何樺趙祝香張穎
骨髓間充質(zhì)干細(xì)胞移植在肺氣腫大鼠模型肺組織內(nèi)定植研究*
何樺①趙祝香①張穎①
目的:觀察骨髓間充質(zhì)干細(xì)胞移植在肺氣腫大鼠模型肺組織內(nèi)的定植情況。方法:選擇健康SD大鼠34只,按隨機(jī)數(shù)字表法分為MSCs干預(yù)組(A組,10只,慢阻肺大鼠,尾靜脈輸注MSC 1×106個(gè)/mL),肺氣腫模型組(B組,10只,慢阻肺大鼠,尾靜脈輸注等體積PBS)及MSC對(duì)照組(C組,10只,正常大鼠,尾靜脈輸注MSCs 1×106個(gè)/mL),正常對(duì)照組(D組,4只,正常大鼠,尾靜脈輸注等體積PBS),采用煙熏法復(fù)制大鼠肺氣腫模型。全骨髓培養(yǎng)法體外培養(yǎng)擴(kuò)增雄性SD大鼠來源的MSCs,經(jīng)GFP標(biāo)記細(xì)胞后將其經(jīng)尾靜脈注入肺氣腫模型SD大鼠體內(nèi),24 h內(nèi)處死大鼠,取肺組織迅速冰凍切片,共聚焦激光顯微鏡下觀察觀察轉(zhuǎn)染GPF的間充質(zhì)干細(xì)胞在大鼠肺內(nèi)定植情況。結(jié)果:成功培養(yǎng)具有分化潛能的骨髓間充質(zhì)干細(xì)胞,MSCs傳至第4代時(shí)有99.5%表達(dá)CD44、99.6%表達(dá)CD29等間充質(zhì)干細(xì)胞表面標(biāo)志,僅有0.4%表達(dá)CD34、1.0%表達(dá)CD45單核細(xì)胞以及造血干細(xì)胞表型;成功復(fù)制大鼠肺氣腫模型,香煙煙霧暴露組(A、B組)平均肺泡間隔為(119.0±26.2)μm,高于對(duì)照組(C、D組)的(89.8±17.3)μm,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);平均肺泡數(shù)為(173.9±68.3)個(gè)/mm2低于對(duì)照組的(280.3±104.0)個(gè)/mm2,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);顯微共聚焦發(fā)現(xiàn)MSCs經(jīng)尾靜脈注入大鼠體內(nèi)24 h后可見A組大鼠肺組織內(nèi)轉(zhuǎn)染綠色熒光蛋白質(zhì)粒的MSCs,而B組、C組及D組均未見轉(zhuǎn)染熒光。結(jié)論:骨髓間充質(zhì)干細(xì)胞經(jīng)尾靜脈輸注入后可在肺氣腫模型大鼠肺內(nèi)定植,為MSCs治療慢阻肺可能提供理論依據(jù)。
骨髓間充質(zhì)干細(xì)胞; 肺氣腫; 移植
慢性阻塞性肺疾?。璺?,COPD)嚴(yán)重影響人類健康,與慢性支氣管炎及阻塞性肺氣腫密切相關(guān),而阻塞性肺氣腫可出現(xiàn)肺泡、支氣管上皮細(xì)胞的損傷,造成肺實(shí)質(zhì)結(jié)構(gòu)的破壞,且隨著病情進(jìn)展,肺功能進(jìn)行性下降。現(xiàn)行的內(nèi)科治療手段是盡早去除致病因素,最大限度減少損傷細(xì)胞的數(shù)量及損傷程度,但往往無滿意的療效。肺移植是目前終末期間質(zhì)性肺疾病、慢阻肺患者唯一有效的治療方法,但由于存在供體數(shù)量的下降、免疫排斥反應(yīng)等問題而限制了其應(yīng)用。目前人民迫切尋求一種新的、組織替代療法來治療這類不可逆的肺部疾病。骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)由于來源方便、分離簡(jiǎn)單、擴(kuò)增迅速,可以取材于患者本人,傳代擴(kuò)增并定向誘導(dǎo)為特異細(xì)胞后,回輸給患者本人,安全性高,免疫原性低,且具有多向分化潛能引起廣泛的關(guān)注,被認(rèn)為是細(xì)胞移植和組織工程的種子細(xì)胞[1-3]。本實(shí)驗(yàn)將骨髓間充質(zhì)干細(xì)胞(MSCs)經(jīng)尾靜脈注入肺氣腫大鼠體內(nèi),觀察MSCs植入大鼠體內(nèi)后在肺組織中的存活,為MSCs治療慢阻肺提供實(shí)驗(yàn)依據(jù)。
