郭良棟,龐 豹,何希勤,賀建軍*2
(1.遼寧科技大學(xué) 理學(xué)院,遼寧 鞍山 114051;2.大連民族學(xué)院 信息與通信工程學(xué)院,遼寧 大連 116600)
近年來,人工神經(jīng)網(wǎng)絡(luò)被廣泛應(yīng)用于信號(hào)處理、模式識(shí)別、聯(lián)想記憶等諸多領(lǐng)域[1-3].在實(shí)際應(yīng)用中,一般要求設(shè)計(jì)的神經(jīng)網(wǎng)絡(luò)模型必須是穩(wěn)定的.而時(shí)滯的存在往往導(dǎo)致神經(jīng)網(wǎng)絡(luò)不穩(wěn)定.因此,時(shí)滯人工神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析已經(jīng)引起了國內(nèi)外眾多學(xué)者的極大關(guān)注,并得到了大量優(yōu)秀的成果[4-17].
為了降低穩(wěn)定性條件的保守性,文獻(xiàn)[4-6]利用積分不等式或積分等式方法,文獻(xiàn)[7]通過構(gòu)造新的Lyapunov-Krasovskii泛函,文獻(xiàn)[8-9]使用自由權(quán)矩陣的方法,文獻(xiàn)[10-11]運(yùn)用時(shí)滯分解方法并構(gòu)造新的Lyapunov-Krasovskii泛函,分別得到了一系列的穩(wěn)定性條件.但是,以上得到的結(jié)果仍有改進(jìn)的空間.如文獻(xiàn)[10-11]將時(shí)滯區(qū)間[0,d]分成若干相等的部分,對(duì)時(shí)滯信息的獲得有一定的保守性.
本文進(jìn)一步討論具有混合時(shí)滯的人工神經(jīng)網(wǎng)絡(luò)的指數(shù)穩(wěn)定性問題.通過將離散時(shí)滯區(qū)間[0,d]分成[0,d1]和[d1,d]兩段不等的區(qū)間(其中d1∈(0,d)),進(jìn)一步運(yùn)用積分不等式與改進(jìn)的凸優(yōu)化方法——倒數(shù)凸引理[12]來處理Lyapunov-Krasovskii泛函中的積分項(xiàng),以期克服相關(guān)文獻(xiàn)時(shí)滯分解方法的保守性.
考慮如下具有分布時(shí)滯的人工神經(jīng)網(wǎng)絡(luò):
其中:z(t)=(z1(t) …zn(t))T∈Rn,為神經(jīng)元 狀 態(tài) 向 量,g(z(t)) =(g1(z1(t)) …gn(zn(t)))T∈Rn,為神經(jīng)元激活函數(shù);u=(u1…un)T∈Rn,是常值輸入向量;C=diag{c1,…,cn}>0;A∈Rn×n,是連接權(quán)矩陣;B,D∈Rn×n是時(shí)滯連接權(quán)矩陣;d(t)、τ(t)為滿足0≤d(t)≤d,0≤τ(t)≤τ,(t)≤u的連續(xù)時(shí)變函數(shù),其中d、τ、u都是常數(shù).初始向量Φ(t)是有界的且在[-h(huán),0]上連續(xù)可微,其中h=max{d,τ}.神經(jīng)元激活函數(shù)gi(·)(i=1,2,…,n)滿足
根據(jù)Brouwer不動(dòng)點(diǎn)定理,神經(jīng)網(wǎng)絡(luò)(1)存在平衡點(diǎn).假定z*=(z*1…z*n)是神經(jīng)網(wǎng)絡(luò)(1)的一個(gè)平衡點(diǎn),由文獻(xiàn)[13]知該平衡點(diǎn)是唯一平衡點(diǎn).通過坐標(biāo)平移變換x(·)=z(·)-z*(·),系統(tǒng)(1)轉(zhuǎn)換為如下形式:
其 中x(t)=(x1(t) …xn(t))T,f(x(t))=(f1(x1(t)) …fn(xn(t)))T,fi(xi(t)) =gi(xi(t)+z*i)-gi(z*i)(i=1,2,…,n),且fi(0)=0(i=1,…,n).由不等式(3),可得
當(dāng)v=0時(shí),有
定義1 若變量k>0,β>0且滿足
則系統(tǒng)(4)是全局指數(shù)穩(wěn)定的.
