裴毅強(qiáng),張建業(yè),秦 靜,,李 翔,代玉利,李云龍
增壓直噴汽油機(jī)起動(dòng)怠速及混合氣濃度對(duì)微粒排放的影響
裴毅強(qiáng)1,張建業(yè)1,秦 靜1,2,李 翔1,代玉利1,李云龍1
(1. 天津大學(xué)內(nèi)燃機(jī)燃燒學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072;2. 天津大學(xué)內(nèi)燃機(jī)研究所,天津 300072)
在一臺(tái)增壓直噴(GDI)汽油機(jī)上,使用快速微粒光譜儀(DMS500)對(duì)排氣中微粒排放分布進(jìn)行了實(shí)驗(yàn)研究.結(jié)果表明:在發(fā)動(dòng)機(jī)起動(dòng)后數(shù)秒內(nèi)微粒排放較高,隨著暖機(jī)進(jìn)行積聚態(tài)微粒排放減少,熱機(jī)怠速工況排氣微粒主要以核模態(tài)為主.隨著過量空氣系數(shù)λ 減小缸內(nèi)峰值壓力增加,燃燒持續(xù)期縮短,缸內(nèi)平均溫度升高,燃燒后期缸內(nèi)溫度下降幅度增加,混合氣氧含量降低,這些均促進(jìn)了碳煙排放.采用稀混合氣時(shí),循環(huán)變動(dòng)升高.低負(fù)荷時(shí),積聚態(tài)微粒對(duì)λ變化較敏感;增加負(fù)荷和轉(zhuǎn)速后,積聚態(tài)微粒數(shù)濃度有所降低,表現(xiàn)為隨λ 減小而增加的趨勢(shì).采用濃混合氣時(shí),排氣微粒質(zhì)量迅速增加.在實(shí)驗(yàn)工況,排氣微粒的幾何平均直徑(GMD)和中位直徑(CMD)基本在10,nm以內(nèi),λ為0.8時(shí)微粒的GMD和CMD值較大.
GDI汽油機(jī);缸內(nèi)壓力;放熱率;微粒
汽車尾氣中的微粒是有害排放物之一.在車用發(fā)動(dòng)機(jī)中,柴油機(jī)排氣中的微粒排放量遠(yuǎn)超出汽油機(jī),因此國(guó)內(nèi)外學(xué)者多注重柴油機(jī)排氣微粒的研究.汽油機(jī)排氣微粒的粒徑很小,大多為納米級(jí)微粒,屬超細(xì)微粒.一些研究發(fā)現(xiàn)數(shù)濃度較高的超細(xì)微粒對(duì)人體的危害較之粗微粒更加嚴(yán)重[1].這是因?yàn)榱捷^大的微??梢员槐敲钃踉诤粑到y(tǒng)之外,但是大量細(xì)微微粒經(jīng)過人體各器官層層過濾,最終還是會(huì)沉積于呼吸系統(tǒng)中,且不易排出體外[2];超細(xì)微粒單位質(zhì)量具有較大表面積,它具有很強(qiáng)的攜帶能力,其表面可以吸附毒性成分和致癌可溶性有機(jī)成分(如多環(huán)芳香烴PAHs和氣態(tài)羰基化合物),導(dǎo)致癌癥發(fā)病率升高[3].因此汽油機(jī)排氣微粒也應(yīng)受到重視.近年來,缸內(nèi)直噴(gasoline direct injection,GDI)發(fā)動(dòng)機(jī)以其諸多優(yōu)點(diǎn)發(fā)展迅速.前期研究結(jié)果表明,GDI發(fā)動(dòng)機(jī)較進(jìn)氣道噴射發(fā)動(dòng)機(jī)增加了微粒排放量[4],歐Ⅵ排放法規(guī)對(duì)GDI汽油機(jī)排氣微粒提出了要求.因此進(jìn)一步了解GDI發(fā)動(dòng)機(jī)超細(xì)微粒的排放特性更有意義.