1.1 大鼠MSCs的體外分離與鑒定 (1)MSCs的分離與培養(yǎng):無菌條件下取出大鼠雙側(cè)股骨和脛骨,無菌PBS沖洗骨髓腔獲取骨單細(xì)胞懸液,將單細(xì)胞懸液1000 r/min,離心5 min,10%胎牛血清的DMEM培養(yǎng)液5 mL重懸細(xì)胞,接種于培養(yǎng)瓶37 ℃、5% CO2培養(yǎng)箱培,每3天換液一次。倒置相差顯微鏡逐日觀察并記錄的形態(tài)及生長情況,當(dāng)細(xì)胞融合達(dá)90%時(shí),按1∶3比例傳代培養(yǎng)。取第4代MSCs進(jìn)行鑒定。(2)流式細(xì)胞儀檢測(cè)細(xì)胞CD表型:取第3 代MSCs,生長至90%融合時(shí)PBS洗滌2次,1×106的MSCs重懸于含0.1 mL PBS的PE管中,各管加入CD34、CD45、CD44及CD29,加入抗兔FITC,室溫孵育40 min,流式細(xì)胞儀檢測(cè)上述細(xì)胞表型,陰性對(duì)照為未加熒光抗體的MSCs細(xì)胞懸液。
1.2 移植MSCs的培養(yǎng)、標(biāo)記 取6孔培養(yǎng)板,向每孔中加入2 mL含(1~2)×105個(gè)細(xì)胞培養(yǎng)液,37 ℃ 5% CO2培養(yǎng)至40%~50%匯合時(shí)轉(zhuǎn)染(匯合過度,不利于轉(zhuǎn)染細(xì)胞)。PBS洗細(xì)胞,10% FBS的DMEM/F12繼續(xù)培養(yǎng),72 h后熒光顯微鏡下觀察轉(zhuǎn)染細(xì)胞的綠色熒光,棄病毒混合培養(yǎng)液,流式細(xì)胞儀檢測(cè)轉(zhuǎn)染效率,轉(zhuǎn)染后攜帶GFP的MSCs(GFP-MSCs)按1:3傳代培養(yǎng),取第4代MSCs進(jìn)行鑒定。
1.3 實(shí)驗(yàn)動(dòng)物分組及大鼠肺氣腫模型建立 SD大鼠34只按隨機(jī)數(shù)字表分為四組,MSCs干預(yù)組(A組,10只,慢阻肺大鼠,尾靜脈輸注MSCs 1×106個(gè)/mL),肺氣腫模型組(B組,10只,慢阻肺大鼠,尾靜脈輸注等體積PBS)及MSCs對(duì)照組(C組,10只,正常大鼠,尾靜脈輸注MSCs 1×106個(gè)/mL),正常對(duì)照組(D組,4只,正常大鼠,尾靜脈輸注等體積PBS)。采用煙熏法復(fù)制大鼠肺氣腫模型。將A、B組大鼠置于煙室內(nèi),采用靜式吸入染毒方法,10支椰樹牌香煙置于吸煙孔內(nèi),點(diǎn)燃香煙,每支香煙每分鐘吸一次,35 mL/次,收集主流煙氣和側(cè)流煙氣,通過塑料軟管與熏煙箱相連,將煙霧導(dǎo)入熏煙箱。其間,每隔5秒將箱內(nèi)流風(fēng)機(jī)開啟10 s,使箱內(nèi)氣體分布均勻。8 min香煙點(diǎn)燃完畢,關(guān)閉吸煙系統(tǒng)。動(dòng)物每次暴露45 min,45 min后取出動(dòng)物,清洗熏煙箱。2次/d,共12周。煙霧暴露時(shí)動(dòng)物可在箱內(nèi)自由取食飲水。按上述方法將MSCs干預(yù)組第3代的轉(zhuǎn)染GFP質(zhì)粒的間充質(zhì)干細(xì)胞(每只1×106個(gè)/mL)尾靜脈注入A組大鼠體內(nèi),B組注入等體積PBS;C組在相同時(shí)間內(nèi)注入1×106個(gè)/mL骨髓間充質(zhì)干細(xì)胞等,D組注入等體積PBS,注入后24 h內(nèi)處死大鼠,取肺組織迅速冰凍切片,共聚焦激光顯微鏡下觀察觀察轉(zhuǎn)染GPF的間充質(zhì)干細(xì)胞在大鼠肺內(nèi)定植情況。第3代的轉(zhuǎn)染GFP質(zhì)粒的間充質(zhì)干細(xì)胞(每只1×106)進(jìn)行下一步實(shí)驗(yàn)。
