鄭 斌,尹志奎,姚志軍,張海珠,任紅斌,詹希美
剛地弓形蟲(Toxoplasmagondii,Tg)為人獸共患弓形蟲病(Toxoplasmosis)的病原體。蟲體感染宿主時(shí),主動(dòng)入侵宿主細(xì)胞,并在細(xì)胞內(nèi)發(fā)育、增殖[1]。微線體蛋白(microneme protein, MIC)是由弓形蟲頂端胞器微線體分泌的一類蛋白,在蟲體入侵細(xì)胞時(shí)發(fā)揮重要功能[2]。研究發(fā)現(xiàn)部分敲除MIC2后,蟲體的粘附和入侵能力下降了78%[3]。MIC2為Ⅰ型跨膜蛋白,位于胞外的氨基端(N端)識(shí)別、粘附宿主細(xì)胞;位于胞內(nèi)的羧基端(C端)和醛縮酶相互作用,由醛縮酶介導(dǎo)與蟲體的肌動(dòng)蛋白-肌球蛋白動(dòng)力系統(tǒng)偶聯(lián)[4]。本研究對(duì)弓形蟲MIC2與醛縮酶的作用位點(diǎn)進(jìn)行了探討,旨在為揭示MIC2的生物學(xué)功能和弓形蟲的入侵機(jī)制奠定基礎(chǔ)。
1.1材料
1.1.1弓形蟲蟲株、質(zhì)粒和主要儀器 弓形蟲強(qiáng)毒株(RH株)和原核表達(dá)載體pGEX-4T-1由中山大學(xué)中山醫(yī)學(xué)院寄生蟲學(xué)研究室傳代保種。蛋白電泳及電轉(zhuǎn)移裝置(Mini-PROTEIN 3 Cell)為Bio-Rad公司產(chǎn)品;核酸蛋白質(zhì)分析儀(BeckmanDU640)為Beckman公司產(chǎn)品。
1.1.2主要試劑EcoRI 和SmaI 限制性內(nèi)切酶為NEB公司產(chǎn)品;GST pull-down用sepharose(Glutathione sepharoseTM4B)、GST融合蛋白親和純化柱(GSTrap FF)購自Amersham Biosciences公司;硝酸纖維素膜(NC)為PALL公司產(chǎn)品;免疫印跡增強(qiáng)化學(xué)發(fā)光法(ECM)試劑盒(兔IgG)購自Promege公司;X感光膠片為Kodak產(chǎn)品;顯影液和定影液購自武漢博士德公司;GST-MIC2C蛋白和抗醛縮酶多克隆抗體(anti-aldolase)為本研究室前期制備[5-6]。
1.2實(shí)驗(yàn)方法
1.2.1MIC2C W/A/pGEX-4T-1重組原核表達(dá)系統(tǒng)的構(gòu)建 根據(jù)報(bào)道的弓形蟲RH株MIC2的基因序列(U62660)[7],將MIC2 C端767位色氨酸(W)突變?yōu)楸彼?A),設(shè)計(jì)1對(duì)特異性引物并合成(上游引物:5’-GAACCCGGGAGTTACCACTACTATTTGAGCTC-3’,下游引物:5’-GGGGAAT
TCCTACTCCATCGCCATATCACTATCGTC-3’,其中CCCGGG為SmaI 酶切位點(diǎn),GAATTC為EcoRI 酶切位點(diǎn))。按照文獻(xiàn)[8]的方法完成MIC2C W/A基因片段的PCR擴(kuò)增及MIC2C W/A/pGEX-4T-1重組原核表達(dá)系統(tǒng)的構(gòu)建。
1.2.2GST-MIC2C W/A突變體融合蛋白的制備 GST-MIC2C W/A突變體融合蛋白的誘導(dǎo)表達(dá)、純化及蛋白濃度分析具體操作見文獻(xiàn)[8]。
1.2.3GST pull-down實(shí)驗(yàn)鑒定蛋白作用位點(diǎn) 制備新鮮弓形蟲速殖子裂解液,分別以GST-MIC2CW/A突變體蛋白和GST-MIC2C蛋白(陽性對(duì)照)作為探針蛋白與弓形蟲速殖子裂解液進(jìn)行pull-down實(shí)驗(yàn),具體操作見文獻(xiàn)[9],實(shí)驗(yàn)產(chǎn)物常規(guī)處理,SDS-PAGE及Western blot分析。
2.1弓形蟲MIC2C W/A突變體基因片段的PCR擴(kuò)增 以弓形蟲cDNA第1鏈為模板,PCR擴(kuò)增MIC2CW/A基因片段,1.5%瓊脂糖凝膠電泳。結(jié)果顯示在100~200 bp之間有一條帶,與目的基因片段大小相符(圖1)。
圖1MIC2CW/A基因片段PCR產(chǎn)物
Fig.1PCRproductsofMIC2CW/Agenefragment
M: 100 bp DNA ladder;1-2: PCR products of MIC2C W/A gene fragment.
