李文君,霍 晶,于文暢
(1.天津市公安醫(yī)院 眼科,天津300042;2.一汽總醫(yī)院 藥學(xué)部,吉林 長春130011)
糖尿病是一個復(fù)雜的代謝性疾病,早期小血管受累,逐漸引起全身很多組織、器官的廣泛損害。糖尿病視網(wǎng)膜病變(diabetic retinopathy,DR)是糖尿病在眼部的重要并發(fā)癥。1型糖尿?。ㄒ葝u素依賴型糖尿病)患者約10%在起病后5-9年左右便發(fā)生DR,15年后約50%的人發(fā)生,25年后有80%-90%的人出現(xiàn)DR。2型糖尿?。ǚ且葝u素依賴型糖尿?。┗颊叩腄R發(fā)病狀況與1型糖尿病相似。DR的病理改變包括微血管瘤、硬性滲出、軟性滲出、新生血管、纖維膜形成、視網(wǎng)膜脫離等。經(jīng)研究發(fā)現(xiàn)DR的發(fā)生、發(fā)展與視網(wǎng)膜內(nèi)的Müller細(xì)胞及其分泌的細(xì)胞因子有著密切關(guān)系。
視網(wǎng)膜由內(nèi)到外分為內(nèi)界膜、神經(jīng)纖維層、神經(jīng)節(jié)細(xì)胞層、內(nèi)叢狀層、內(nèi)核層、外叢狀層、外核層、外界膜、視錐視桿細(xì)胞層、視網(wǎng)膜色素上皮層。Müller細(xì)胞包體位于內(nèi)核層的內(nèi)中間層,但Müller細(xì)胞的突起多且長,占據(jù)了從內(nèi)界膜到外界膜的視網(wǎng)膜大部。細(xì)胞發(fā)出放射狀突起縱貫視網(wǎng)膜全層,向內(nèi)在神經(jīng)纖維層形成圓錐形膨大,參與內(nèi)界膜的構(gòu)成;向外越過外界膜,形成微小的絨毛纖維包繞光感受器內(nèi)節(jié)。在外核層、內(nèi)核層、神經(jīng)節(jié)細(xì)胞層發(fā)出帶狀分支形成網(wǎng)狀,包繞神經(jīng)細(xì)胞包體。在外叢狀層、內(nèi)叢狀層、神經(jīng)纖維層發(fā)出細(xì)微的分支包繞神經(jīng)細(xì)胞的樹突、軸突和突觸,并向血管表面發(fā)出小分支包繞血管,參與血-視網(wǎng)膜屏障的構(gòu)成。強(qiáng)大的Müller細(xì)胞突起幾乎包繞了大部分神經(jīng)細(xì)胞及其突起和視網(wǎng)膜內(nèi)血管,對視網(wǎng)膜起到支撐作用,同時提供營養(yǎng)物質(zhì),它的任何變化都將影響視網(wǎng)膜神經(jīng)細(xì)胞和血管的正常功能。
谷氨酸是存在于視網(wǎng)膜內(nèi)的一種興奮性神經(jīng)毒素,主要通過 Müller細(xì)胞膜上的 GLAST/EAAT-1(Na+-dependent glutamate/aspartate transporter/excitatory amino acids transporter-1)受體清除[2]。Müller細(xì)胞位于內(nèi)、外叢狀層之間,暴露于神經(jīng)元釋放的谷氨酸環(huán)境里,參與了谷氨酸-谷氨酰胺的循環(huán)轉(zhuǎn)化,將谷氨酸轉(zhuǎn)化為谷氨酰胺傳遞給下一極神經(jīng)元,并釋放神經(jīng)營養(yǎng)因子傳遞給上一級神經(jīng)元,從而高效清除視網(wǎng)膜神經(jīng)細(xì)胞微環(huán)境中的谷氨酸,達(dá)到保護(hù)神經(jīng)細(xì)胞的目的。
在早期糖尿病病人的視網(wǎng)膜內(nèi),Müller細(xì)胞形態(tài)和數(shù)量均發(fā)生變化,且早于血管的變化。在高糖環(huán)境中,膠原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)表達(dá)增加,促使 Müller細(xì)胞活化,使其體積增大,數(shù)量增多[2-5]。同時Müller細(xì)胞調(diào)節(jié)周圍環(huán)境中的鉀離子、谷氨酸濃度的功能也下降,使鉀離子、谷氨酸在視網(wǎng)膜內(nèi)蓄積,產(chǎn)生毒性反應(yīng)[6,7]。有研究證實[8],糖尿病鼠病程4周后出現(xiàn)Müller細(xì)胞中谷氨酰胺運(yùn)輸因子和受體表達(dá)增加,而12周后兩者的表達(dá)則迅速減少,這說明糖尿病對Müller細(xì)胞的破壞和損傷,尤其是病程12周后更為明顯。
