梁碧瑜,何玉清,丁元林(綜述),黃漢偉(審校)
(1.廣東醫(yī)學(xué)院,廣東 湛江 524000; 2.廣東醫(yī)學(xué)院醫(yī)學(xué)系統(tǒng)生物學(xué)研究所,廣東 東莞 523808; 3.廣東醫(yī)學(xué)院流行病與衛(wèi)生統(tǒng)計(jì)學(xué)教研室,廣東 東莞 523808; 4.中山市陳星海醫(yī)院內(nèi)分泌科,廣東 中山 528415)
2型糖尿病(diabetes mellitus type 2,T2DM)以慢性血糖水平升高為主要特征,是主要由胰島素抵抗和胰島素分泌不足引發(fā)的代謝紊亂綜合征。視黃醇結(jié)合蛋白4(retinol binding protein 4,RBP4)作為一種脂肪細(xì)胞因子,不僅干擾機(jī)體的糖代謝和脂代謝過程,而且直接或間接負(fù)性調(diào)節(jié)胰島素信號(hào)轉(zhuǎn)導(dǎo)通路致胰島素抵抗(insulin resistance,IR),促進(jìn)T2DM的發(fā)生。現(xiàn)通過查閱相關(guān)文獻(xiàn),對(duì)RBP4在T2DM發(fā)生、發(fā)展中的作用機(jī)制及其相關(guān)性研究進(jìn)展予以綜述。
RBP4基因位于染色體10q23~q24區(qū)域,含有6個(gè)外顯子和5個(gè)內(nèi)含子。RBP4屬于視黃醇結(jié)合蛋白家族成員,是一種單一肽鏈的疏水性蛋白質(zhì),由184個(gè)氨基酸組成,相對(duì)分子質(zhì)量為21×103[1]。血漿RBP4主要由肝臟合成和分泌,其次是脂肪組織[2]。此外,RBP4還廣泛地分布在人體血清、腦脊液、尿液和其他體液中。RBP4是視黃醇的特異性運(yùn)載蛋白,在體內(nèi)負(fù)責(zé)將血漿中的視黃醇從肝臟轉(zhuǎn)運(yùn)至周圍靶組織以實(shí)現(xiàn)其細(xì)胞內(nèi)的轉(zhuǎn)運(yùn)代謝,并協(xié)助視黃醇發(fā)揮正常的生理功能[3]。
2.1RBP4與IR Yang等[2]在脂肪組織剔除了葡萄糖轉(zhuǎn)運(yùn)子4基因的小鼠模型中發(fā)現(xiàn),脂肪組織中血清RBP4水平相應(yīng)升高,鑒定出RBP4作為一種新的脂肪因子參與了IR。此后,Graham等[4]也發(fā)現(xiàn),肥胖或超重的T2DM人群中血清RBP4水平升高,且較其他脂肪細(xì)胞因子或炎性因子更能反映胰島素敏感性的改善。Shaker等[5]進(jìn)一步發(fā)現(xiàn)T2DM患者血清RBP4水平與肝臟脂肪堆積及穩(wěn)態(tài)胰島素評(píng)價(jià)指數(shù)等IR因子密切相關(guān),影響肝臟胰島素敏感性。Hammarstedt等[6]發(fā)現(xiàn),胰島素增敏劑噻唑烷二酮類藥物(如吡格列酮)能夠降低2型糖尿病患者體內(nèi)RBP4的表達(dá)水平,改善IR。
2.2RBP4與糖代謝、脂代謝障礙 Ribel等[7]通過口服葡萄糖耐量試驗(yàn)發(fā)現(xiàn),升高的RBP4水平可降低胰島素誘導(dǎo)的葡萄糖利用率,影響外周葡萄糖處置指數(shù),導(dǎo)致糖代謝紊亂。Park等[8]薈萃分析了1406例T2DM患者,發(fā)現(xiàn)血清RBP4水平和空腹血糖、空腹胰島素及糖化血紅蛋白等糖類代謝指標(biāo)密切相關(guān)。Tan等[9]發(fā)現(xiàn),抗RBP4低聚糖的干預(yù),能抑制肝臟RBP4信使RNA的表達(dá),增強(qiáng)脂肪組織葡萄糖轉(zhuǎn)運(yùn)子4的表達(dá)并減少肝臟磷酸烯醇式丙酮酸羧激酶生成,抑制肝糖原輸出,改善糖耐量、高胰島素血癥和高血糖。此外,T2DM患者常合并脂質(zhì)代謝障礙。Wang等[10]發(fā)現(xiàn),T2DM患者血清RBP4水平的升高與三酰甘油和膽固醇呈正相關(guān)。升高的RBP4濃度可通過其細(xì)胞表面受體視黃酸刺激因子6介導(dǎo)的Jak激酶(just another kinase,JAK)/信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子(signal transducer and activator of transcription,STAT)級(jí)聯(lián)反應(yīng)影響脂質(zhì)代謝[11]。T2DM患者血清RBP4可降低血清極低密度脂蛋白膽固醇水平,促進(jìn)三酰甘油、低密度脂蛋白膽固醇和小分子高密度脂蛋白的生成,易導(dǎo)致動(dòng)脈粥樣硬化的發(fā)生[12-13]。Broch等[14]發(fā)現(xiàn),RBP4通過促進(jìn)肝臟三酰甘油的合成和低密度脂蛋白膽固醇釋放入血,降低胰島素敏感性。此外,非諾貝特可顯著抑制脂肪組織RBP4信使RNA的表達(dá),同時(shí)降低血清三酰甘油水平,從而改善脂代謝異常患者的IR[15]。
