趙志青 石春
摘要:區(qū)間矩陣在工程領域,圖像識別和力學中的應用和范圍越來越受到人們的關注,其在處理多維數(shù)據(jù),尤其在不確定方程的求解中發(fā)揮了重要的作用,該文在在區(qū)間矩陣的基礎之上,給出了閉復區(qū)間矩陣,研究了其性質(zhì),最后將其應用到復區(qū)間數(shù)值的方程組求解中,為其更深入的研究奠定了扎實的基礎,豐富和發(fā)展了矩陣理論及相關學科。
關鍵詞:區(qū)間數(shù);復區(qū)間值;區(qū)間矩陣;閉復區(qū)間矩陣;復區(qū)間值方程組
中圖分類號:TP18 文獻標識碼:A 文章編號:1009-3044(2014)06-1309-05
1 預備知識
區(qū)間數(shù)
定義1[1] 設[R=-∞,+∞]為實數(shù)空間,稱R上的有限區(qū)間[X=X-,X+]為區(qū)間數(shù),區(qū)間數(shù)記作[IR]
定義2[1] 任意的[X,Y∈IR],有:
[X∨Y=X-∨Y-,X+∨Y+][X∧Y=X-∧Y-,X+∧Y+]
[X+Y=X-+Y-,X++Y+][X-Y=X--Y+,X+-Y-]
[X?Y=X-Y-∧X-Y+∧X+Y-∧X+Y+,X-Y-∨X-Y+∨X+Y-∨X+Y+]
[ab=a-b-∧a-b+∧a+b-∧a+b+,a-b-∨a-b+∨a+b-∨a+b+,0?b]
[kX=kX-,kX+0kX+,kX-k?0k=0k?0] [1b=Δ1b-∧1b+,1b-∨1b+]
定義3 設[a=a-,a+,b=b-,b+∈IR].
1)如果[a-≤b-,a+≤b+],稱a小于或等于b.若[a=a-,a+=0-,0+],則稱b大余或等于a.
1.2 閉區(qū)間復數(shù)
定義4[1] 設C為復數(shù)域,對任意閉區(qū)間數(shù)
[X=X-,X+,Y=Y-,Y+][∈IR]
稱復有界閉集,
[Z=X+iY=x+iy∈C|x∈X,y∈Y]
為閉復區(qū)間數(shù),其中[i=-1],用[IC]表示[C]上閉復區(qū)間數(shù)全體,即[IC=z=x+iy|x,y∈IR].
定義5[1]設*是復數(shù)域C上的二元運算,對于任意的
[Zk=Xk+iYk=X-k,X+k+iY-k,Y+k∈Ic][k=1,2Ic]
上的擴展運算定義為
[Z1*Z2=ΔZ|?Z1,Z2∈Z1×Z2,Z=Z1*Z2]
定義6[1]共軛閉復區(qū)間數(shù)
稱[Z*=X-iY=x-iy|x∈X,y∈Y]為[Z]的共軛閉復區(qū)間數(shù)。
稱[Z=X2+Y212=x2+y212|x∈X,y∈Y]為Z上的模。
定義7[1] 對任意的[Zk=Xk+iYk=X-k,X+k+iY-k,Y+k∈ICk=1,2]
有如下運算:
[Z1+Z2=X-1,X+1+iY-1,Y+1+X-2,X+2+iY-2,Y+2][=X-1+X-2,X+1+X+2+iY-1+Y-2,Y+1+Y+2]
[Z1-Z2=X-1,X+1+iY-1,Y+1-X-2,X+2+iY-2,Y+2][=X-1-X+2,X+1-X-2+iY-1-Y+2,Y+1-Y-2]
[Z1Z2=X1+iY1X2+iY2][=X1X2+iX1Y2+iX2Y1-Y1Y2][=X1X2-Y1Y2+iX1Y2+X2Y1]
(其中,[Xi?Yj=Xi-Yj-∧Xi-Yj+∧Xi+Yj-∧Xi+Yj+,Xi-Yj-∨Xi-Yj+∨Xi+Yj-∨Xi+Yj+,i∈1,2,j∈1,2])
[kZ=kx+yi=kx+kyi=kx-,kx++ky-,ky+i0kx+,kx-+ky+,ky-ik>0k=0k<0]
1.3 復矩陣
復矩陣指的是元素中含有復數(shù)的矩陣.其中不管這個矩陣中含有多少個復數(shù),只要這個矩陣中含有復數(shù),那么這個矩陣就是復矩陣.如果這個矩陣中不含有復數(shù),那么這個矩陣就不是復矩陣.