1.4 統(tǒng)計(jì)學(xué)處理 采用SPSS 12.0統(tǒng)計(jì)學(xué)軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料以(±s)表示,比較采用單因素方差分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 MSCs培養(yǎng)與鑒定 原代培養(yǎng)的MSCs第24小時(shí)即可見梭形細(xì)胞貼壁生長,到第6天時(shí)有大量梭形細(xì)胞呈克隆生長,第10天左右細(xì)胞可長滿皿底。細(xì)胞長滿后與成體MSCs相似,呈旋渦狀(圖1)。按1:3進(jìn)行傳代培養(yǎng),細(xì)胞在體外培養(yǎng)可穩(wěn)定傳至48代,在第4代做流式細(xì)胞表型鑒定,符合目前公認(rèn)間充質(zhì)干細(xì)胞細(xì)胞表型標(biāo)志。經(jīng)流式細(xì)胞儀檢測(cè),分離細(xì)胞傳至第4代時(shí)有99.5%表達(dá)CD44、99.6%表達(dá)CD29等間充質(zhì)干細(xì)胞表面標(biāo)志,0.4%表達(dá)CD34、1.0%表達(dá)CD45單核細(xì)胞以及造血干細(xì)胞表型(圖2)。
圖1 MSCs的原代培養(yǎng)(×400)
圖2 間充質(zhì)干細(xì)胞表面標(biāo)志的表達(dá)
2.2 SD大鼠肺氣腫模型的建立 香煙煙霧暴露后A、B組大鼠小氣道上皮呈鋸齒狀增生增厚,上皮脫落,纖毛倒伏,氣管內(nèi)見大量炎性滲出物,管壁結(jié)締組織增生,可見炎性細(xì)胞,及淋巴小結(jié)。肺泡結(jié)構(gòu)紊亂,肺泡壁斷裂,肺泡腔擴(kuò)大,部分融合成肺大皰(圖3A)。C、D對(duì)照組大鼠小氣道黏膜上皮完整,纖毛未見黏連脫落,管壁規(guī)整未見增厚,未見炎細(xì)胞浸潤,管腔內(nèi)未見炎性滲出物,肺泡腔未見病理性擴(kuò)大(圖3B)。
香煙煙霧暴露組(A、B組)平均肺泡間隔為(119.0±26.2)μm,高于對(duì)照組(C、D組)的(89.8±17.3)μm,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);平均肺泡數(shù)為(173.9±68.3)個(gè)/mm2低于對(duì)照組的(280.3±104.0)個(gè)/mm2,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見表1。
表1 大鼠肺組織病理學(xué)改變情況(±s)
表1 大鼠肺組織病理學(xué)改變情況(±s)
肺泡數(shù)(個(gè)/mm2)組別 支氣管數(shù)(只)平均肺泡間隔(μm)對(duì)照組(n=14) 27 89.8±17.3 280.3±104.0香煙組(n=20) 28 119.0±26.2 173.86±68.3 F值 - 3.8 4.7 P值 - <0.01 <0.01
2.3 各組轉(zhuǎn)染GPF綠色熒光蛋白的表達(dá) 取第8代培養(yǎng)的間充質(zhì)干細(xì)胞,調(diào)整合適的間充質(zhì)干細(xì)胞培養(yǎng)密度,細(xì)胞融合40%~5%時(shí)轉(zhuǎn)染GPF綠色熒光蛋白質(zhì)粒,24 h后觀察轉(zhuǎn)染效果,在轉(zhuǎn)染GPF綠色熒光蛋白質(zhì)粒后48~96 h表達(dá)效果最好,質(zhì)粒發(fā)光強(qiáng)度大、數(shù)量多,效率可達(dá)40%左右。微共聚焦發(fā)現(xiàn)MSCs經(jīng)尾靜脈注入大鼠體內(nèi)24 h后,A組大鼠肺組織內(nèi)可見攜帶MSCs的綠色熒光,而B組、C組及D組均未見轉(zhuǎn)染熒光(圖4)。
圖3 大鼠肺組織病理形態(tài)(HE×100)
圖4 間充質(zhì)干細(xì)胞轉(zhuǎn)染GFP質(zhì)粒及大鼠肺氣腫模型肺內(nèi)定植(×200)