胰島素與胰島素受體結(jié)合后,激活胰島素受體磷酸激酶,導(dǎo)致胰島素受體的自磷酸化。在此過程中,胰島素受體底物1(Insulin receptor substrate 1,IRS-1)的磷酸化在胰島素信號(hào)轉(zhuǎn)導(dǎo)中起重要作用,不僅通過Ras-絲裂原活化蛋白激酶(Ras-mitoagen-activated protein kinases,Ras-MAPK)信號(hào)途徑對(duì)細(xì)胞核內(nèi)的絲裂反應(yīng)進(jìn)行調(diào)控,還可以通過激活磷脂酰肌醇3-激酶(phosphatidyl inostiol 3-Kinase,PI3K)活化磷脂酰肌醇依賴蛋白激酶1,其磷脂酰肌醇依賴蛋白激酶1可以使蛋白激酶B磷酸化,從而影響葡萄糖運(yùn)轉(zhuǎn)子4的合成、分泌、移位。研究表明,RBP4主要通過活化c-Jun氨基端激酶(c-Jun amino-terminal kinase,JNK)、核因子κB抑制IκB激酶(IκB kinase,IKK)、胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)及細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制因子3(suppressor of cytokine signaling,SOCS-3)等,作用于胰島素受體/IRS/PI3K/Ras/MAPK等信號(hào)分子或環(huán)節(jié),影響下游基因表達(dá),調(diào)節(jié)胰島素信號(hào)轉(zhuǎn)導(dǎo),導(dǎo)致IR,從而發(fā)生T2DM[16-18]。
3.1JNK信號(hào)通路 研究發(fā)現(xiàn),RBP4可激活脂肪組織中巨噬細(xì)胞的JNK信號(hào)途徑,誘導(dǎo)巨噬細(xì)胞產(chǎn)生白細(xì)胞介素6、腫瘤壞死因子α等促炎因子,激活脂肪組織的炎性信號(hào)通路,引起IRS在絲氨酸307位點(diǎn)磷酸化,阻礙正常的酪氨酸磷酸化,導(dǎo)致IR[16,19]。巨噬細(xì)胞中激活的JNK通路可以引起高脂飲食喂養(yǎng)的小鼠發(fā)生肥胖,并且出現(xiàn)高血糖、高胰島素血癥、葡萄糖耐量及胰島素敏感性下降等[20]。此外,過多的營(yíng)養(yǎng)物質(zhì)和異常代謝產(chǎn)物會(huì)對(duì)內(nèi)質(zhì)網(wǎng)形成應(yīng)激壓力,JNK信號(hào)通路活化后將這種應(yīng)激壓力轉(zhuǎn)換成炎性效應(yīng),影響IRS和胰島素受體的結(jié)合,從而導(dǎo)致IR[21]。
3.2IKK信號(hào)通路 RBP4血清水平的升高,主要是通過Toll樣受體4激活巨噬細(xì)胞產(chǎn)生促炎因子引起脂肪細(xì)胞IR[16]。Toll樣受體4通過炎癥和免疫反應(yīng)激活I(lǐng)KK,IKK是炎癥過程關(guān)鍵調(diào)節(jié)因子——核因子κB的激活物。一方面,激活的IKK直接增加IRS絲氨酸磷酸化,抑制胰島素信號(hào)傳遞;另一方面,激活的IKK使IκBα降解,進(jìn)而使核因子κB轉(zhuǎn)位,上調(diào)炎性反應(yīng)介質(zhì)(如腫瘤壞死因子α、白細(xì)胞介素6)的表達(dá)水平,進(jìn)一步通過SOCS-3、JNK、IKK形成一種低度的炎性信號(hào)環(huán)境,加速IR的發(fā)生[22-23]。此外,RBP4還可能通過增強(qiáng)機(jī)體氧化應(yīng)激參與IR[24]。Farjo等[25]發(fā)現(xiàn),RBP4激活還原型煙酰胺腺嘌呤二核苷酸磷氧化酶,產(chǎn)生氧自由基超氧化物,促進(jìn)炎性信號(hào)途徑,直接活化核因子κB,參與IKK信號(hào)通路。RBP4激活I(lǐng)KK信號(hào)轉(zhuǎn)導(dǎo)途徑活化核因子κB,還可啟動(dòng)胞嘧啶誘導(dǎo)的細(xì)胞凋亡途徑,調(diào)節(jié)胰島β細(xì)胞的凋亡,這種調(diào)節(jié)過程可能會(huì)破壞胰島的完整性和功能,導(dǎo)致胰島素的分泌不足[26]。