2 閉復區(qū)間矩陣
2.1 閉復區(qū)間矩陣的定義
定義1 如果[m×n]個元素均為閉復區(qū)間數(shù),[Zij∈IC][i=1,2,..........m,j=1,2,.............n]則由[m×n]個元素構成的[m×n]階矩陣
[E=Z11Z12......Z1nZ21Z22......Z2n..........Zm1Zm2......Zmn]
記為[EC],表示C上的所有閉復區(qū)間矩陣.
特別的當[m=n]時,則稱為[n]階閉復區(qū)間矩陣記為[Enc]
定義2 形如
[1+i00...001+i0...0...............00...1+i000...01+i]
的矩陣稱為單位矩陣.這里的[1+i=1-,1++1-,1+i]
形如
[00...0000...00...............00...0000000]
的矩陣稱為零矩陣.這里的[0=0-,0++0-,0+i]
2.2 閉復矩陣的運算
定義3 對任意的C上的閉復區(qū)間矩陣
[E=Z11Z12......Z1nZ21Z22......Z2n..........Zm1Zm2......Zmn]
[F=Y11Y12......Y1nY21Y22......Y2n..........Ym1Ym2......Ymn]
則有
[1][E+F=][Z11Z12......Z1nZ21Z22......Z2n..........Zm1Zm2......Zmn][±Y11Y12......Y1nY21Y22......Y2n..........Ym1Ym2......Ymn][=Z11±Y11Z12±Y12......Z1n±Y1nZ21±Y21Z22±Y22......Z2n±Y2n..........Zm1±Ym1Zm2±Ym2......Zmn±Ymn]
特別的當E的列數(shù)等于F的行數(shù)時有
[EF=][Z11Z12......Z1nZ21Z22......Z2n..........Zm1Zm2......Zmnm×n][Y11Y12......Y1mY21Y22......Y2m..........Yn1Yn2......Ynmn×m]
[Z11Y11+Z12Y21+...+Z1nYn1Z11Y21+Z12Y22+...+Z1nYn2...Z11Y1n+Z12Y2n+...+Z1nYnm........Zm1Y11+Zm2Y21+...+ZmnYn1Zm1Y12+Zm2Y22+...+ZmnYn2...Zm1Y1n+Zm2Y2n+...+ZmnYnmm×m]
2)對于任意的[k∈IR]有
[kE=kZ11kZ12......kZ1nkZ21kZ22......kZ2n..........kZm1kZm2......kZmn]
2)閉復區(qū)間矩陣的轉(zhuǎn)置
[Z11Z12......Z1nZ21Z22......Z2n..........Zm1Zm2......ZmnT=Z11Z21......Zn1Z12Z22......Zn2..........Z1nZ2m......Znm]
4) 閉復區(qū)間矩陣的共軛矩陣
[Z11Z12......Z1nZ21Z22......Z2n..........Zm1Zm2......Zmn為Z11Z12......Z1nZ21Z22......Z2n..........Zm1Zm2......Zmn]
定理1 (基本性質(zhì))
設[E1,E2,E3∈Ec],[k,l∈IR],有
1)(加的交換律)[E1+E2=E2+E1]
2) (加的結合律) [E1+E2+E3=E1+E2+E3]
3) (加零)[E1+0=E1]
4)(加負)[E1+-E1=0]
5) (分配律)[k+lE1=kE1+lE2]
6) (分配律)[kE1+E2=kE1+kE2]
7) [Z=Z],[z1+z2=z1+z2]
8) [z1z2=z1z2],[z1z2=z1z2][z1≠0]
2.3 閉復區(qū)間矩陣的行列式
定義4 如果[m×n]個元素均為閉復區(qū)間數(shù),[Zij∈IC][i,j=1,2,..........n]則由[n×n]個元素構成的n階行列式
[Z11Z12......Z1nZ21Z22......Z2n..........Zn1Zn2......Znn]
是[IC]中唯一確定的數(shù):
1)當[n=1]時,[Z11=Z11]
2)當[n>1]時,
[Z11Z12...Z1nZ21Z22...Z2n............Zn1Zn2...Znn=Z11Z22...Z2nZ32...Z3n.........Zn2...Znn-Z21Z12...Z1nZ32...Z3n.........Zn2...Znn+......+-1n-1Zn1Z12...Z1nZ22...Z2n.........Zn-12...Zn-1n]
2.4 閉復區(qū)間矩陣的克萊姆法則
定理4 如果線性方程組
[Z11*x1+Z12*x2+......+Z1n*xn=b1Z21*x1+Z22*x2+......+Z2n*xn=b2...Zn1*x1+Zn2*x2+......+Znn*xn=bn]
的系數(shù)行列式
[d=Z11Z12...Z1nZ21Z22...Z2n.........................................................Zn1Zn2...Znn≠0]
則此方程存在唯一解:
[x1=d1d,x2=d2d,......,xn=dnd]
其中
[dj=Z11Z12...Z1j-1b1Z1j+1...Z1nZ21Z22...Z2j-1b2Z2j+1...Z2n.........................................................Zn1Zn2...Znj-1bnZnj+1...Znn,j=1,2,...,n.]