慢阻肺是一種全球性患病率較高的疾病,40歲以上人群,慢阻肺患病率為8.2%[5]。其患病率之高十分驚人,死亡率高,目前居全球死亡原因的第4位,經(jīng)濟(jì)負(fù)擔(dān)重,已成為世界第5大負(fù)擔(dān)的疾病,由于慢阻肺的發(fā)病機(jī)制復(fù)雜,病理改變可引起氣道結(jié)構(gòu)重塑、肺泡結(jié)構(gòu)破壞及肺血管減少,依靠機(jī)體的自我再生能力無法達(dá)到完全的修復(fù),導(dǎo)致病情進(jìn)行性進(jìn)展。目前慢阻肺的內(nèi)科治療以抗炎、擴(kuò)張支氣管、氧療、呼吸運(yùn)動(dòng)鍛煉及增強(qiáng)免疫力等來緩解患者癥狀及降低患者未來健康惡化的風(fēng)險(xiǎn),其作用非常有限,外科肺減容術(shù)及經(jīng)纖支鏡肺減容術(shù)等治療目的在于緩解癥狀和改善生活質(zhì)量,二者均不能阻止病情的進(jìn)行性發(fā)展。因此,如能尋找到一種有效修復(fù)氣道及肺部組織結(jié)構(gòu),從而恢復(fù)肺功能的方法,將在慢阻肺的治療上將具有里程碑式的意義。
骨髓間充質(zhì)干細(xì)胞是一類具有自我更新和多向分化潛能的成體干細(xì)胞。在一定條件下它可分化為心肌細(xì)胞、支氣管上皮細(xì)胞、肺泡上皮細(xì)胞等多個(gè)胚層來源的細(xì)胞[6-8]。而且骨髓間充質(zhì)干細(xì)胞在體外易于分離、培養(yǎng)和擴(kuò)增,免疫原性低,使其在組織工程、細(xì)胞移植、基因治療等領(lǐng)域具有十分廣闊的應(yīng)用前景[1]。近年來許多研究表明,干細(xì)胞移植可能為某些肺部疾病的治療帶來新希望[9-13]。1995年P(guān)ereira等[14]從表達(dá)人小基因膠原酶I的轉(zhuǎn)基因鼠中分離獲得成年骨髓間充質(zhì)干細(xì)胞,體外擴(kuò)增、培養(yǎng),再通過尾靜脈注射入受致死劑量照射的小鼠中,1~5個(gè)月后,發(fā)現(xiàn)肺實(shí)質(zhì)、骨、軟骨細(xì)胞中都含有膠原酶I陽性的細(xì)胞,骨髓來源干細(xì)胞移植移植到博萊霉素肺纖維化小鼠體內(nèi),可產(chǎn)生肺泡I型細(xì)胞,并使其肺纖維化程度得到改善。目前MSCs在肺部疾病治療研究主要集中于急性肺損傷與肺間質(zhì)纖維化,在慢阻肺中的研究較少,骨髓間充質(zhì)干細(xì)胞是否在慢阻肺大鼠體內(nèi)定植、分化呢?本研究通過全骨髓貼壁法獲得了足夠數(shù)量和活力的骨髓間充質(zhì)干細(xì)胞,培養(yǎng)的MSCs不表達(dá)CD34和CD45,表達(dá)CD29和CD44,在一定的誘導(dǎo)條件下可向脂肪細(xì)胞骨細(xì)胞及軟骨細(xì)胞分化,提示成功培養(yǎng)MSCs。應(yīng)用GFP標(biāo)記的MSCs可表達(dá)綠色熒光蛋白,可應(yīng)用于體內(nèi)實(shí)驗(yàn)。筆者應(yīng)用香煙煙熏成功復(fù)制肺氣腫大鼠,觀察經(jīng)尾靜脈注入的MSCs在肺氣腫大鼠肺內(nèi)的生存。將轉(zhuǎn)染GFP質(zhì)粒的大鼠骨髓間充質(zhì)干細(xì)胞經(jīng)尾靜脈輸注入肺氣腫模型大鼠體內(nèi),經(jīng)快速冰凍切片發(fā)現(xiàn)肺氣腫模型大鼠肺內(nèi)骨髓間充質(zhì)干細(xì)胞有骨髓間充質(zhì)干細(xì)胞定植,這與Kidds等[15]報(bào)道相一致,為MSCs治療慢阻肺提供理論基礎(chǔ)。
[1] Le B K,Tammik C,Rosendahl K,et al.HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells[J].Exp Hematol,2003,31(10):890-896.
[2] Sun Y Q,Deng M X,He J,et al.Human pluripotent stemcellderived mesenchymal stem cells prevent allergic airway inflammation in mice[J].Stem Cells,2012,30(12):2692-2699.
