.3 GLUT9(SLC2A9)
由基因SLC2A9編碼葡萄糖轉(zhuǎn)運(yùn)體9(glucose transporter 9,GLUT9)屬于葡萄糖轉(zhuǎn)運(yùn)蛋白(glucose transporter,GLUT)家族成員,該轉(zhuǎn)運(yùn)體主要以易化擴(kuò)散的方式轉(zhuǎn)運(yùn)葡萄糖,高度表達(dá)于腎臟和肝臟。Vitart等[27]對(duì)非洲爪蛙的卵母細(xì)胞的研究發(fā)現(xiàn)GLUT9具有轉(zhuǎn)運(yùn)尿酸和果糖的作用。Caulfield等[14]研究則表明GLUT9是高效的尿酸轉(zhuǎn)運(yùn)體,其轉(zhuǎn)運(yùn)尿酸的能力遠(yuǎn)遠(yuǎn)高于轉(zhuǎn)運(yùn)葡萄糖的能力,并且可通過(guò)對(duì)葡萄糖的轉(zhuǎn)運(yùn)而加速對(duì)尿酸的重吸收,因而攝入高糖或糖尿病均會(huì)影響尿酸水平。依據(jù)氨基端在胞內(nèi)剪接部位的不同,GLUT9可以分為2種異構(gòu)體:GLUT9L(長(zhǎng)型異構(gòu)體)主要位于腎小管基底膜側(cè),主要發(fā)揮將尿酸從上皮細(xì)胞分泌入血液的作用;GLUT9S(短型異構(gòu)體)則主要位于腎小管的管腔膜側(cè),起將尿酸分泌入管腔的作用。
近年來(lái),研究表明SLC2A9是最有效的尿酸轉(zhuǎn)運(yùn)體,SLC2A9主要表達(dá)在人類(lèi)腎小管細(xì)胞的基底外側(cè)膜[6],尿酸鹽通過(guò)其表達(dá)的轉(zhuǎn)運(yùn)體流向血液[28]。目前,幾乎所有的GWAS研究已經(jīng)證實(shí)SLC2A9與血尿酸水平有很強(qiáng)的相關(guān)性[13-16,18-19,21-22,24,27]。歐洲研究者對(duì)位于4p16.1的SLC2A9區(qū)域的4個(gè)多態(tài)性位點(diǎn)進(jìn)行了較大規(guī)模的研究,研究發(fā)現(xiàn)SLC2A9基因單核苷酸多態(tài)性影響了PD的發(fā)病年齡,其中rs1014290與PD發(fā)病年齡相關(guān)性最強(qiáng)[29]。
2.4 UAT
尿酸轉(zhuǎn)運(yùn)蛋白(urate transporter,UAT)屬于一種特異性的分泌型尿酸轉(zhuǎn)運(yùn)體。研究表明UAT廣泛表達(dá)于人體多種組織,主要存在于腎臟和腸道[30]。由322個(gè)氨基酸組成的UAT主要表達(dá)于17號(hào)染色體短臂上,含有11個(gè)外顯子,全長(zhǎng)18kb。UAT是一種高選擇性的離子通道,貫穿整個(gè)細(xì)胞膜,將腎小管上皮細(xì)胞內(nèi)的尿酸分泌至腎小管腔中。尿酸主要是通過(guò)UAT跨膜區(qū)域之間的尿酸結(jié)合位點(diǎn)分泌入管腔的。腸道中的UAT發(fā)揮著排泄尿酸的作用,將腸黏膜上皮細(xì)胞中的尿酸分泌至腸腔,尿酸鹽再經(jīng)腸道細(xì)菌的酶解后排出體外。由此可見(jiàn),UAT在調(diào)節(jié)全身尿酸水平的穩(wěn)態(tài)中起重要作用。
2.5 URAT1(SLC22A12)
尿酸陰離子轉(zhuǎn)運(yùn)體1(urate anion transporter l,URAT1)是最主要的尿酸重吸收轉(zhuǎn)運(yùn)體,屬于有機(jī)陰離子轉(zhuǎn)運(yùn)體(organic anion transporter,OAT)家族的成員,在腎近曲小管上皮細(xì)胞的管腔膜側(cè)被發(fā)現(xiàn)[30],該轉(zhuǎn)運(yùn)體在尿酸轉(zhuǎn)運(yùn)中處于舉足輕重的地位。由555個(gè)氨基酸構(gòu)成的URAT1定位于11號(hào)染色體長(zhǎng)臂上,全長(zhǎng)2642bp,含10個(gè)外顯子,由基因SLC22A12編碼,含有12個(gè)跨膜區(qū)域。URAT1是調(diào)節(jié)全身尿酸水平的關(guān)鍵離子通道,該轉(zhuǎn)運(yùn)體發(fā)揮著將尿酸從腎小管管腔內(nèi)重吸收至腎小管上皮細(xì)胞內(nèi)的作用。