發(fā)動(dòng)機(jī)排氣微粒按照粒徑不同可劃分為核態(tài)、積聚態(tài)和粗粒子3個(gè)模態(tài)[5].其中排氣超細(xì)微粒由核態(tài)和積聚態(tài)兩部分構(gòu)成.核態(tài)(nuclei mode)粒子是指粒徑在5~30,nm之間的排氣微粒[6].一般認(rèn)為,核態(tài)粒子主要由硫酸鹽和HC有機(jī)組分構(gòu)成,其濃度受稀釋后的混合氣溫度、濕度及在通道內(nèi)的滯留時(shí)間等因素影響;積聚態(tài)(accumulation mode)粒子的粒徑范圍為30~1,000,nm.燃燒過程中形成的無定形碳及吸附在它表面的碳?xì)浠衔锖蜕倭繜o機(jī)化合物構(gòu)成積聚態(tài)微粒,其常以團(tuán)聚物的形式存在.這部分微粒的粒數(shù)濃度一般比較穩(wěn)定,在實(shí)驗(yàn)中,可重復(fù)性好,且超細(xì)微粒的質(zhì)量排放主要由積聚態(tài)微粒決定[7].
研究表明,直噴汽油機(jī)冷起動(dòng)和暖機(jī)過程會(huì)產(chǎn)生大量微粒[8],過量空氣系數(shù)λ 是影響微粒排放的重要因素[9],但其研究?jī)H局限于直噴汽油機(jī)排氣微粒規(guī)律分析,未深入進(jìn)行燃燒分析.因此筆者采用快速微粒光譜儀(DMS500)在一臺(tái)壁面引導(dǎo)型增壓直噴汽油機(jī)進(jìn)行了實(shí)驗(yàn)研究.
實(shí)驗(yàn)裝置如圖1所示,實(shí)驗(yàn)所用發(fā)動(dòng)機(jī)采用可變氣門正時(shí)和廢氣渦輪增壓技術(shù).發(fā)動(dòng)機(jī)結(jié)構(gòu)性能參數(shù)見表1.
微粒分析儀器采用Cambustion公司的DMS500快速型納米微粒尺寸光譜儀.該儀器的粒徑測(cè)量范圍為5~1,000,nm,對(duì)采集到的氣溶膠微粒提供38通道尺寸光譜,測(cè)試響應(yīng)時(shí)間為200,ms,數(shù)據(jù)采集頻率為10,Hz.該儀器的性能介紹可參閱文獻(xiàn)[10],在此不再贅述.本實(shí)驗(yàn)中一級(jí)稀釋比為4,二級(jí)稀釋比為100,采樣加熱管溫度設(shè)定為100,℃.
實(shí)驗(yàn)針對(duì)發(fā)動(dòng)機(jī)的穩(wěn)態(tài)工況進(jìn)行采集,為了消除上一個(gè)工況的影響,發(fā)動(dòng)機(jī)穩(wěn)定運(yùn)轉(zhuǎn)2,min后開始測(cè)量.每10次采樣取一次平均值作為一個(gè)采樣點(diǎn),為了保證微粒采集的穩(wěn)定可靠,每個(gè)測(cè)試工況連續(xù)記錄50,s,最后取平均值.
表1 發(fā)動(dòng)機(jī)結(jié)構(gòu)性能參數(shù)Tab.1 Engine specifications
缸內(nèi)燃燒壓力采用AVL GH13Z型火花塞缸壓傳感器測(cè)量,采樣間隔為0.5°CA,每個(gè)工況點(diǎn)采集100個(gè)循環(huán).