引理1[14]對(duì)于任意正定矩陣Z∈Rn×n(Rn×n表示n×n的實(shí)矩陣),標(biāo)量h2>h1>0,有以下不等式成立:
引理2[12]設(shè)f1,f2,…,fN:RmaR 是定義在Rm(Rm表示m維Euclidean空間)的子集D上的正值,則關(guān)于fi的倒數(shù)凸組合,如果有
則滿足
引理3[15]以下不等式成立:
下面將給出一個(gè)基于時(shí)滯分段方法的具有更小保守性的指數(shù)穩(wěn)定性新判據(jù).為了描述方便,記
定理1 對(duì)于給定的常數(shù)d、d1、τ、u及指數(shù)衰減率k,對(duì)角矩陣ρp=diag{ρ-1,…,ρ-n},ρm=diag{ρ+1,…,ρ+n},系統(tǒng)(4)是全局指數(shù)穩(wěn)定的,如果 存 在 對(duì) 角 矩 陣K=diag{k1,…,kn},L=diag{l1,…,ln},Hi=diag{hi1,…,hin}(i=1,2,3),n維正定對(duì)稱矩陣P、Q、Q1、Q2、Q3、Q4、R1、R2、R3、Q11、Q22,n維的矩陣Q12、T1、T2,滿足下面的線性矩陣不等式
其中P≥(<)0表示P為半正定(負(fù)定)矩陣,
證明 構(gòu)造如下Lyapunov泛函:
其中
計(jì)算Vi(x(t))(i=1,…,5)的導(dǎo)數(shù),有
另外,由式(5)、(6)知,對(duì)任意的正定對(duì)角矩陣Hi=diag{hi1,…,hin}(i=1,2,3),有
注意到(t)≤u,利用式(8)~(10)以及引理2處理上述導(dǎo)數(shù)項(xiàng)中的積分項(xiàng),將代入所求得的導(dǎo)數(shù)中,得
當(dāng)時(shí)滯d(t)∈[0,d1]時(shí)
當(dāng)時(shí)滯d(t)∈[d1,d]時(shí)
因此,當(dāng)線性矩陣不等式(11)、(12)成立時(shí),(x(t))<0,則系統(tǒng)(4)是全局漸近穩(wěn)定的.
由(x(t))<0可得,V(x(t))≤V(x(0)).
又V(x(t))≥e2ktλmin(P)x(t)2,故x(t) ≤
由定義1可知,系統(tǒng)(4)是指數(shù)穩(wěn)定的,定理成立.證畢.
下面給出兩個(gè)數(shù)值實(shí)例說明定理所給條件的優(yōu)越性.
例1 考慮系統(tǒng)(4),其中
表1給出了當(dāng)指數(shù)衰減率k=0,u未知,d=τ時(shí),利用定理所得時(shí)滯上界與文獻(xiàn)[11,15-17]的比較,其中文獻(xiàn)[15-17]不劃分區(qū)間,文獻(xiàn)[11]均分區(qū)間,本文以d1=5.21劃分區(qū)間.由表1可以看出,定理所得結(jié)果具有更小的保守性.為了驗(yàn)證所得結(jié)果,取f(x(t)) =1.5cos2t,圖1為例1中系統(tǒng)的仿真曲線圖.由圖1可以看出,當(dāng)時(shí)間逐漸增加時(shí),狀態(tài)響應(yīng)曲線趨向于0.
表1 系統(tǒng)穩(wěn)定的最大時(shí)滯上界dTab.1 Allowable delay upper bound d
圖1 例1中x1(t)、x2(t)、x3(t)的狀態(tài)響應(yīng)曲線Fig.1 State responses curves of x1(t),x2(t)and x3(t)in Example 1
例2 考慮系統(tǒng)(4),其中
當(dāng)參數(shù)τ、u、d為變量時(shí),表2給出了由定理所得的最大指數(shù)衰減率與文獻(xiàn)[11,15,17]所得結(jié)果的比較.由表2可以看出,本文所得結(jié)果與上述文獻(xiàn)相比有了很大的提高,因此使得指數(shù)穩(wěn)定性結(jié)果具有更小的保守性.為了驗(yàn)證所得結(jié)果,取0.25sin2t,τ(t)=0.2cos2t,圖2即為例2中系統(tǒng)的狀態(tài)響應(yīng)曲線.由圖2可以看出,隨著時(shí)間的增加狀態(tài)響應(yīng)曲線也逐漸趨向于0.