例1 解下列閉復區(qū)間方程組。
[13+25ix1+24+35ix2=57+46i27+36ix1+79+68ix2=810+1112i]
解:
[d=13+25i24+35i27+36i79+68i=13+25i79+68i-24+35i27+36i=1379+1368i+2579i-2568-2427+2436i+3527i-3536]
[=1×7∧1×9∧3×7∧3×9,1×7∨1×9∨3×7∨3×9+1×6∧1×8∧3×6∧3×8,1×6∨1×8∨3×6∨3×8i+2×7∧2×9∧5×7∧5×9,2×7∨2×9∨5×7∨5×9i-2×6∧2×8∧5×6∧5×8,2×6∨2×8∨5×6∨5×8-{2×2∧2×7∧4×2∧4×7,2×2∨2×7∨4×2∨4×7+2×3∧2×6∧4×3∧4×6,2×3∨2×6∨4×3∨4×6i+2×3∧2×6∧4×3∧4×6,2×3∨2×6∨4×3∨4×6i-3×3∧3×6∧5×3∧5×6,3×3∨3×6∨5×3∨5×6}]
[=(7∧9∧21∧27,7∨9∨21∨27+6∧8∧18∧24,6∨8∨18∨24i+14∧18∧35∧45,14∨18∨35∨45i-12∧16∧30∧40,12∨16∨30∨40)-(4∧14∧8∧28,4∨14∨8∨28+6∧12∧12∧24,6∨12∨12∨24i+6∧21∧10∧35,6∨21∨10∨35i-9∧18∧15∧30,9∨18∨15∨30)=727+624i+1445i-1240-428+624i+635i-930]
[=727-1240+624-1445i-428-930+624-635i=7-4027-12+2069i-4-3028-9+6-3524-6i=-3315+2069i--2619+-2918i=-3315--2619+2069--2918i=-33-1915+26+20-1869+29i=-5241+298i]
[d≠0]
[d1=57+46i24+35i810+1112i79+68i]
[=57+46i79+68i-24+35i810+1112i]
[=5779+5768i+4679i-4668-24810+241112i+35810i-351112=(5×7∧5×9∧7×7∧7×9,5×7∨5×9∨7×7∨7×9+5×6∧5×8∧7×6∧7×8,5×6∨5×8∨7×6∨7×8i+4×7∧4×9∧6×7∧6×9,4×7∨4×9∨6×7∨6×9i-4×6∧4×8∧6×6∧6×8,4×6∨4×8∨6×6∨6×8)-(2×8∧2×10∧4×8∧4×10,2×8∨2×10∨4×8∨4×10+2×11∧2×12∧4×11∧4×12,2×11∨2×12∨4×11∨4×12i+3×8∧3×10∧5×8∧5×10,3×8∨3×10∨5×8∨5×10i-3×11∧3×12∧5×11∧5×12,3×11∨3×12∨5×11∨5×12)=-20-5+104208i]
[d2=-5534+-5763i]
[x1=-11.471.984+-4.014.16i]
[x2=-4.243.685+-3.9253.1i]
參考文獻:
[1] 馬生全.模糊復分析理論基礎[M].北京:科學出版社,2010.
[2] 樊惲,錢吉林,岑嘉評,等.代數(shù)學大詞典[M].武漢:華中師范大學出版社,1994.
[3] 鐘玉泉.復變函數(shù)論[M].3版.北京:高等教育出版社,2004
[4] KATARINA C.Eigenvectors of interval matrices over max-plus algebra [J].Discrete Applied Mathematics, 2005, 150 (1/2/3):2-15.
[5] Jiang, Chungli. Sufficient condition for the asymptotic stability of interval matric es [J]. INT. J. Control.,1987, 46(5):1803-1810.
[6] SoH Y C, Evans R J. Stability analysis of interval. Matrices-continuous and discrete systems[J]. International Journal of Control, 1988, 47(1):25-32.
[7] Man Sour M. Simpliyed sufficient Conditions fo the asymptotic Stability of interval Martices[J]. International Journal of Control, 1989, 50(1):443-444.
[8] Wang jingguo. Necessary and sufficient conditions for stability of a Matrix polytope with Normal Vertex Matrices [J]. Automatic, 1991, 27(5):887-888.
[9] 川陳景良,陳向暉.特殊矩陣[M].北京:清華大學出版社,2001.