在臨床上,多種尿酸排泄劑均是主要通過(guò)與URAT1結(jié)合而影響對(duì)尿酸的重吸收從而發(fā)揮排泄尿酸的功能,以此來(lái)降低血尿酸水平,因此,URAT1是治療高尿酸血癥的一個(gè)有效的靶點(diǎn)。反之,臨床上那些抗尿酸排泄藥則主要是通過(guò)增加細(xì)胞內(nèi)與小管腔之間的有機(jī)陰離子濃度差和電位梯度來(lái)提高URAT1重吸收尿酸的能力,從而升高血尿酸水平。研究表明低尿酸血癥患者SLC22A12第1639~1643位置上的5個(gè)堿基對(duì)缺失,使URAT1末端的7個(gè)氨基酸變成8個(gè)新氨基酸,證實(shí)該區(qū)域?qū)RAT1功能改變影響很大[31]。此外,另有研究表明SLC22A12基因單核苷酸多態(tài)性rs893006位點(diǎn)GG基因型與高尿酸血癥密切相關(guān)[32]。
2.6 NPT1(SLC17A1)和NPT4(SLC17A3)
鈉依賴(lài)的磷酸轉(zhuǎn)運(yùn)蛋白(sodium-dependent phosphate transport protein,NPT)中的NPT l由SLCl7A1編碼,該基因定位于6p22.2,該轉(zhuǎn)運(yùn)體主要存在于腎近曲小管的管腔膜側(cè),是第一個(gè)被克隆的鈉依賴(lài)的磷酸轉(zhuǎn)運(yùn)蛋白。研究表明該轉(zhuǎn)運(yùn)體是電壓敏感性離子通道,屬于分泌型尿酸轉(zhuǎn)運(yùn)體,發(fā)揮了轉(zhuǎn)運(yùn)尿酸等多種有機(jī)陰離子的作用[33]。由基因SLCl7A3編碼的NPT4也主要在腎臟表達(dá),該基因定位于6p21.3,NPT4的生物學(xué)效應(yīng)還不明確。
2.7 OAT4(SLC22A11)和OAT10(SLC22A13)
有機(jī)陰離子轉(zhuǎn)運(yùn)體(organic anion transporters,OATs)屬于SLC22A家族(solute carrier family)成員,高度表達(dá)于腎小管上皮細(xì)胞管腔膜及基底外側(cè)膜上,主要起調(diào)節(jié)內(nèi)源性及外源性有機(jī)陰離子的排泄和重吸收的作用。目前已發(fā)現(xiàn)的OAT有十余種[34]。其中,OAT4由基因SLC22A11編碼,該基因位于3號(hào)染色體短臂上,主要表達(dá)于腎近曲小管上皮細(xì)胞的管腔膜上以及胎盤(pán)組織上。該轉(zhuǎn)運(yùn)體通過(guò)尿酸與OH-交換從而重吸收腎小管腔中的尿酸發(fā)揮調(diào)節(jié)尿酸水平的作用,但其重吸收尿酸的能力比URAT1弱[35]。而OAT10則由基因SLC22A13編碼,高度表達(dá)于腎臟和腸道,該轉(zhuǎn)運(yùn)體重吸收尿酸的原理與OAT4相似?;蚨ㄎ挥?p21.3,主要在腎和腸上表達(dá),其重吸收尿酸原理同OAT4。endprint
2.8 OAT1(SLC22A6)、OAT2(SLC22A7)和OAT3(SLC22A8)
在OATs中,主要位于腎小管上皮細(xì)胞基底膜上的OAT1、OAT2和OAT3主要承擔(dān)從血液中攝取尿酸的任務(wù)。OAT1、OAT3編碼基因均位于11號(hào)染色體的長(zhǎng)臂上,OAT2編碼基因則定位于6號(hào)染色體短臂上。其中,OAT1由基因SLC22A6編碼,主要在腎小管上皮細(xì)胞膜基底側(cè)表達(dá);OAT2由基因SLC22A7編碼,主要表達(dá)于腎臟及肝臟上;OAT3則由基因SLC22A8編碼,主要表達(dá)于腎臟及眼部。OAT1和OAT3兩尿酸轉(zhuǎn)運(yùn)體均是陰離子-酮戊二酸交換體,因而具有非常相似的功能,能夠轉(zhuǎn)運(yùn)多種相似的陰離子。并且兩者轉(zhuǎn)運(yùn)的底物也類(lèi)似,但是OAT3在與底物親和力方面高于OAT1。OAT2則主要通過(guò)谷氨酸鹽與尿酸鹽交換發(fā)揮轉(zhuǎn)運(yùn)機(jī)制。OAT1、OAT2和OAT3將腎間質(zhì)中的尿酸通過(guò)腎上皮細(xì)胞基底膜逆電化學(xué)梯度轉(zhuǎn)運(yùn)入腎小管上皮細(xì)胞內(nèi),同時(shí)腎小管上皮細(xì)胞內(nèi)的酮戊二酸以及谷氨酸鹽被排入腎間質(zhì)中。OAT1和OAT3轉(zhuǎn)運(yùn)尿酸鹽的動(dòng)力來(lái)自腎小管上皮細(xì)胞內(nèi)與腎間質(zhì)內(nèi)酮戊二酸的濃度梯度,上皮細(xì)胞內(nèi)的酮戊二酸則主要來(lái)源于上皮細(xì)胞基底膜上Na+-酮戊二酸同向轉(zhuǎn)運(yùn)體對(duì)腎間質(zhì)內(nèi)酮戊二酸的攝取。同理,OAT2轉(zhuǎn)運(yùn)尿酸的動(dòng)力則可能來(lái)自胞內(nèi)與間質(zhì)谷氨酸鹽的濃度梯度。
