黃 志, 陳永杰, 陳 琳, 耿秀娟, 楊 英
(沈陽化工大學(xué) 遼寧省稀土化學(xué)及應(yīng)用重點實驗室, 遼寧 沈陽 110142)
白光LED具有體積小、耗電量低、使用壽命長、亮度高、響應(yīng)快、環(huán)保等優(yōu)點,被譽為第4代照明光源,是未來照明光源的發(fā)展方向.目前市場上的LED成品主要是采用“藍(lán)光芯片InGaN+黃色熒光粉”組合成白光,但因其缺少紅光部分,造成顯色指數(shù)較低.而“(近)紫(外)光芯片+白光LED熒光粉”得到的白光具有顏色穩(wěn)定、顯色指數(shù)和流明效率高的優(yōu)點,逐漸成為研究的熱點[1-4].
相比鋁酸鹽熒光粉抗?jié)裥圆?、在水溶液中極易水解的特點,硅酸鹽熒光粉具有良好的化學(xué)穩(wěn)定性和熱穩(wěn)定性,光譜覆蓋范圍廣,發(fā)射效率高(輸出量子效率高于90 %),原料價廉等優(yōu)點,引起了廣泛的關(guān)注.Huang C H等[5]合成了近紫外激發(fā)的(Ca0.96Eu0.01Mn0.03)4Si2O7F2暖白光熒光粉,其發(fā)射光譜由藍(lán)光(460 nm)和橙紅光(576 nm)組成,且具有較佳的發(fā)光特性.Liu W R等[6]合成了近紫外激發(fā)的新型正白光熒光粉KCaY(PO4)2:1 %Eu2+,4 %Mn2+,其發(fā)射光譜由藍(lán)光(480 nm)和紅光(652 nm)組成,發(fā)光特性為CIE(0.314,0.329)和Tc=6 507 K.李郎楷等[7-8]合成了近紫外激發(fā)的白光熒光粉BaMgSiO4:0.02Eu2+,0.03Mn2+和Ba0.905Ca0.845Mg0.25SiO4:0.02Eu2+,0.025Mn2+,其發(fā)射光包括了紅綠藍(lán)三色,可作為白光LED用全色熒光粉,且調(diào)節(jié)Mn2+濃度,能夠合成不同色溫的冷、暖白光色.Bandi V R等[9]制備了新型Ca3Y2Si3O12:Dy3+,Ce3+白光熒光粉,其發(fā)射光譜分別由389 nm、473 nm、580 nm組成,色坐標(biāo)CIE(0.349,0.33)非常接近于自然光CIE(0.33,0.33).
在稀土離子摻雜的熒光粉研究中,加入敏化劑是提高熒光粉發(fā)光性能的有效方法之一.其中3價稀土離子Dy3+、Tb3+、Er3+、Y3+、Gd3+等作為敏化劑來改善熒光粉的發(fā)光性能,已有許多報道[10-12],但Gd3+敏化Ba1.3Ca0.65SiO4:0.02Eu2+,0.03Mn2+熒光粉的發(fā)光行為尚未見報道.為此,本文主要研究Gd3+的摻雜對Ba1.3Ca0.65SiO4:0.02Eu2+,0.03Mn2+相對發(fā)光強度的影響.
