艾 靜 王承黨
福建醫(yī)科大學(xué)附屬第一醫(yī)院消化內(nèi)科 福建醫(yī)科大學(xué)消化疾病研究室(350005)
炎癥性腸病(IBD)包括克羅恩病(CD)和潰瘍性結(jié)腸炎(UC),目前認(rèn)為腸道菌群紊亂、細(xì)菌代謝產(chǎn)物改變、腸道免疫功能異常等因素在IBD的發(fā)病機(jī)制中發(fā)揮重要作用。丁酸鹽是腸道細(xì)菌的代謝產(chǎn)物,其在IBD中的作用備受關(guān)注。本文就丁酸鹽與IBD的研究進(jìn)展作一綜述。
丁酸鹽是含四個(gè)碳原子的短鏈脂肪酸(short chain fatty acid, SCFA),腸腔內(nèi)的丁酸鹽主要來(lái)自腸道細(xì)菌分解膳食纖維,如低聚果糖、大麥、淀粉、燕麥糠等[1-3]。Cummings等[4]通過(guò)尸檢發(fā)現(xiàn)SCFA在盲腸、升結(jié)腸、降結(jié)腸、乙狀結(jié)腸中的含量分別為(131±9) mmol/kg、(123±12) mmol/kg、(80±17) mmol/kg、(100±30) mmol/kg,其中乙酸鹽、丙酸鹽、丁酸鹽的含量比約為57∶22∶21,SCFA含量從右半結(jié)腸至左半結(jié)腸逐漸降低,可能與右半結(jié)腸pH值低于左半結(jié)腸有關(guān)。鑒于活體測(cè)定腸腔中丁酸鹽含量較困難,Hallert等[3]利用氣相色譜法測(cè)定糞便中丁酸鹽,以評(píng)估其在腸腔內(nèi)含量,結(jié)果顯示每克糞便含丁酸鹽約11 mmol,乙酸鹽、丙酸鹽、丁酸鹽比例約為47∶11∶12。丁酸鹽在結(jié)腸內(nèi)主要通過(guò)非離子擴(kuò)散和載體介導(dǎo)(如單羧酸轉(zhuǎn)運(yùn)體蛋白1)進(jìn)入細(xì)胞,載體介導(dǎo)轉(zhuǎn)運(yùn)具有pH值、時(shí)間、濃度依賴性[5-6]。丁酸鹽在腸腔中的作用主要有:①提供結(jié)腸黏膜細(xì)胞70%以上的能量;②促進(jìn)腸腔內(nèi)鈉、鉀、水吸收;③抑制結(jié)腸癌細(xì)胞生長(zhǎng);④增加抗氧化物質(zhì)谷胱甘肽表達(dá),降低過(guò)氧化物酶、環(huán)氧合酶(COX)表達(dá),減輕炎癥反應(yīng);⑤調(diào)節(jié)腸道神經(jīng),降低內(nèi)臟敏感性[7];⑥抑制組蛋白去乙?;秃艘蜃?NF)-κB活化,保護(hù)腸黏膜屏障[1]。此外,丁酸鹽還可改善肥胖、抑制胰島素抵抗、降低膽固醇合成、預(yù)防心腦血管疾病、改善腦缺血性疾病預(yù)后、提高記憶力等[8]。
Paturi等[9]采用氣相色譜法分析顯示,IBD小鼠腸腔中丁酸鹽含量較正常小鼠顯著降低,口服藍(lán)莓和西蘭花可增加丁酸鹽含量,改善腸道炎癥。研究[10-11]顯示,丁酸鹽與美沙拉秦聯(lián)合應(yīng)用治療輕中度UC,可提高美沙拉秦療效。丁酸鹽與5-氨基水楊酸聯(lián)合治療對(duì)激素、5-氨基水楊酸耐藥的遠(yuǎn)端UC,可誘導(dǎo)UC癥狀緩解,患者排便次數(shù)、臨床評(píng)分、對(duì)治療效果滿意程度均優(yōu)于單用5-氨基水楊酸。IBD不僅表現(xiàn)為腸腔內(nèi)丁酸鹽含量下降,亦有研究[12]認(rèn)為,IBD患者氧化丁酸鹽的能力下降,丁酸鹽的生理作用在體內(nèi)未充分發(fā)揮。
1. 丁酸鹽與腸道黏膜屏障:腸道黏液層主要由黏蛋白2(MUC2)、三葉因子3(TFF3)、分泌型IgA等物質(zhì)組成,是保護(hù)腸道上皮細(xì)胞的重要防線。在三硝基苯磺酸(TNBS)誘導(dǎo)結(jié)腸炎模型小鼠體內(nèi),給予丁酸鹽可上調(diào)TFF3的表達(dá),促進(jìn)腸黏膜修復(fù),減輕炎癥程度[13]。在葡聚糖硫酸鈉(DSS)誘導(dǎo)BALB/c小鼠結(jié)腸炎模型和重癥聯(lián)合免疫缺陷(SCID)結(jié)腸炎模型小鼠體內(nèi),MUC2表達(dá)抑制,而給予酪丁酸梭菌產(chǎn)生丁酸鹽可促進(jìn)MUC2表達(dá)[14]。然而,另一項(xiàng)研究[15]顯示,對(duì)UC緩解期患者進(jìn)行丁酸鹽灌腸治療,并不能改變腸黏膜中MUC2、TFF3、分泌型IgA的表達(dá)水平。相關(guān)結(jié)論有待進(jìn)一步研究。
