蔣莉萍
活動(dòng)對(duì)于數(shù)學(xué)教學(xué)具有十分重要的意義.它不僅可以提高學(xué)生的實(shí)踐能力,還有利于培養(yǎng)學(xué)生的創(chuàng)新思維意識(shí).活動(dòng)可以給學(xué)生提供自主探究知識(shí)的機(jī)會(huì),挖掘?qū)W生大腦中的思維潛能.在初中數(shù)學(xué)中,教師要讓學(xué)生有充分參與活動(dòng)的機(jī)會(huì),在活動(dòng)過程中收獲知識(shí),促進(jìn)思維與個(gè)性的全面發(fā)展.但是,怎樣組織學(xué)生開展成功的數(shù)學(xué)活動(dòng),需要廣大教師不斷地探索與實(shí)踐.
一、結(jié)合思維特點(diǎn),培養(yǎng)學(xué)生的思維能力
研究表明,人的思維形成與發(fā)展呈現(xiàn)年齡階段性特征.初中生的思維以經(jīng)驗(yàn)型抽象邏輯思維為主.隨著年齡的增大,思維逐漸由思維的經(jīng)驗(yàn)型向理論型轉(zhuǎn)化,這是學(xué)生人生思維的一次“飛躍”.當(dāng)然,初中學(xué)生的數(shù)學(xué)思維發(fā)展并不是“齊步走”,存在著個(gè)體差異與群體差異.這種差異主要通過思維的敏捷性、靈活性、深刻性、獨(dú)創(chuàng)性與批判性等,在數(shù)學(xué)思維品質(zhì)中表現(xiàn)出來.因此,這就要求教師要精心設(shè)計(jì)教學(xué)內(nèi)容.在教學(xué)的過程中開展各種數(shù)學(xué)實(shí)踐活動(dòng),讓學(xué)生積極參與,動(dòng)手動(dòng)腦,并有意識(shí)地創(chuàng)設(shè)各種數(shù)學(xué)情境,來激發(fā)學(xué)生思維的火花,讓學(xué)生求知的欲望充分的表現(xiàn)出來.教師要引導(dǎo)學(xué)生運(yùn)用學(xué)過的數(shù)學(xué)知識(shí)解決生活中常見的實(shí)際問題,對(duì)于一些較難的數(shù)學(xué)知識(shí),要根據(jù)學(xué)生的不同差異,適當(dāng)?shù)胤纸鈫栴}的難度,減緩知識(shí)的坡度,讓學(xué)生樂于開展數(shù)學(xué)思維活動(dòng).同時(shí),要培養(yǎng)學(xué)生的觀察能力,對(duì)一個(gè)問題能從不同的角度去思考,善于分析問題,讓學(xué)生養(yǎng)成良好的思維習(xí)慣與思維品質(zhì).另外,要引導(dǎo)學(xué)生在活動(dòng)中大膽的發(fā)表自己的見解,對(duì)學(xué)生的錯(cuò)誤做法及時(shí)糾正,從而促進(jìn)學(xué)生的數(shù)學(xué)思維.
二、開展實(shí)踐活動(dòng),加深對(duì)概念與性質(zhì)理解
數(shù)學(xué)概念具有高度的抽象性與概括性,是人們?cè)陂L期的實(shí)踐中總結(jié)出來的.有的概念如果直接讓學(xué)生來理解理解,肯定會(huì)存在著一定的困難.因此,在課堂教學(xué)中教師應(yīng)該多為學(xué)生提供一些實(shí)物教具.讓學(xué)生結(jié)合數(shù)學(xué)學(xué)習(xí)的內(nèi)容開展動(dòng)手操作活動(dòng),并在學(xué)習(xí)新知識(shí)的過程中獲得思維的經(jīng)驗(yàn).這樣,學(xué)生在思維獲得體驗(yàn)的過程中對(duì)剛學(xué)習(xí)的概念、定理、性質(zhì)就有了自己的理解.這樣,學(xué)生獲得的知識(shí)才是深刻的、牢固的.
例如,在講“有理數(shù)乘方”時(shí),教師可以從“折紙活動(dòng)”進(jìn)入教學(xué)環(huán)節(jié),并提出問題:一張厚度為0.1mm的白紙,把它們對(duì)折一次,其厚度就變?yōu)椋?.1×2)mm,那么現(xiàn)在對(duì)折20次,厚度應(yīng)該是多少毫米?這樣,在動(dòng)手操作過程中,很多學(xué)生感到計(jì)算對(duì)折20次時(shí)的厚度是比較困難的.因此,學(xué)生希望能找一種簡便運(yùn)算方法.此時(shí),就順利地引出了“乘方”這個(gè)概念.利用乘方很容易得到0.1×220=104857.6(mm)=104.8576m.學(xué)生知道它比30層樓還要高.這樣,加深了學(xué)生對(duì)“乘方”的理解,使概念在學(xué)生的思維中深深地扎根.