2.2GST-MIC2C W/A融合蛋白的表達(dá) 37 ℃,IPTG 1 mmol/L的條件下誘導(dǎo)表達(dá)GST-MIC2C W/A融合蛋白,SDS-PAGE分析(圖2)。結(jié)果顯示在誘導(dǎo)1~7 h均有目的蛋白表達(dá)(箭頭示)。大量搖菌,誘導(dǎo)表達(dá)目的蛋白,GSTrap FF純化融合蛋白,核酸蛋白分析儀分析GST-MIC2C W/A突變體蛋白的濃度為2.55 mg/ml。
圖2GST-MIC2CW/A融合蛋白表達(dá)條件的優(yōu)化
Fig.2OptimumconditionfortheexpressionofGST-MIC2CW/Afusionprotein
M: Protein molecular weight marker; 1-4: MIC2C W/A/pGEX-4T-1/BL21 induced by IPTG 7, 5, 3, and 1 h respectively; 5: MIC2CW/A/pGEX-4T-1/BL21 uninduced; 6: pGEX-4T-1/BL21 induced by IPTG 7 h; 7: BL21 induced by IPTG 7 h.
2.3GST pull-down產(chǎn)物的SDS-PAGE及Western blot分析 以GST-MIC2C W/A蛋白為探針蛋白,與弓形蟲速殖子裂解液進(jìn)行pull-down實(shí)驗(yàn),實(shí)驗(yàn)產(chǎn)物常規(guī)處理。以GST-MIC2C蛋白與弓形蟲速殖子裂解液進(jìn)行pull-down實(shí)驗(yàn)的產(chǎn)物為對(duì)照,共同進(jìn)行SDS-PAGE和Western blot分析(圖3)。結(jié)果表明GST-MIC2C蛋白的pull-down產(chǎn)物中可見一蛋白條帶,可被醛縮酶抗體(anti-aldolase)識(shí)別,而GST-MIC2C W/A蛋白的pull-down產(chǎn)物中則未見蛋白條帶。
圖3GSTpull-down產(chǎn)物的SDS-PAGE和Westernblot分析
Fig.3SDS-PAGEandWesternblotanalysisofproductsfromGSTpull-downexperiment
M: Protein molecular weight marker; 1:T.gondiilysate; 2: The products of GST-MIC2C protein pull-down; 3: GST-MIC2C protein; 4: The products of GST-MIC2C W/A protein pull-down; 5: GST-MIC2C W/A protein.