腸上皮細(xì)胞間存在穿膜蛋白和胞質(zhì)外周蛋白維持細(xì)胞間緊密連接,穿膜蛋白包括閉合蛋白、封閉蛋白等,胞質(zhì)外周蛋白包括ZO家族、PDZ蛋白等。Peng等[16]的研究顯示,丁酸鹽可通過(guò)活化結(jié)腸癌Caco-2細(xì)胞中的腺苷酸活化蛋白激酶,增加閉合蛋白、封閉蛋白1、封閉蛋白4、ZO-1蛋白在細(xì)胞膜的合成。Wang等[17]的研究發(fā)現(xiàn),丁酸鹽可通過(guò)活化轉(zhuǎn)錄因子SP1,促進(jìn)封閉蛋白1表達(dá)。Peng等[18]的研究顯示,丁酸鹽對(duì)腸黏膜屏障的作用呈劑量依賴性,低濃度丁酸鹽對(duì)腸黏膜屏障具有保護(hù)作用,而高濃度丁酸鹽促進(jìn)上皮細(xì)胞凋亡、抑制細(xì)胞增殖,破壞腸黏膜屏障。
2. 丁酸鹽與炎性因子:Segain等[19]和Tedelind等[20]對(duì)IBD患者的腸黏膜、外周血單核細(xì)胞、中性粒細(xì)胞研究發(fā)現(xiàn),丁酸鹽可通過(guò)抑制NF-κB的抑制蛋白Iκβα降解,從而使COX-2、細(xì)胞間黏附分子-1(ICAM)-1、腫瘤壞死因子(TNF)-α、白細(xì)胞介素(IL)-1β、IL-6等炎性因子表達(dá)下降。Weng等[21]的研究發(fā)現(xiàn),丁酸鹽抑制促炎因子IL-8分泌與Iκβα無(wú)關(guān),而與鋅指蛋白A20表達(dá)相關(guān)。Klampfer等[22]的研究顯示,丁酸鹽可抑制干擾素(IFN)-γ對(duì)轉(zhuǎn)錄激活因子STAT1酪氨酸/絲氨酸磷酸化,從而對(duì)腸道黏膜炎癥起負(fù)向調(diào)節(jié)作用。Malago等[23]的研究發(fā)現(xiàn),低劑量丁酸鹽通過(guò)抑制組蛋白去乙?;种艭aco-2 細(xì)胞分泌IL-8,而高劑量丁酸鹽通過(guò)抑制熱休克蛋白Hsp70促進(jìn)IL-8分泌。Di Sabatino等[24]對(duì)輕中度CD患者的研究顯示,給予患者丁酸鹽(4 g/d)治療8周后,內(nèi)鏡和組織學(xué)炎癥評(píng)分、紅細(xì)胞沉降率、外周血白細(xì)胞計(jì)數(shù)、黏膜IL-1β和NF-κB表達(dá)水平均較治療前顯著下降。上述研究證實(shí)丁酸鹽可抑制炎性因子分泌,緩解IBD相關(guān)癥狀,作用效應(yīng)可能與其劑量相關(guān)。
3. 丁酸鹽與IBD相關(guān)結(jié)直腸癌:結(jié)直腸癌變是IBD的并發(fā)癥,與患者發(fā)病年齡、病程長(zhǎng)短、炎癥程度有關(guān)。Peyrin-Biroulet等[25]的研究顯示,IBD相關(guān)結(jié)直腸癌與散發(fā)性結(jié)直腸癌相比,發(fā)病年齡提早(56.9歲對(duì)70.9歲)、5年生存率降低(41.3%對(duì)51.9%)。IBD癌變機(jī)制可能與遺傳信息、炎性因子、氧化應(yīng)激、腸黏膜屏障破壞等因素有關(guān)[26]。Daroqui等[27]的研究顯示,丁酸鹽可通過(guò)改變?nèi)旧w結(jié)構(gòu)、修飾組蛋白,抑制人結(jié)腸癌細(xì)胞中原癌基因c-myc、細(xì)胞周期蛋白D1轉(zhuǎn)錄和表達(dá),促進(jìn)癌細(xì)胞凋亡。COX-2/前列腺素E2(PGE2)通路在腫瘤的發(fā)生、發(fā)展過(guò)程中發(fā)揮重要作用,參與腫瘤細(xì)胞增殖、凋亡逃逸、血管再生等過(guò)程[28-29]。Jahns等[30]的研究發(fā)現(xiàn),丁酸鹽可抑制結(jié)直腸癌組織COX-2基因表達(dá)及其蛋白活性。