3.3JAK2-STAT5信號(hào)通路 JAK2-STAT5信號(hào)轉(zhuǎn)導(dǎo)過程是細(xì)胞膜上的細(xì)胞因子受體與相應(yīng)的配體結(jié)合,導(dǎo)致JAK2活化,激活酪氨酸磷酸化,進(jìn)而激活其下游的信號(hào)蛋白分子STAT5,從而進(jìn)行胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)[27]。Berry等[18]發(fā)現(xiàn),RBP4表面細(xì)胞受體視黃酸刺激因子6與細(xì)胞間視黃醇-RBP4復(fù)合物結(jié)合后,通過JAK2-STAT5途徑誘導(dǎo)脂肪和肌肉組織中SOCS-3的生成。SOCS-3作為胰島素信號(hào)通路的抑制因素,可負(fù)反饋調(diào)節(jié)細(xì)胞因子激活的JAK-STAT途徑,SOSC-3通過其SH2區(qū)域在磷酸酪氨酸960位點(diǎn)競(jìng)爭(zhēng)性與胰島素受體結(jié)合,阻止STAT5b結(jié)合到胰島素受體上,從而抑制了胰島素轉(zhuǎn)錄因子的活化,減弱胰島素信號(hào)途徑[28]。另外,SOCS-3還能直接抑制胰島素誘導(dǎo)的IRS-1的酪氨酸磷酸化,導(dǎo)致IR[29]
3.4ERK1/2信號(hào)通路 JNK、IKK及SOCS-3開啟的信號(hào)途徑均通過IRS1-PI3K-Akt阻礙胰島素信號(hào)的轉(zhuǎn)導(dǎo),這與Yang等[2]發(fā)現(xiàn)RBP4可能通過抑制PI3K活性和IRS-1酪氨酸磷酸化,影響肌肉組織中胰島素信號(hào)轉(zhuǎn)導(dǎo)是一致的。然而,Ost等[17]發(fā)現(xiàn),在體外對(duì)IR的脂肪細(xì)胞進(jìn)行RBP4及其抗體干預(yù)后,RBP4可阻止胰島素刺激IRS-1絲氨酸在307點(diǎn)位磷酸化,進(jìn)而增加IRS-1酪氨酸磷酸化的半數(shù)有效濃度,減少ERK1/2的磷酸化,提示RBP4可能通過干預(yù)IRS-1-Ras-MAPK信號(hào)轉(zhuǎn)導(dǎo)通路參與IR。
RBP4可能通過參與多個(gè)信號(hào)通路的調(diào)控,導(dǎo)致IR,促進(jìn)T2DM的發(fā)生、發(fā)展。然而,T2DM是由多種基因和蛋白相互作用的復(fù)雜性疾病,各信號(hào)通路的交叉聯(lián)系與相互作用機(jī)制尚不清楚,這可能成為研究T2DM機(jī)制的新熱點(diǎn)。因此,對(duì)RBP4的深入研究,期望為探究T2DM的發(fā)病機(jī)制提供更多的理論依據(jù);降低血清RBP4水平、干預(yù)RBP4信號(hào)轉(zhuǎn)導(dǎo)通路,可望成為治療糖尿病的新思路。
[1] 吳海婭,賈偉平,魏麗,等.肥胖及2型糖尿病患者血清視黃醇結(jié)合蛋白4水平的變化及其臨床意義[J].中華內(nèi)分泌代謝雜志,2006,22(3):290-293.
[2] Yang Q,Graham TE,Mody N,etal.Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes[J].Nature,2005,436(7049):356-362.
[3] Quadro L,Hamberger L,Colantuoni V,etal.Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models[J].Mol Aspects Med,2003,24(6):421-430.
[4] Graham TE,Yang Q,Bluher M,etal.Retinol-binding protein 4 and insulin resistance in lean,obese,and diabetic subjects[J].N Engl J Med,2006,354(24):2552-2563.
[5] Shaker O,El-Shehaby A,Zakaria A,etal.Plasma visfatin and retinol binding protein-4 levels in patients with type 2 diabetes mellitus and their relationship to adiposity and fatty liver[J].Clin Biochem,2011,44(17/18):1457-1463.