原料:碳酸鈣(CaCO3,分析純,analytical reagent,A.R.),碳酸錳(MnCO3,A.R.),碳酸鋇(BaCO3,A.R.),氧化硅(SiO2,A.R.),氧化釓(Gd2O3,99.9 %,質(zhì)量分?jǐn)?shù),下同),氧化銪(Eu2O3,99.99 %).采用固相法合成熒光粉Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+,xGd3+(x=0~6 %,摩爾比,以下同),按照化學(xué)計量比稱取原料,并添加摩爾分?jǐn)?shù)為7 %的氯化鋇(BaCl2·2H2O,A.R.)作助熔劑,放入研缽中進(jìn)行研磨,加入少量的無水乙醇使物質(zhì)混合均勻,再將此混合物放入烘箱中烘干,再研磨并裝入瓷舟中.將瓷舟置于高溫管式爐中,程序升溫到400 ℃時,開始通入H2/N2(摩爾體積Vm(H2)/Vm(N2)為1/10)還原氣體,到達(dá)1 000 ℃時保溫1.5 h,再自然降溫至400 ℃,停止通氣,取出樣品進(jìn)行研磨,即得到粉末樣品.反應(yīng)式為:
1.3BaCO3+(0.65-x)CaCO3+0.01Eu2O3+
0.03MnCO3+SiO2+0.5xGd2O3→
Ba1.3Ca0.65-xSiO4:0.02Eu,0.03Mn,xGd+
(1.98-x)CO2↑;x=0~0.06
采用Bruker D8型X射線衍射(XRD)儀測試樣品的晶體結(jié)構(gòu).Cu靶,管電壓為40 kV,波長λ=0.154 06 nm,掃描步長0.02°.用Hitachi F-4600型熒光分光光度計測試樣品的激發(fā)-發(fā)射光譜,其中狹縫2.5 nm,工作電壓400 V,掃描速度1 200 nm/min.用杭州遠(yuǎn)方公司的PMS-50(增強型)紫外-可見-近紅外光譜分析系統(tǒng)測試光譜和色溫、色坐標(biāo)等參數(shù)(掃描步長5 nm,激發(fā)波長365 nm).所有測試均在室溫下進(jìn)行.
圖1 Ba1.3Ca0.65SiO4:0.02Eu2+,0.03Mn2+和 Ba1.3Ca0.62SiO4:0.02Eu2+,0.03Mn2+,0.03Gd3+ 熒光粉的XRD譜圖Fig.1 The XRD patterns of Ba1.3Ca0.65SiO4: 0.02Eu2+,0.03Mn2+ and Ba1.3Ca0.62SiO4: 0.02Eu2+,0.03Mn2+,0.03Gd3+ phosphors
圖2為460 nm波長監(jiān)測的熒光粉Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+,xGd3+(x=0,3 %)的激發(fā)光譜,其激發(fā)光譜呈寬帶狀,主要由4個峰值283 nm、338 nm、365 nm和405 nm構(gòu)成.熒光粉在275~410 nm之間有較強的吸收,與近紫外光InGaN芯片(350~410 nm)匹配.可以看出,此材料的激發(fā)光譜中存在近紫外峰,與近紫外光激發(fā)的白光熒光粉模式相符.敏化劑Gd3+的摻雜,對其峰值波長沒有較大的影響,但明顯增強了激發(fā)光譜的強度.波長為365 nm的芯片較283 nm、338 nm和405 nm芯片生產(chǎn)工藝成熟且廉價,故選用365 nm波長作為樣品的激發(fā)波長.
a:Ba1.3Ca0.65SiO4:0.02Eu2+,0.03Mn2+ b:Ba1.3Ca0.62SiO4:0.02Eu2+,0.03Mn2+,0.03Gd3+
圖3為365 nm激發(fā)下的不同Gd3+敏化劑摻雜的Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+,xGd3+(x=0~6 %)熒光粉的發(fā)射光譜.可以看出熒光粉在425~560 nm的藍(lán)綠光區(qū)域有寬的發(fā)射,歸屬于Eu2+的5d—4f躍遷發(fā)射,且此寬波帶呈不對稱分布,說明Eu2+至少存在兩個發(fā)光中心,可能是Eu2+取代基質(zhì)晶體結(jié)構(gòu)中的不同Ba2+(Ca2+)格位而產(chǎn)生的.其560~700 nm的橙紅光波帶歸屬于Mn2+取代與其半徑相近的Ca2+格位的4T1—6A1躍遷發(fā)射.