Wang等[31]的研究顯示,將人結(jié)腸癌細(xì)胞株HT-29培養(yǎng)于含丁酸鹽的培養(yǎng)基24 h后,細(xì)胞凋亡數(shù)量增加,丁酸鹽通過(guò)激活caspase-9、caspase-3誘導(dǎo)細(xì)胞凋亡。此外,Ruemmele等[32]的研究發(fā)現(xiàn),丁酸鹽可上調(diào)促凋亡基因BAK表達(dá),激活線粒體途徑誘導(dǎo)細(xì)胞凋亡。Yu等[33]對(duì)結(jié)直腸癌細(xì)胞研究發(fā)現(xiàn),丁酸鹽可抑制血管內(nèi)皮生長(zhǎng)因子及其受體神經(jīng)纖毛蛋白-1表達(dá),從而抑制腫瘤細(xì)胞增殖和遷移。
丁酸鹽作為細(xì)菌代謝產(chǎn)物,可抑制腸道炎癥、預(yù)防癌變、改善IBD病情。然而,丁酸鹽具有雙重效應(yīng),高濃度可破壞腸道黏膜、促進(jìn)炎癥反應(yīng)。因此,未來(lái)需對(duì)丁酸鹽治療IBD的劑量以及如何確保病變部位丁酸鹽濃度等問(wèn)題進(jìn)一步探索,以期為臨床治療IBD提供一種新方法。
1 Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function[J]. Aliment Pharmacol Ther, 2008, 27 (2): 104-119.
2 Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics[J]. J Clin Gastroenterol, 2011, 45 Suppl: S120-S127.
3 Hallert C, Bj?rck I, Nyman M, et al. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study[J]. Inflamm Bowel Dis, 2003, 9 (2): 116-121.
4 Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28 (10): 1221-1227.
5 Hadjiagapiou C, Schmidt L, Dudeja PK, et al. Mecha-nism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 279 (4): G775-G780.
6 Stein J, Zores M, Schr?der O. Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism[J]. Eur J Nutr, 2000, 39 (3): 121-125.
7 Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function[J]. Curr Opin Clin Nutr Metab Care, 2012, 15 (5): 474-479.
8 Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice[J]. Clin Epigenetics, 2012, 4 (1): 4.
9 Paturi G, Mandimika T, Butts CA, et al. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a(-/-) mice, a model of inflammatory bowel diseases[J]. Nutrition, 2012, 28 (3): 324-330.
10 Vernia P, Monteleone G, Grandinetti G, et al. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: randomized, double-blind, placebo-controlled pilot study[J]. Dig Dis Sci, 2000, 45 (5): 976-981.