3 結(jié)論
鑒于尿酸作為抗氧化劑在PD患者發(fā)病以及病情進(jìn)展中發(fā)揮著重要作用,尿酸轉(zhuǎn)運(yùn)體與人體尿酸水平息息相關(guān),進(jìn)一步研究尿酸對(duì)PD的治療作用及其與尿酸轉(zhuǎn)運(yùn)體作用的分子機(jī)制,為臨床應(yīng)用尿酸這個(gè)可干預(yù)因素防治PD提供一定的理論基礎(chǔ)。由于目前尚缺乏治愈PD的方法,因此及早開(kāi)展保護(hù)性治療,以及尋找新的有效的干預(yù)手段,具有重要的臨床意義。因而,尿酸轉(zhuǎn)運(yùn)體可能成為有效的診斷和治療PD的研究切入靶點(diǎn)。
[參考文獻(xiàn)]
[1] Dorsey ER,Constantinescu R,Thompson JP,et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J].Neurology,2007,68(5):384-386.
[2] Wright Willis A,Evanoff BA,Lian M,et al.Geographic and Ethnic Variation in Parkinson Disease: A Population-Based Study of US Medicare Beneficiaries[J].Neuroepidemiology,2010,34(3):143-151.
[3] Zimprieh A,Biskup S,Leitner P,et a1.Mutations in LRRK2 cause autosomal-dominant Parkinonism with pleomorphic pathology[J].Neuron,2004,44:601-607.
[4] Periquet M,Latouehe M,Lohmann E,et a1.Parkin mutations are frequent in patients with Isolated early-onset parkinsonism[J].Brain,2003,126(6):1271-1278.
[5] Valente EM,Abou-Sleiman PM,Caputo V,et al.Hereditary early—onset Parkinsons disease caused by mutations in PINKI[J].Science,2004,304:1158-1160.
[6] Schwarzschild MA,Schwid SR,Marek K,et al.Serum urate as a predictor of clinical and radiographic progression in Parkinson disease[J].Arch Neurol,2008,65(6):716-723.
[7] 王麗君,羅蔚鋒,王恒會(huì),等.尿酸對(duì)6-羥基多巴胺致大鼠黑質(zhì)紋狀體系毒性的影響[J].中華醫(yī)學(xué)雜志,2010,90(19):1362-1365.
[8] 朱紅燦,蔡春生,耿利嬌,等.尿酸對(duì)帕金森病模型大鼠多巴胺能神經(jīng)元氧化應(yīng)激的影響[J].中華老年醫(yī)學(xué)雜志,2010,29(4):319-323.
[9] 王曉君,羅蔚鋒,王麗君,等.帕金森病患者認(rèn)知功能與尿酸及相關(guān)因素分析[J].中華醫(yī)學(xué)雜志,2009,89(23):156-158.
[10] 朱紅燦,耿利嬌,蔡春生,等.尿酸對(duì)帕金森病大鼠學(xué)習(xí)記憶能力的影響及其機(jī)制[J].中華實(shí)驗(yàn)外科雜志,2010,27(2):227-229.