圖3 熒光粉Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+, xGd3+的發(fā)射光譜(x=0~6 %)Fig.3 Emission spectra of phosphors Ba1.3Ca0.65-xSiO4: 0.02Eu2+,0.03Mn2+,xGd3+ (x=0~6 %)
圖4為不同Gd3+含量的Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+,xGd3+(x=0~6 %)熒光粉的發(fā)光強度的變化關(guān)系.可以看出:Gd3+的摻入,其熒光粉的發(fā)光強度明顯增強.當(dāng)0
圖4 不同摩爾分?jǐn)?shù)的Gd3+對應(yīng)樣品的藍(lán)綠光和橙紅光 強度變化趨勢(λex=365 nm)Fig.4 The maximum of blue emission band and orange- red emission band with different Gd3+ content
圖5為460 nm波長監(jiān)測下的熒光粉Ba1.3Ca0.65SiO4:0.02Eu2+,0.03Mn2+的激發(fā)光譜和365 nm波長激發(fā)下Ba1.3Ca0.68SiO4:0.02Gd3+熒光粉的發(fā)射光譜.
圖5 熒光粉Ba1.3Ca0.65SiO4:0.02Eu2+,0.03Mn2+的 激發(fā)光譜(λem=460 nm)和Ba1.3Ca0.68SiO4: 0.02Gd3+的發(fā)射光譜(λex=365 nm)Fig.5 The excitation spectra of phosphor Ba1.3Ca0.65SiO4: 0.02Eu2+,0.03Mn2+ and emission spectra of Ba1.3Ca0.68SiO4:0.02Gd3+
從圖5可以看出:Ba1.3Ca0.68SiO4:0.02Gd3+熒光粉幾乎沒有發(fā)射光譜,不可能作為熒光粉的發(fā)光中心.且兩光譜幾乎沒有重疊,說明Gd3+不可能通過共振作用將其能量傳遞給Eu2+或Mn2+來提高其發(fā)光強度.敏化劑Gd3+在此熒光粉中的具體敏化過程還有待進(jìn)一步研究.
表1為365 nm激發(fā)下的Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+,xGd3+(x=0~6 %)熒光粉的光色參數(shù).制備的一系列熒光粉的色坐標(biāo)落在白光區(qū)域,如圖6所示.
表1 熒光粉Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+, xGd3+ (x=0~6 %)的光色參數(shù)Table 1 Light-color parameters of Ba1.3Ca0.65-xSiO4: 0.02Eu2+,0.03Mn2+,xGd3+(x=0~6 %) phosphors
圖6 熒光粉Ba1.3Ca0.65-xSiO4:0.02Eu2+, 0.03Mn2+,xGd3+的色坐標(biāo)Fig.6 Color coordinates of Ba1.3Ca0.65-xSiO4:0.02Eu2+, 0.03Mn2+,xGd3+ phosphors
該系列熒光粉色溫均低于5 660 K,呈暖白光(≤6 000 K),顯色指數(shù)在80以上,高于市場上采用“藍(lán)光芯片+YAG”組合的白光LED的顯色指數(shù)(低于78).且當(dāng)x=2 %時,熒光粉Ba1.3Ca0.63SiO4:0.02Eu2+,0.03Mn2+,0.02Gd3+的色坐標(biāo)CIE(0.343 1,0.331 8)最接近正白光CIE(0.333 3,0.333 3),且有較好的色溫Tc=5 010 K,顯色指數(shù)Ra=81.7.當(dāng)x=3 %時,Ba1.3Ca0.62SiO4:0.02Eu2+,0.03Mn2+,0.03Gd3+熒光粉有著較佳的色坐標(biāo)CIE(0.328 8,0.342 8)和色溫Tc=5 660 K,同時也具有高的顯色指數(shù)Ra=84.3,但其發(fā)射光譜強度較x=2 %的樣品低.綜合考慮,此系列最佳熒光粉為Ba1.3Ca0.63SiO4:0.02Eu2+,0.03Mn2+,0.02Gd3+.
高溫固相法制備了Gd3+敏化的Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+,xGd3+(x=0~6 %)系列單一基質(zhì)白光熒光粉.與熒光粉Ba1.3Ca0.65SiO4:0.02Eu2+,0.03Mn2+相比,敏化劑Gd3+的摻入明顯提高熒光粉的發(fā)射光譜強度,較佳摻雜摩爾分?jǐn)?shù)為x=2 %.發(fā)光特性較佳的Ba1.3Ca0.63SiO4:0.02Eu2+,0.03Mn2+,0.02Gd3+熒光粉的色坐標(biāo)CIE(0.343 1,0.331 8)與正白光CIE(0.333 3,0.333 3)相近,暖色溫Tc=5 010 K,顯色指數(shù)Ra=81.7,具有潛在的應(yīng)用前景.