表2 在不同的τ、u、d 下,系統(tǒng)穩(wěn)定的最大指數(shù)衰減率kTab.2 Allowable exponential convergence rate index k with differentτ,uand d
圖2 例2中x1(t)、x2(t)、x3(t)的狀態(tài)響應(yīng)曲線Fig.2 State responses curves of x1(t),x2(t)and x3(t)in Example 2
本文討論了具有分布時(shí)滯的人工神經(jīng)網(wǎng)絡(luò)的指數(shù)穩(wěn)定性問題.通過對(duì)時(shí)滯區(qū)間進(jìn)行不等分割并運(yùn)用倒數(shù)凸引理得到了基于線性矩陣不等式的全局指數(shù)穩(wěn)定性新判據(jù).數(shù)值實(shí)例說明了所得結(jié)果的有效性與更小的保守性.在后續(xù)的研究中,將討論將時(shí)滯區(qū)間分為不等的3個(gè)子區(qū)間時(shí),對(duì)神經(jīng)網(wǎng)絡(luò)穩(wěn)定性的影響.
[1] Wong K B,Selvi Y.Neural network applications in finance:A review and analysis of literature(1990-1996)[J].Information & Management,1998,34(3):129-139.
[2] Joya G,Atencia M A,Sandoval F.Hopfield neural networks for optimization:study of the different dynamics[J].Neurocomputing,2002,43(1-4):219-237.
[3] LIU Yu-rong,WANG Zi-dong,Serrano A,etal.Discrete-time recurrent neural networks with timevarying delays:exponential stability analysis [J].Physics Letters A,2007,362(5-6):480-488.
[4] ZHANG Huang-guang,WANG Zhan-shan,LIU De-rong.Global asymptotic stability of recurrent neural networks with multiple time-varying delays[J].IEEE Transactions on Neural Networks,2008,19(5):855-873.
[5] WANG Zi-dong,LIU Yu-rong,F(xiàn)raser K,etal.Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays[J].Physics Letters A,2006,354(4):288-297.
[6] GUO Liang-dong,GU Hong,WANG Zhe-long,etal.An improved delay-range-dependent robust stability criterion for uncertain stochastic Hopfield neural networks with mixed delays [J].ICIC Express Letters,Part B:Applications,2011,3(2):735-741.
[7] HUA Chang-chun,LONG Cheng-nian,GUAN Xin-ping.New results on stability analysis of neural networks with time-varying delays [J].Physics Letters A,2006,352(4-5):335-340.
[8] HE Yong,LIU Guo-ping,Rees D.New delaydependent stability criteria for neural networks with time-varying delay [J].IEEE Transactions on Neural Networks,2007,18(1):310-314.
[9] HE Yong,LIU Guo-ping,Rees D,etal.Stability analysis for neural networks with time-varying interval delay [J].IEEE Transactions on Neural Networks,2007,18(6):1850-1854.
[10] MOU Shao-shuai,GAO Hui-jun,QIANG Wen-yi,etal.New delay-dependent exponential stability for neural networks with time delay [J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,2008,38(2):571-576.
[11] TIAN Jun-kang,ZHONG Shou-ming,WANG Yong.Improved exponential stability criteria for neural networks with time-varying delays [J].Neurocomputing,2012,97(15):164-173.
[12] Park P,Ko J W,Jeong C.Reciprocally convex approach to stability of systems with time-varying delays[J].Automatica,2011,47(1):235-238.
[13] XU Sheng-yuan,Lam J,Ho D W C,etal.Novel global asymptotic stability criteria for delayed cellular neural networks[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2005,52(6):349-353.
[14] GU Ke-qin.An integral inequality in the stability problem of time delay systems[C]//Proceedings of the IEEE Conference on Decision and Control.Sydney:Institute of Electrical and Electronics Engineers Inc.,2000:2805-2810.
[15] ZHU Xun-lin,WANG You-yi.Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays [J].Physics Letters A,2009,373(44):4066-4072.
[16] SONG Qian-kun,WANG Zi-dong.Neural networks with discrete and distributed time-varying delays:a general stability analysis [J].Chaos,Solitons &Fractals,2008,37(5):1538-1547.
[17] LI Tao,LUO Qi,SUN Chang-yin,etal.Exponential stability of recurrent neural networks with time-varying discrete and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(4):2581-2589.