Müller細(xì)胞膜鉀通道和鈣激活鉀通道的功能發(fā)生變化,使得其對細(xì)胞內(nèi)外鉀含量的調(diào)節(jié)能力下降,進(jìn)而出現(xiàn)了視網(wǎng)膜功能紊亂,甚至發(fā)生黃斑水腫[9]?;罨?Müller細(xì)胞產(chǎn)生血管內(nèi)皮細(xì)胞生長因子(vascular endothelial cell growth factor,VEGF)、b-成纖維細(xì)胞生長因子 (fibroblast growth factor,b-FGF)、GFAP、干擾素-α(interferon-α,IFN-α)等細(xì)胞因子增多,這些細(xì)胞因子促使血管內(nèi)皮細(xì)胞和周細(xì)胞凋亡,導(dǎo)致毛細(xì)血管通透性增加,引起視網(wǎng)膜內(nèi)滲出、出血和水腫[10]。這些細(xì)胞因子還能誘導(dǎo)毛細(xì)血管內(nèi)皮細(xì)胞產(chǎn)生纖溶酶激活物和膠原酶,打開血管內(nèi)皮細(xì)胞的緊密連接,導(dǎo)致視網(wǎng)膜微血管功能喪失,局部微循環(huán)障礙,刺激血管內(nèi)皮細(xì)胞分化、移行、增生,產(chǎn)生新生血管[11]。視網(wǎng)膜內(nèi)的水腫、滲出進(jìn)一步導(dǎo)致了缺血缺氧和血管閉塞,反過來刺激 Müller細(xì)胞產(chǎn)生更多的細(xì)胞因子[12,13]。已經(jīng)有研究發(fā)現(xiàn)在缺血缺氧環(huán)境下的Müller細(xì)胞分泌的VEGF促進(jìn)Müller細(xì)胞表達(dá)過多的基質(zhì)金屬蛋白酶-2(matrix metalloproteinase,MMP-2),這些MMP-2作用于臨近的血管內(nèi)皮細(xì)胞,促進(jìn)新生血管生成,促使DR進(jìn)入增殖期[14]。
高糖培養(yǎng)的Müller細(xì)胞[15]和患糖尿病的小鼠的 Müller細(xì)胞[16]均出現(xiàn)環(huán)氧合酶(cyclo-oxygenase,COX)表達(dá)增加。花生四烯酸在COX-2的催化下產(chǎn)生前列腺素,誘導(dǎo)新生血管生成,同時COX-2表達(dá)可誘發(fā)VEGF產(chǎn)生。已有實驗證實非甾體抗炎藥抑制COX活性,可減少VEGF的表達(dá)[17]。高糖培養(yǎng)中,Müller細(xì)胞膜補(bǔ)體受體C5aR大量表達(dá),與補(bǔ)體結(jié)合后促進(jìn)細(xì)胞VEGF表達(dá)。通過抑制C5aR,可減少VEGF的表達(dá)[18]。這些實驗結(jié)果為DR提供了新的治療途徑[19]。
有研究[20]發(fā)現(xiàn)閃光視網(wǎng)膜電圖 (electroretinograph,ERG)的b波主要起源于神經(jīng)元和Müller細(xì)胞,而 Müller細(xì)胞不參與閃爍光ERG的形成,所以閃爍光ERG記錄的是純神經(jīng)元的反應(yīng),比較閃光視網(wǎng)膜電圖b波幅值和閃爍光視網(wǎng)膜電圖幅值可以單獨(dú)評價視網(wǎng)膜神經(jīng)元和神經(jīng)纖維的病理反應(yīng)(主要是Müller纖維),提出應(yīng)用閃光ERG的b波幅值/12赫茲閃爍光ERG幅值,即纖維指數(shù)來直接評價Müller細(xì)胞的功能。此研究同時發(fā)現(xiàn)視網(wǎng)膜無灌注區(qū)面積大小與纖維指數(shù)是平行關(guān)系,纖維指數(shù)是視網(wǎng)膜缺血缺氧的敏感指標(biāo)。通過計算纖維指數(shù),能夠發(fā)現(xiàn)DR的最早期的改變,客觀評價DR的病理改變及病情進(jìn)展。
Müller細(xì)胞是視網(wǎng)膜內(nèi)重要的神經(jīng)膠質(zhì)細(xì)胞,起到保護(hù)、營養(yǎng)、支撐視網(wǎng)膜的功能,糖尿病對它的任何損傷均可導(dǎo)致視網(wǎng)膜內(nèi)血管、神經(jīng)細(xì)胞及神經(jīng)傳導(dǎo)的巨大影響,在DR的發(fā)生發(fā)展中起到關(guān)鍵作用。對Müller細(xì)胞及其細(xì)胞因子的研究將給臨床提供更多DR的早期診斷方法和治療途徑。