圖1 實(shí)驗(yàn)系統(tǒng)示意Fig.1 Experiment setup
2.1 起動(dòng)怠速工況下微粒排放分布
圖2為發(fā)動(dòng)機(jī)冷起動(dòng)、冷怠速時(shí)(冷卻水溫度為20,℃)微粒排放隨時(shí)間的分布,Dp為微粒直徑,N為微粒數(shù)濃度.由圖2(a)可知發(fā)動(dòng)機(jī)起動(dòng)后5,s內(nèi)微??倲?shù)濃度較高,特別是積聚態(tài)微粒排放較高.圖2(b)為發(fā)動(dòng)機(jī)起動(dòng)后怠速1,min內(nèi),微粒數(shù)濃度分布變化圖譜,顏色越淺表明微粒數(shù)濃度越大.隨時(shí)間推移,積聚態(tài)微粒數(shù)濃度逐漸減小,核態(tài)微粒高濃度區(qū)域的粒徑范圍縮?。?/p>
圖3為發(fā)動(dòng)機(jī)熱起動(dòng)、熱怠速時(shí)(冷卻水溫度為85,℃)微粒排放隨時(shí)間的分布.圖3(a)表明發(fā)動(dòng)機(jī)起動(dòng)后5,s內(nèi),排氣微粒以積聚態(tài)為主,此后積聚態(tài)微粒數(shù)濃度迅速降低,核態(tài)微粒數(shù)濃度升高.圖3(b)表明,隨著時(shí)間進(jìn)一步推移,發(fā)動(dòng)機(jī)排氣微粒主要為核態(tài).對(duì)比兩種工況可以看出,冷卻水溫度影響直噴汽油機(jī)微粒排放,特別是對(duì)積聚態(tài)微粒排放影響較為顯著.
圖2 冷起動(dòng)及冷怠速工況下排氣微粒隨時(shí)間的變化Fig.2 Exhaust particle emissions of cold start and cold idle
圖3 熱起動(dòng)及熱怠速工況下排氣微粒隨時(shí)間的變化Fig.3 Exhaust particle emissions of hot start and hot idle
2.2 過量空氣系數(shù)對(duì)燃燒特性的影響
固定噴油時(shí)刻、點(diǎn)火時(shí)刻及進(jìn)排氣VVT,得到不同空燃比下缸內(nèi)壓力和放熱率曲線,如圖4所示.牛津大學(xué)的Wyszynski等[11]研究表明,GDI汽油機(jī)碳煙首峰出現(xiàn)在最高爆發(fā)壓力時(shí)刻;第2峰出現(xiàn)在低溫后燃階段,這可能是火焰前鋒面掃過后,液態(tài)燃油燃燒產(chǎn)生的干碳煙再氧化的過程.由圖4可知,隨著λ減小,缸內(nèi)最大爆發(fā)壓力逐漸升高,壓力升高率增加,最大爆發(fā)壓力對(duì)應(yīng)的曲軸轉(zhuǎn)角提前,碳煙產(chǎn)生的可能性增加.本文定義燃燒持續(xù)期為累積放熱率達(dá)到10%到累積放熱率達(dá)到90%所經(jīng)歷的曲軸轉(zhuǎn)角.從圖4可以看出,混合氣越濃后,燃燒持續(xù)期變短燃燒速率增加,50%放熱率點(diǎn)對(duì)應(yīng)曲軸轉(zhuǎn)角提前,加之混合氣變濃、氧含量低,油氣混合時(shí)間變短,燃燒惡化,這些均有利于微粒的產(chǎn)生.圖5為不同λ下缸內(nèi)平均溫度曲線,隨著混合氣加濃,缸內(nèi)最大平均溫度升高,高溫缺氧條件下,HC化合物生成量增加,也促進(jìn)了微粒的產(chǎn)生.燃燒后期隨λ的減小,缸內(nèi)平均溫度迅速降低,這不利于碳煙的氧化.圖6為兩種負(fù)荷下循環(huán)變動(dòng)隨λ變化曲線,發(fā)動(dòng)機(jī)采用稀混合氣時(shí),循環(huán)變動(dòng)增大,特別是在λ大于1.1時(shí),循環(huán)變動(dòng)增加明顯,燃燒不穩(wěn)定性增加,在一定程度上影響到發(fā)動(dòng)機(jī)的微粒排放.