11 Vernia P, Annese V, Bresci G, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial[J]. Eur J Clin Invest, 2003, 33 (3): 244-248.
12 Adenis A, Colombel JF, Lecouffe P, et al. Increased pulmonary and intestinal permeability in Crohn’s disease[J]. Gut, 1992, 33 (5): 678-682.
13 Song M, Xia B, Li J. Effects of topical treatment of sodium butyrate and 5-aminosalicylic acid on expression of trefoil factor 3, interleukin 1beta, and nuclear factor kappaB in trinitrobenzene sulphonic acid induced colitis in rats[J]. Postgrad Med J, 2006, 82 (964): 130-135.
14 Hudcovic T, Kolinska J, Klepetar J, et al. Protective effect ofClostridiumtyrobutyricumin acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice[J]. Clin Exp Immunol, 2012, 167 (2): 356-365.
15 Hamer HM, Jonkers DM, Renes IB, et al. Butyrate enemas do not affect human colonic MUC2 and TFF3 expression[J]. Eur J Gastroenterol Hepatol, 2010, 22 (9): 1134-1140.
16 Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers[J]. J Nutr, 2009, 139 (9): 1619-1625.
17 Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57 (12): 3126-3135.
18 Peng L, He Z, Chen W, et al. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier[J]. Pediatr Res, 2007, 61 (1): 37-41.
19 Segain JP, Raingeard de la Blétière D, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease[J]. Gut, 2000, 47 (3): 397-403.
20 Tedelind S, Westberg F, Kjerrulf M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease[J]. World J Gastroenterol, 2007, 13 (20): 2826-2832.
21 Weng M, Walker WA, Sanderson IR. Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia[J]. Pediatr Res, 2007, 62 (5): 542-546.
22 Klampfer L, Huang J, Sasazuki T, et al. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate[J]. Mol Cancer Res, 2003, 1 (11): 855-862.
23 Malago JJ, Koninkx JF, Tooten PC, et al. Anti-inflammatory properties of heat shock protein 70 and butyrate onSalmonella-induced interleukin-8 secretion in enterocyte-like Caco-2 cells[J]. Clin Exp Immunol, 2005, 141 (1): 62-71.
24 Di Sabatino A, Morera R, Ciccocioppo R, et al. Oral butyrate for mildly to moderately active Crohn’s disease[J]. Aliment Pharmacol Ther, 2005, 22 (9): 789-794.
25 Peyrin-Biroulet L, Lepage C, Jooste V, et al. Colorectal cancer in inflammatory bowel diseases: a population-based study (1976-2008) [J]. Inflamm Bowel Dis, 2012, 18 (12): 2247-2251.
26 Azer SA. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development[J]. Eur J Gastroenterol Hepatol, 2013, 25 (3): 271-281.
27 Daroqui MC, Augenlicht LH. Transcriptional attenuation in colon carcinoma cells in response to butyrate[J]. Cancer Prev Res (Phila), 2010, 3 (10): 1292-1302.
28 Kraus S, Arber N. Inflammation and colorectal cancer[J]. Curr Opin Pharmacol, 2009, 9 (4): 405-410.
29 Greenhough A, Smartt HJ, Moore AE, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment[J]. Carcinogenesis, 2009, 30 (3): 377-386.
30 Jahns F, Wilhelm A, Jablonowski N, et al. Butyrate suppresses mRNA increase of osteopontin and cyclo-oxygenase-2 in human colon tumor tissue[J]. Carcinogenesis, 2011, 32 (6): 913-920.
31 Wang L, Luo HS, Xia H. Sodium butyrate induces human colon carcinoma HT-29 cell apoptosis through a mitochondrial pathway[J]. J Int Med Res, 2009, 37 (3): 803-811.
32 Ruemmele FM, Dionne S, Qureshi I, et al. Butyrate mediates Caco-2 cell apoptosis via up-regulation of pro-apoptotic BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP) [J]. Cell Death Differ, 1999, 6 (8): 729-735.
33 Yu DC, Waby JS, Chirakkal H, et al. Butyrate suppresses expression of neuropilin Ⅰ in colorectal cell lines through inhibition of Sp1 transactivation[J]. Mol Cancer, 2010, 9: 276.