[3] Luo D,Yan X,Liu D,et al.Differential effects of mesenchymal stem cells on a heterogeneous cell population within lung cancer cell lines[J]. Mol Cell Biochem,2013,378(1-2):107-116.
[4] Menge T,Zhao Y,Zhao J,et al.Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury[J].Sci Transl Med,2012,4(161):150-161.
[5] Zhong N,Wang C,Yao W,et al.Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey[J].Am J Respir Crit Care Med,2007,176(8):753-760.
[6] Kotton D N,Ma B Y,Cardoso V,et al.Bone marrow-derived cells as progenitors of lung alveolar epithelium[J].Development,2001,128 (24):5181-5188.
[7] Wang G,Bunnell B A,Painter R G,et al.Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis[J].Proc Natl Acad Sci USA,2005,102(1):186-191.
[8] Gregory C A,Prockop D J,Spees J L.Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation[J].Exp Cell Res,2005,306(2):330-335.
[9] Yen C C,Yang S H,Lin C Y,et al.Stem cells in the lung parenchyma and prospects for lung injury therapy[J].Eur J Clin Invest,2006,36(5):310-319.
[10] Spaeth E L,Kidd S,Marini F C.Tracking inflammation-induced mobilization of mesenchymal stem cells[J].Methods Mol Biol,2012,904(12):173-190.
[11] Kidd S,Spaeth E,Watson K,et al.Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma[J].PLoS One,2012,7(2):e30 563.
[12] Zhang W G,He L,Shi X M,et al.Regulation of transplanted mesenchymal stem cells by the lung progenitor niche in rats with chronic obstructive pulmonary disease[J].Respir Res,2014,15(5):33.
[13] Scarritt M E,Bonvillain R W,Burkett B J,et al.Hypertensive rat lungs retain hallmarks of vascular disease upon decellularization but support the growth of mesenchymal stem cells[J].Tissue Eng Part A,2014,20(9-10):1426-1443.
[14] Pereira R F,Halford K W,O'Hara M D,et al.Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone,cartilage, and lung in irradiated mice[J].Proc Natl Acad Sci USA,1995,92(11):4857-4861.
[15] Kidd S,Spaeth E,Dembinski J L,et al.Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging[J].Stem Cells,2009,27(10):2614-2623.
Study on the Bone Marrow Mesenchymal Stem Cell Transplantation in Rats Lung Tissue with Emphysema/
HE Hua,ZHAO Zhu-xiang,ZHANG Ying.//Medical Innovation of China,2014,11(21):026-030
Objective:To observe the situation of bone marrow mesenchymal stem cell transplantation in rats lung tissue with emphysema.Method:34 healthy rats were randomly divided into the MSCs intervention group (the group A, 10 COPD rats, tail intravenous MSC 1×106cells/mL), the emphysema model group(the group B, 10 COPD rats,tail intravenous the same volume PBS), the MSC control group(the group C, 10 normal rats, tail intravenous MSCs 1×106cells/mL) and the normal control group (the group D, 10 normal rats, tail intravenous the same volume PBS). Copy the rats emphysema model used smoke, proliferated the male SD rats MSCs by whole bone marrow culture method in vitro. The cells with GFP labeled were injected into SD emphysema rats serum, killed the rats within 24 h, got the lung tissue to rapid frozen section. The homing capacity of mesenchymal stem cells with GPF transfection in rat lung was analyzed by observing pathological section.Result:The differentiation potential of bone marrow mesenchymal stem cells were successfully developed. 99.5% marrow mesenchymal stem cells expressed CD44, 99.6% expressed CD29, 0.4% expressed CD34 and 1.0% expressed CD45 when MSCs to the fourth generation. The model of rat emphysema was made successfully. The average alveolar interval in the cigarette smoke exposure group(the group A,B) was (119.0±26.2)μm higher than the control group(the group C,D), and the average number of alveolar was (173.9±68.3)/mm2lower than the control group. The MSCs with transfection in the rats after 24 h green fluorescent protein were observed in the group A, but not in the group B, C and D.Conclusion:The bone marrow mesenchymal stem cells can colonize in pulmonary emphysema model rats by tail intravenous injection. This may provide theoretical basis for MSCs in the treatment of COPD.
Mesenchymal stem cells; Pulmonary emphysema; Transplant
10.3969/j.issn.1674-4985.2014.21.008
2014-05-20) (本文編輯:蔡元元)
廣東省科技廳研究基金資助項(xiàng)目(00317761120224027)
①廣州市第一人民醫(yī)院 廣東 廣州 510180
張穎
First-author’s address:The First People’s Hospital of Guangzhou City,Guangzhou 510180,China