圖4 λ對(duì)缸壓和放熱率的影響Fig.4 Effect of excess air ratio on the cylinder pressure and heat release rate
圖5 λ對(duì)缸內(nèi)平均溫度的影響Fig.5 Effect of excess air ratio on the average temperature inside the cylinder
圖6 λ對(duì)循環(huán)變動(dòng)的影響Fig.6 Effect of excess air ratio on the cyclic variations
2.3 過量空氣系數(shù)對(duì)微粒排放的影響
圖7為轉(zhuǎn)速為2,000,r/min、0.1,MPa,發(fā)動(dòng)機(jī)穩(wěn)態(tài)運(yùn)行時(shí)排氣微粒粒徑尺寸分布,GDI汽油機(jī)排氣微粒在中小負(fù)荷時(shí)以核模態(tài)微粒為主[12].小負(fù)荷時(shí),排氣微粒數(shù)濃度對(duì)λ變化比較敏感,特別是濃混合氣時(shí),積聚態(tài)和核態(tài)微粒數(shù)濃度均明顯增加,而λ大于1.1時(shí),積聚態(tài)微粒排放增多.負(fù)荷增加到0.4,MPa時(shí),排氣微粒分布如圖8所示,核態(tài)微粒出現(xiàn)雙峰分布,積聚態(tài)微粒則隨λ減小逐漸增加,λ小于1時(shí),積聚態(tài)微粒數(shù)濃度明顯增加,較其他工況高出1倍多.圖9為3,500,r/min、0.4,MPa時(shí),λ對(duì)微粒數(shù)濃度分布的影響規(guī)律.該工況下微粒排放較前兩個(gè)工況減少,核態(tài)微粒的峰值粒徑在10,nm以下,積聚態(tài)微粒數(shù)濃度均在106這一數(shù)量級(jí)上,粒徑分布在200,nm以內(nèi),兩種模態(tài)微粒數(shù)濃度均呈現(xiàn)出隨λ減小而增加的趨勢(shì).
圖7 2,000,r/min、0.1,MPa微粒粒徑尺寸分布Fig.7 Particle size distribution at 2,000,r/min,0.1,MPa
圖8 2,000,r/min、0.4,MPa微粒粒徑尺寸分布Fig.8 Particles size distribution at 2,000,r/min,0.4,MPa
圖9 3 500 r/min、0.4 MPa微粒粒徑尺寸分布Fig.9 Particle size distribution at 3 500 r/min,0.4 MPa
圖10 為3,500,r/min、0.4,MPa時(shí)排氣核態(tài)微粒質(zhì)量和積聚態(tài)微粒質(zhì)量隨λ 的分布規(guī)律.由圖10可知,核態(tài)微粒雖然數(shù)濃度大,但其質(zhì)量遠(yuǎn)小于積聚態(tài)微粒,因此積聚態(tài)微粒質(zhì)量在排氣總微粒質(zhì)量中占的比例較大.該工況下,2種模態(tài)微粒的質(zhì)量均隨λ的增加而減小,但是隨著混合氣逐漸變稀,其減小幅度降低.
圖10 λ對(duì)排氣微粒質(zhì)量的影響Fig.10 Effect of excess air ratio on the exhaust particle mass
2.4 微粒粒徑分布特征
幾何平均直徑(geometric mean diameter,GMD)是假設(shè)所有排氣微粒均呈球形,然后對(duì)所有微粒的粒徑用幾何平均法求得的直徑.中位直徑(count median diameter,CMD)是累積百分比為50%時(shí)所對(duì)應(yīng)的粒子直徑[13].GMD和CMD是表達(dá)微粒粒徑的重要參數(shù),二者數(shù)值越大表明發(fā)動(dòng)機(jī)排氣微粒中大粒徑微粒數(shù)濃度越高.圖11給出了3種工況下,排氣微粒的GMD和CMD隨λ的分布.實(shí)驗(yàn)工況下,微粒的GMD和CMD值基本都在10,nm以下,這與該發(fā)動(dòng)機(jī)排氣微粒中核態(tài)微粒數(shù)濃度較大有關(guān).二者隨λ的變化規(guī)律性并不明顯.3種工況下,λ為0.8時(shí),排氣微粒的GMD和CMD值均較大.