[6] Hammarstedt A,Pihlajamaki J,Graham TE,etal.High circulating levels of RBP4 and mRNA levels of aP2,PGC-1alpha and UCP-2 predict improvement in insulin sensitivity following pioglitazone treatment of drug-naive type 2 diabetic subjects[J].J Intern Med,2008,263(4):440-449.
[7] Ribel-Madsen R,F(xiàn)riedrichsen M,Vaag A,etal.Retinol-binding protein 4 in twins:regulatory mechanisms and impact of circulating and tissue expression levels on insulin secretion and action[J].Diabetes,2009,58(1):54-60.
[8] Park H,Green MH,Shaffer ML.Association between serum retinol-binding protein 4 concentrations and clinical indices in subjects with type 2 diabetes:a meta-analysis[J].J Hum Nutr Diet,2012,25(4):300-310.
[9] Tan Y,Sun LQ,Kamal MA,etal.Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and non-alcoholic fatty liver disease in mice[J].Biochim Biophys Acta,2011,1811(12):1045-1053.
[10] Wang MN,Han YB,Li Q,etal.Higher serum retinol binding protein 4 may be a predictor of weak metabolic control in chinese patients with type 2 diabetes mellitus[J].J Int Med Res,2012,40(4):1317-1324.
[11] Berry DC,Noy N.Signaling by vitamin A and retinol-binding protein in regulation of insulin responses and lipid homeostasis[J].Biochim Biophys Acta,2012,1821(1):168-176.
[12] Verges B,Guiu B,Cercueil JP,etal.Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein B100 catabolism in type 2 diabetes mellitus[J].Arterioscler Thromb Vasc Biol,2012,32(12):3050-3057.
[13] Rocha M,Banuls C,Bellod L,etal.Association of serum retinol binding protein 4 with atherogenic dyslipidemia in morbid obese patients[J].PloS One,2013,8(11):e78670.
[14] Broch M,Gomez JM,Auguet MT,etal.Association of retinol-binding protein-4(RBP4) with lipid parameters in obese women[J].Obes Surg,2010,20(9):1258-1264.
[15] Wu H,Wei L,Bao Y,etal.Fenofibrate reduces serum retinol-binding protein-4 by suppressing its expression in adipose tissue[J].Am J Physiol Endocrinol Metab,2009,296(4):628-634.
[16] Norseen J,Hosooka T,Hammarstedt A,etal.Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase-and toll-like receptor 4-dependent and retinol-independent mechanism[J].Mol Cell Biol,2012,32(10):2010-2019.
[17] Ost A,Danielsson A,Liden M,etal.Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes[J].FASEB J,2007,21(13):3696-3704.
[18] Berry DC,Jin H,Majumdar A,etal.Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses[J].Proc Natl Acad Sci U S A,2011,108(11):4340-4345.
[19] Chai B,Li JY,Zhang W,etal.Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling[J].Peptides,2009,30(6):1098-1104.
[20] Han MS,Jung DY,Morel C,etal.JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation[J].Science,2013,339(6116):218-222.
[21] Kaneto H,Matsuoka TA,Katakami N,etal.Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes[J].Curr Mol Med,2007,7(7):674-686.
[22] Baker RG,Hayden MS,Ghosh S.NF-κB,inflammation,and metabolic disease[J].Cell Metab,2011,13(1):11-22.
[23] Sinha S,Perdomo G,Brown NF,etal.Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B[J].J Biol Chem,2004,279(40):41294-41301.
[24] 黎軍,黃從新,郝亞榮,等.胰島素抵抗大鼠視黃醇結(jié)合蛋白4骨骼肌磷脂酰肌醇3激酶的表達(dá)及吡格列酮的干預(yù)作用[J].中華老年醫(yī)學(xué)雜志,2011,30(9):774-778.
[25] Farjo KM,F(xiàn)arjo RA,Halsey S,etal.Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase-and nuclear factor kappa B-dependent and retinol-independent mechanism[J].Mol Cell Biol,2012,32(24):5103-5115.
[26] Sarkar SA,Kutlu B,Velmurugan K,etal.Cytokine-mediated induction of anti-apoptotic genes that are linked to nuclear factor kappa-B(NF-kappaB) signalling in human islets and in a mouse beta cell line[J].Diabetologia,2009,52(6):1092-1101.
[27] Choy E.Understanding the dynamics:pathways involved in the pathogenesis of rheumatoid arthritis[J].Rheumatology(Oxford),2012,51(Suppl 5):3-11.
[28] Emanuelli B,Peraldi P,F(xiàn)illoux C,etal.SOCS-3 is an insulin-induced negative regulator of insulin signaling[J].J Biol Chem,2000,275(21):15985-15991.
[29] Emanuelli B,Peraldi P,F(xiàn)illoux C,etal.SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice[J].J Biol Chem,2001,276(51):47944-47949.