參考文獻(xiàn):
[1] Zhang X M,Li W L,Seo H J.A Study of the Luminescence and Energy Transfer in Ba1.6Ca0.4P2O7Codoped with Eu2+and Mn2+[J].Phys.Status.Solidi A,2011,208(12):2819-2823.
[2] Wu L,Zhang Y,Gui M G,et al.Luminescence and Energy Transfer of a Color Tunable Phosphor:Dy3+-,Tm3+-,and Eu3+-coactivated KSr4(BO3)3for Warm White UV LEDs[J].J.Mater.Chem.,2012,22:6463-6470.
[3] Li G,Zhang Y,Geng D,et al.Single-composition Trichromatic White-emitting Ca4Y6(SiO4)6O:Ce3+/Mn2+/Tb3+Phosphor:Luminescence and Energy Transfer[J].Appl.Mater.Interfaces,2012,4(1):296-305.
[4] Guo N,Zheng Y H,Jia Y C,et al.Warm-white-emitting from Eu2+/Mn2+-Codoped Sr3Lu(PO4)3Phosphor with Tunable Color Tone and Correlated Color Temperature[J].J.Phys.Chem.C.,2012,116(1):1329-1334.
[5] Huang C H,Chan T S,Liu W R,et al.Crystal Structure of Blue-white-yellow Color-tunable Ca4Si2O7F2:Eu2+,Mn2+Phosphor and Investigation of Color Tunability through Energy Transfer for Single-phase White-light near-ultraviolet LEDs[J].J.Mater.Chem.,2012,22,20210-20216.
[6] Liu W R,Huang C H,Yeh C W,et al.A Study on the Luminescence and Energy Transfer of Single-phase and Color-tunable KCaY(PO4)2:Eu2+,Mn2+Phosphor for Application in White-light LEDs[J].Inorg.Chem.,2012,51(18):9636-9641.
[7] 陳永杰,李郎楷,肖林久,等.用一步法合成Ba0.905Ca0.845Mg0.25SiO4:xEu2+,yMn2+白光熒光粉及其發(fā)光性能[J].硅酸鹽學(xué)報,2011,39(6):908-912.
[8] 李郎楷,陳永杰,肖林久,等.白光LED用全色熒光粉BaMgSiO4:Eu2+,Mn2+的光譜性質(zhì)[J].材料導(dǎo)報,2010,24(11):55-57.
[9] Bandi V R,Nien Y T,Chen I G.Enhancement of White Light Emission from Novel Ca3Y2Si3O12:Dy3+Phosphors with Ce3+Ion Codoping[J].J.APPL.PHYS.,2010,108(2):23111-23114.
[10] Huang Z,Chen Y J,Chen L,et al.Fluorescence Improvement of Ba1.3Ca0.7SiO4:Eu2+,Mn2+Phosphors via Dy3+Addition and their Color-tunable Properties[J].Ceramics International,2013,39:2709-2714.
[11] Koo H Y,Han J M,Kang Y C,et al.Ca7.97-xMg(SiO4)4Cl2:Eu0.03,Dx(D=Y,Gd,Mn) Phosphor Particles Prepared by Spray Pyrolysis[J].Jpn J Appl Phys,2008,47(1):163-166.
[12] 陳永杰,黃志,李郎楷,等.單一基質(zhì)白光熒光粉Ba1.3Ca0.7SiO4的制備和發(fā)光特性[J].硅酸鹽學(xué)報,2011,39(9):1406-1410.
[13] Koichiro F,Masamichi I,Tomoyuki I.Crystal Structure and Structural Disorder of (Ba0.65Ca0.35)2SiO4[J].J Solid Chem,2007,180(8):2305-2309.