圖11 λ對(duì)微粒GMD和CMD的影響Fig.11 Effect of excess air ratio on the GMD and CMD of particle
(1) 發(fā)動(dòng)機(jī)在起動(dòng)后前幾秒中微粒排放較高,其中積聚態(tài)微粒排放較顯著.冷機(jī)怠速工況較熱機(jī)怠速工況積聚態(tài)微粒排放高,隨著發(fā)動(dòng)機(jī)暖機(jī)過程的進(jìn)行積聚態(tài)微粒排放逐漸減少.熱怠速工況以核態(tài)微粒排放為主,積聚態(tài)微粒排放很少.
(2) 隨λ減小缸內(nèi)最大爆發(fā)壓力升高,最大壓升率增加,燃燒持續(xù)期變短,缸內(nèi)最高平均溫度逐漸升高,燃燒后期缸內(nèi)溫度迅速下降,加之混合氣變濃、氧含量低,不利于排放物后期氧化,因此這些因素都促進(jìn)了碳煙和HC化合物的生成,發(fā)動(dòng)機(jī)λ 大于1.1時(shí),循環(huán)變動(dòng)增大,一定程度上影響到燃用稀混合氣時(shí)的微粒排放.
(3) 在低負(fù)荷時(shí),排氣中的微粒數(shù)濃度對(duì)λ變化較敏感,混合氣過濃或過稀均導(dǎo)致積聚態(tài)微粒排放增加.在2,000,r/min、0.4,MPa和3,500,r/min、0.4,MPa時(shí),積聚態(tài)微粒數(shù)濃度呈隨著λ的減小而增加的趨勢(shì);積聚態(tài)微粒質(zhì)量在微粒的總質(zhì)量中占很大比例,在3,500,r/min、0.4,MPa時(shí),微??傎|(zhì)量隨過量空系數(shù)減小而增加,且加濃混合氣后,微??傎|(zhì)量明顯增加.
(4) 在測(cè)試工況下,排氣微粒的GMD和CMD基本都在10,nm以內(nèi),這與核態(tài)微粒數(shù)濃度較高有關(guān),λ 為0.8時(shí),排氣微粒的GMD和CMD值較大.參考文獻(xiàn):
[1] Oberd?rster G,F(xiàn)erin J,Lehnert B E. Correlation between particle size,in vivo particle persistence,and lung injury[J]. Environ Health Perspect,1994,102 (5):173-179.
[2] Panyacosit L. A Review of Particulate Matter and Health:Focus on Developing Countries[R]. Austria:ASA Interim Report IR-00-005.
[3] Wei Q,Kittelson D B,Watts W F,et al. Single-stage dilution tunnel performance[C]//SAE Paper. Detroit,USA,2001:2001-01-0201.
[4] 潘鎖柱,裴毅強(qiáng),宋崇林,等. 汽油機(jī)顆粒物數(shù)量排放及粒徑的分布特性[J]. 燃燒科學(xué)與技術(shù),2012,18(2):181-185.
Pan Suozhu,Pei Yiqiang,Song Chonglin,et al. Particle number and size distributions from gasoline engine[J]. Journal of Combustion Science and Technology,2012,18(2):181-185(in Chinese).
[5] 李新令,黃 震. 柴油機(jī)排氣尾流中核模態(tài)顆粒數(shù)濃度和粒徑分布變化特性[J]. 中國(guó)科技論文在線,2011,6(8):613-617.
Li Xinling,Huang Zhen. Change characteristics of the number concentration and size distribution of nucleation mode particles in the exhaust plume of diesel engines[J]. Scincepaper Online,2011,6(8):613-617(in Chinese).