伯氏瘧原蟲的血小板反應(yīng)蛋白相關(guān)未知蛋白(Thrombospondin-related anonymous proteins, TRAP)和環(huán)子孢子蛋白TRAP相關(guān)蛋白(CS protein-TRAP-ralated protein, CTRP)C端的色氨酸(W)對(duì)應(yīng)密碼子的堿基突變后,瘧原蟲的子孢子和動(dòng)合子則不能運(yùn)動(dòng),而且失去入侵宿主細(xì)胞的能力[10-12]。Clustalw對(duì)比分析瘧原蟲TRAP、CTRP和弓形蟲MIC2的C端序列,結(jié)果提示蛋白C端的色氨酸(W)為保守氨基酸(圖4),由此推測(cè)弓形蟲MIC2 C端的W可能為其關(guān)鍵氨基酸位點(diǎn)。
圖4弓形蟲MIC2、惡性瘧原蟲CTRP和TRAP蛋白序列的對(duì)比分析
Fig.4ProteinsequencealignmentofTgMIC2,PfCTRPandPfTRAP
體外定點(diǎn)突變技術(shù)是研究基因和蛋白質(zhì)結(jié)構(gòu)、功能的重要技術(shù)[13-14]。利用該技術(shù),弓形蟲致密顆粒蛋白(dense granule proteins,GRAs)在蛋白切割中的作用及抑制蛋白(profilin)β-hairpin的功能得以揭示[15-16]。常用的定點(diǎn)突變方法有盒式突變、寡核苷酸引物介導(dǎo)的定點(diǎn)突變及PCR 介導(dǎo)的定點(diǎn)突變等。定點(diǎn)突變技術(shù)多用于單個(gè)或幾個(gè)核苷酸的變異,若需要變異多個(gè)核苷酸或?qū)蚪M進(jìn)行編輯、修飾等,則采用鋅指核酸酶(Zinc-finger nuclease, ZFN)、類轉(zhuǎn)錄激活因子效應(yīng)物核酸酶(Transcription activator-like effector nuclease, TALEN)和成簇的規(guī)律間隔的短回文重復(fù)序列(Clustered regularly interspaced short palindromic repeats,CRISPR)等技術(shù)[17]。已經(jīng)運(yùn)用TALENs對(duì)線蟲的基因組進(jìn)行了定點(diǎn)編輯,弓形蟲基因組的編輯、修飾還未見報(bào)道[18]。本研究采用核苷酸引物介導(dǎo)的突變方法將MIC2的W突變?yōu)锳。用制備的GST-MIC2C W/A突變體蛋白作為探針蛋白與弓形蟲裂解液進(jìn)行GST pull-down實(shí)驗(yàn),GST-MIC2C蛋白為對(duì)照,結(jié)果顯示GST-MIC2C W/A突變體蛋白不能沉降弓形蟲裂解液中的醛縮酶蛋白,即當(dāng)W變?yōu)锳時(shí),MIC2C與醛縮酶之間的相互作用消失,從而證明W為兩蛋白的相互作用位點(diǎn)。
參考文獻(xiàn):
[1]Amerizadeh A, Khoo BY, Teh AY, et al. Identification and real-time expression analysis of selectedToxoplasmagondiiin-vivo induced antigens recognized by IgG and IgM in sera of acute toxoplasmosis patients[J]. BMC Infect Dis, 2013, 13(1): 287. DOI: 10.1186/1471-2334-13-287
[2]Saouros S, Dou Z, Henry M, et al. Microneme protein 5 regulates the activity ofToxoplasmasubtilisin 1 by mimicking a subtilisin prodomain[J]. J Biol Chem, 2012, 287(43): 36029-36040. DOI: 10.1074/jbc.M112.389825
[3]Jewett TJ, Sibley LD. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites[J]. Mol Cell, 2003, 11(4): 885-894. DOI: 10.1016/S1097-2765(03)00113-8
[4]Huynh MH, Carruthers VB.ToxoplasmaMIC2 is a major determinant of invasion and virulence[J]. PLoS Pathog, 2006, 2(8): e84. DOI: 10.1371/journal.ppat.0020084
[5]Yin ZK, Zheng B, Zhan XM. Preparation of the cytosolic tail domain ofToxoplasmagondiimicroneme protein 2 and its polyclonal antibody[J]. Biotechnology, 2013, 23(1): 45-48. (in Chinese)
尹志奎,鄭斌,詹希美. 弓形蟲MIC2胞質(zhì)尾蛋白及其多克隆抗體的制備[J]. 生物技術(shù),2013,23(1):45-48.