三、巧設(shè)教學(xué)情境,培養(yǎng)學(xué)生數(shù)學(xué)思維空間
教育心理學(xué)研究認(rèn)為,生動(dòng)形象的問題情境可以刺激大腦的思維,喚起學(xué)生對(duì)問題思考的欲望.數(shù)學(xué)教學(xué)中情境能讓學(xué)生體驗(yàn)到數(shù)學(xué)知識(shí)與實(shí)際生活的密切聯(lián)系,學(xué)生也會(huì)從中體驗(yàn)到用所學(xué)知識(shí)解決實(shí)際問題的樂趣.在初中數(shù)學(xué)教學(xué)中,教師應(yīng)該按照國家課程大綱的要求,充分領(lǐng)會(huì)素質(zhì)教育的要求,設(shè)計(jì)一些巧妙的、生動(dòng)的、貼近學(xué)生生活實(shí)際的數(shù)學(xué)情境,讓學(xué)生在具體的情境中產(chǎn)生更多的聯(lián)想,獲得思維的頓悟.學(xué)生在具體的情境引領(lǐng)下,就會(huì)積極主動(dòng)地進(jìn)入數(shù)學(xué)學(xué)習(xí)中去.結(jié)合初中數(shù)學(xué)教學(xué)進(jìn)度與安排的要求,可以在適當(dāng)?shù)臅r(shí)候巧設(shè)教學(xué)情境,引導(dǎo)學(xué)生進(jìn)行自由的思考,教師給予學(xué)生提示,結(jié)束后再給予總結(jié)與鼓勵(lì),幫助學(xué)生在生動(dòng)的情境中體會(huì)數(shù)學(xué)學(xué)習(xí)的樂趣.
例如,在講“三角形的穩(wěn)定性”時(shí),教師可以在講臺(tái)上擺放一些具有三角形形狀的物體,如三角架、三角尺等.接著,請(qǐng)學(xué)生來體驗(yàn)這些物體的穩(wěn)定性.通過用力的拉,發(fā)現(xiàn)三角形形狀的物體并沒有變形,結(jié)合實(shí)際說明三角形物體具有穩(wěn)定性.通過讓學(xué)生親身體驗(yàn)活動(dòng),使學(xué)生對(duì)三角形的穩(wěn)定性有了深刻的理解,在思維中落下深深地烙印.
四、設(shè)計(jì)開放性試題,在實(shí)踐中提高創(chuàng)新思維
從心理學(xué)的角度看學(xué)習(xí)活動(dòng),群體的思維活動(dòng)更有利于引發(fā)人的積極思維,促進(jìn)大腦皮層的興奮,激活思維的內(nèi)驅(qū)力,從而充分調(diào)動(dòng)與發(fā)揮學(xué)生的非智力因素.數(shù)學(xué)思想方法是人類改造社會(huì)的思維工具,掌握了它會(huì)真正體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值.所以,在教學(xué)過程中,教師要對(duì)學(xué)生加強(qiáng)數(shù)學(xué)實(shí)踐活動(dòng),讓學(xué)生有更多的機(jī)會(huì)去接觸生活與生產(chǎn)實(shí)踐中的數(shù)學(xué)問題.在近年的中考試題中,數(shù)學(xué)開放試題不斷增多.這種理念順應(yīng)了新課程改革中的“自主探究、實(shí)踐體驗(yàn)和合作交流”的方式.開放型的數(shù)學(xué)試題,可以提高學(xué)生解決實(shí)際問題的能力.
總之,學(xué)生的思維能力是在活動(dòng)的過程中獲得并逐步提高的.教師要結(jié)合數(shù)學(xué)教學(xué)的具體內(nèi)容,組織學(xué)生開展各種有效的數(shù)學(xué)實(shí)踐活動(dòng),讓學(xué)生在活動(dòng)的過程中認(rèn)真地思考、分析、歸納和總結(jié).這樣,學(xué)生就能從對(duì)知識(shí)的認(rèn)知中培養(yǎng)自己的思維能力,這與新課改理念中的“做中學(xué)、學(xué)中做”要求相一致.endprint