[6] Myung C L,Park S. Exhaust nanoparticle emissions from internal combustion engines:A review[J]. International Journal of Automotive Technology,2012,13(1):9-22.
[7] Vouitsis E,Ntziachristos L,Samaras Z. Modelling of diesel exhaust aerosol during laboratory sampling[J]. Atmospheric Environment,2005,39(7):1335-1345.
[8] Piock W,Hoffmann G,Berndorfer A,et al. Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines [C]//SAE Paper. Detroit,USA,2011:2011-01-1212.
[9] Sabathil D,Koenigstein A,Schaffner P,et al. The influence of DISI engine operating parameters on particle number emissions [C]// SAE Paper. Detroit,USA,2011:2011-01-0143.
[10] Reaxell K,Collings N,Hands T. A fast response particulate spectrometer for combustion aerosols[C]// SAE Paper. Detroit,USA,2002:2002-01-2714.
[11] Wyszynski L P,Aboagye R,Stone R,et al. Combustion imaging and analysis in a gasoline direct injection engine[C]// SAE Paper. Detroit,USA,2004:2004-01-0045.
[12] Graskow B R,Kittelson D B,Ahmadi M R,et al.Exhaust particle emissions from a direct injection spark ignition engine[C]// SAE Paper. Detroit,USA,1999:1999-01-1145.
[13] 劉志華,葛蘊(yùn)珊,丁 艷,等. 柴油機(jī)和LNG發(fā)動(dòng)機(jī)排放顆粒物粒徑分布特性研究[J]. 內(nèi)燃機(jī)學(xué)報(bào),2009,27(6):518-522.
Liu Zhihua,Ge Yunshan,Ding Yan,et al. The size distribution characteristic of PM emitted from diesel engine and LNG engine [J]. Transactions of CSICE,2009,27(6):518-522(in Chinese).
(責(zé)任編輯:孫立華)
Effect of Starting Idling Condition and Mixture Concentration of a Turbocharged GDI Engine on Particle Emission
Pei Yiqiang1,Zhang Jianye1,Qin Jing1,2,Li Xiang1,Dai Yuli1,Li Yunlong1
(1. State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China;2. Internal Combustion Engine Research Institute,Tianjin University,Tianjin 300072,China)
This is an experimental research on the distribution of particulate emissions in the exhaust gas of a turbocharged gasoline direct injection(GDI) engine by using a fast particle spectrometer (DMS500). The results showed high particulate emissions within a few seconds after startup. As the machine continued to warm up, the accumulation mode particulate emissions reduced. In hot idling condition, nucleation mode particulates were the dominant exhaust particulates . With the excess air ratio reduced, the peak cylinder pressure increased, the combustion duration shortened, the average temperature inside the cylinder gradually increased, post-combustion cylinder temperature decreased and the oxygen content in the mixture lowered, which were conducive to soot formation and elevated cyclic variations when using lean gas. At low load, the accumulation mode particulates were sensitive to the change of the excess air ratio. After we increased load and speed, concentrations of accumulation mode particles decreased, which was demonstrated by the decreasing excess air ratio and increasingconcentrations of accumulation mode particles. When using concentrated mixture, exhaust particulate mass rapidly increased. In the experimental conditions, the geometric mean diameter (GMD) and count median diameter (CMD) of exhaust gas particles were basically less than 10 nm. When the excess air ratio is 0.8, the values of GMD and CMD particulates were comparatively large.
gasoline direct injection engine;cylinder pressure;heat release rate;particulate
TK411.5
A
0493-2137(2014)10-0892-06
10.11784/tdxbz201306054
2013-06-25;
2013-09-04.
國(guó)家自然科學(xué)基金資助項(xiàng)目(50976076).
裴毅強(qiáng)(1967— ),男,博士,副教授.
裴毅強(qiáng),peiyq@tju.edu.cn.
時(shí)間:2014-03-24.
http://www.cnki.net/kcms/doi/10.11784/tdxbz201306054.html.