[6]Yin ZK, Deng ZJ, Zheng B. Expression of aldolase ofToxoplasmagondiiand preparation of the polyclonal antibodies against this protein[J]. Chin J Cell Mol Immunol, 2011, 27(10): 1114-1116. (in Chinese)
尹志奎,鄧智建,鄭斌. 剛地弓形蟲醛縮酶蛋白的表達(dá)及其多克隆抗體的純化[J]. 細(xì)胞與分子免疫學(xué)雜志,2011,27(10):1114-1116.
[7]Wan KL, Carruthers VB, Sibley LD, et al. Molecular characterisation of an expressed sequence tag locus ofToxoplasmagondiiencoding the micronemal protein MIC2[J]. Mol Biochem Parasitol, 1997, 84(2): 203-214.
[8]Zheng B, He A, Li ZY, et al. Production of the carboxyl terminal fragment ofToxoplasmagondiimicroneme protein 6 (TgMIC6C) and its polyclonal antibody[J]. Chin J Zoonoses, 2009, 25(9): 870-874. (in Chinese)
鄭斌,何藹,李卓雅,等. 弓形蟲MIC6羧基端蛋白片段的表達(dá)及其多克隆抗體的制備[J]. 中國人獸共患病學(xué)報(bào),2009,25(9):870-874.
[9]Zheng B, Yin ZK, He A, et al. Screening the protein interacts with C terminal of MIC6 ofToxoplasmagondii[J]. Chin J Zoonoses, 2011, 27 (11): 970-974. (in Chinese)
鄭斌, 尹志奎, 何藹, 等. 弓形蟲MIC6羧基端相互作用蛋白的篩選[J]. 中國人獸共患病學(xué)報(bào), 2011,27 (11):970-974.
[10]Dessens JT, Beetsma AL, Dimopoulos G, et al. CTRP is essential for mosquito infection by malaria ookinetes[J]. EMBO J, 1999, 18(22): 6221-6227.
[11]Sultan AA, Thathy V, Frevert U, et al. TRAP is necessary for gliding motility and infectivity ofplasmodiumsporozoites[J]. Cell, 1997, 90(3): 511-522.
[12]Yuda M, Sakaida H, Chinzei Y. Targeted disruption of thePlasmodiumbergheiCTRP gene reveals its essential role in malaria infection of the vector mosquito[J]. J Exp Med, 1999, 190(11): 1711-1716.
[13]Adachi Y, Fukuhara C. TA strategy for rapid and efficient site-directed mutagenesis[J]. Anal Biochem, 2012, 431(1): 66-68. DOI: 10.1016/j.ab.2012.08.030
[14]Wan H, Li Y, Fan Y, et al. A site-directed mutagenesis method particularly useful for creating otherwise difficult-to-make mutants and alanine scanning[J]. Anal Biochem, 2012, 420(2): 163-170. DOI: 10.1016/j.ab.2011.09.019
[15]Hsiao CH, Luisa Hiller N, Haldar K, et al. A HT/PEXEL motif inToxoplasmadense granule proteins is a signal for protein cleavage but not export into the host cell[J]. Traffic, 2013, 14(5): 519-531. DOI: 10.1111/tra.12049
[16]Kucera K, Koblansky AA, Saunders LP, et al. Structure-based analysis ofToxoplasmagondiiprofilin: a parasite-specific motif is required for recognition by Toll-like receptor 11[J]. J Mol Biol, 2010, 403(4): 616-629. DOI: 10.1016/j.jmb.2010.09.022
[17]Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31(7): 397-405. DOI: 10.1016/j.tibtech.2013.04.004
[18]Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040): 307. DOI: 10.1126/science.1207773