[11] Li S,Sanna S,Maschio A,et al.The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts[J].PLoS Genet,2007,3(11):2156-2162.
[12] Sica DA,Schoolwerth AC.Renal handling of organic anions and cations:excretion of uric acid. In: Brenner BM,editor.The Kidney[M].6th ed.Philadelphia:WB Saunders,2000:680-700.endprint
[13] Dehghan A,Kottgen A,Yang Q,et al.Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study[J].Lancet,2008,372:1953-1961.
[14] Caulfield MJ,Munroe PB,ONeill D,et al.SLC2A9 is a high-capacity urate transporter in humans[J]. PLoS Med,2008,5:197.
[15] Wallace C,Newhouse SJ,Braund P,et al.Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia et al[J]. Am J Hum Genet,2008,82:139-149.
[16] Stark K,Reinhard W,Neureuther K,et al.Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study[J].PLoS One,2008,3:1948.
[17] Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration,urate excretion and gout[J]. Nat Genet,2008,40:437-442.
[18] Do ring A,Gieger C,Mehta D,et al.SLC2A9 influences uric acid concentrations with pro-nounced sex-specific effects[J].Nat Genet,2008,40:430-436.
[19] Brandstatter A,Kiechl S,Kollerits B,et al.Sex-specific association of the putative fructose trans-porter SLC2A9 variants with uric acid levels is modified by BMI[J].Diabetes Care,2008,31:1662-1667.
[20] Kolz M,Johnson T,Sanna S,et al.Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J].Plos Genet,2009,5:1-10.
[21] Tu HP,Chen CJ,Tovosia S,et al.Associations of a nonsynonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese and Solomon Islanders[J].Ann Rheum Dis,2010,69:887-890.
[22] Hollis-Moffatt JE,Xu X,Dalbeth N,et al.Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Māori,Pacific Island,and Caucasian case-control sample sets[J]. Arthritis Rheum, 2009,60:3485-3492.
[23] Woodward OM,Kottgen A,Coresh J,et al.Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout[J].Proc Natl Acad Sci USA,2009,106:10338-10342.
[24] Kolz M,Johnson T,Sanna S,et al.Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J].Plos Genet,2009,5:1-10.
[25] Gene L.Bowman,Jackilen Shannon,Balz Frei,et al.Uric acid as a CNS antioxidant[J].J Alzheimers Dis,2010,19(4):1331-1336.
[26] Jedlitschky G, Grube M, Mosyagin I, et al.Targeting CNS transporters for treatment of neurodegenerative diseases[J].Curr Pharm Des,2013:19.[PubMed: 23789959].endprint
[27] Vitart V,Rudan I,Hayward C,et a1.SLC2A9 is a newly identifled urate transporter influencing serum urate concentration,urate excretion and gout[J].Nat Genet,2008,40:437-442.
[28] Anzai N,Jutabha P,Kimura T,et al.Urate transport:relationship with serum urate disorder[J].Curr Rheumatol Rev,2011,7:123-31.
[29] Maurizio F,F(xiàn)acheris · Andrew A.Variation in the Uric Acid Transporter Gene SLC2A9 and Its Association with AAO of Parkinsons Disease[J].J Mol Neurosci,2011,43(3):246-250.
[30] Enomoto A,Kimura H,Chairoungdua A,et al.Molecular identification of a renal urate anion exchanger that regulates blood urate levels[J].Nature,2002,417:447-452.
[31] Ichida K,Hosoyamada M,Hisatome I,et al.Clinical and molecular analysis of patients with renal hypouricemia in Japan influence of URATl gene cnuirnary urate excretion[J].J Am Soc Nephrol,2004, 15:164-173.
[32] Shima Y,Temya K,Ohta H.Association hetween intronic SNP in urate-anion exchanger gene, SLC22A12 and scram uric acid levels in Japanese[J].Life Sci,2006,79:2234-2237.
[33] Uchino H,Tamai I,Yamashita K,et al.P-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPTl[J].Bioehem Biophys Res Commun,2000,270:254-259.
[34] Burekhardt G,Burekhardt BC.In vitro and in viva evidence of the importance of organic anion transporters(OATs)in drug therapy[J].HandbExp Pharnmeol,2011,201:29-104.
[35] Hagos Y,Stein D,Ugele B,et al.Human renal organic anion transporter 4 operates as an asymmetric urate transporter[J].J Am Soc Nephrol,2007,18:430-439.
(收稿日期:2014-05-26)endprint