[1]Lopez-Colome AM,Martinez-Lozada Z,Guillem AM,et al.Glutamate transporter-dependent TOR phosphorylation in Müller glia cells[J].ASN Neuro,2012Jul 23.[Epub ahead of print].
[2]Rungger BE,Dosso AA,Leuenberger PM.Glial reactivity,an early feature of diabetic retinopathy[J].Investigative ophthalmology& visual science,2000,41(7):1971.
[3]Lo TC,Klunder L,F(xiàn)letcher EL.Increased Muller cell density during diabetes is ameliorated by aminoguanidine and ramipril[J].Clinical &experimental optometry:journal of the Australian Optometrical Association,2001,84(5):276.
[4]Zeng XX,Ng YK,Ling EA.Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats[J].Visual neuroscience,2000,17(3):463.
[5]Downie LE,Pianta MJ,Vingrys J,et al.Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity[J].The Journal of comparative neurology,2007,504(4):404.
[6]Li Q,Puro DG.Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells[J].Invest Ophthalmol Vis Sci,2002,43(9):3109.
[7]Liu L,Zhang P,Li Y,Yu G.Curcumin protects brain from oxida tive stress through inducing expression of UCP2in chronic cerebral hypoperfusion aging-rats[J].Mol Neurodegener,2012,7(Suppl 1):S10.
[8]Lau JC,Kroes RA,Moskal JR,et al.Diabetes changes expression of genes related to glutamate neurotransmission and transport in the Long-Evans rat retina[J].Mol Vis,2013,19:1538.
[9]Pannicke T,Iandiev I,Wurm A,et al.Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina[J].Diabetes,2006,55(3):633.
[10]周 媛,曹 霞.視網(wǎng)膜神經(jīng)膠質(zhì)細(xì)胞及其分泌的細(xì)胞因子與視網(wǎng)膜病變[J].細(xì)胞與分子免疫學(xué)雜志,2012,28(9):996.
[11]Sun Y,Wang D,Ye F,et al.Elevated cell proliferation and VEGF production by high-glucose conditions in Müller cells involve XIAP[J].Eye(Lond),2013,27(11):1299.
[12]Watkins WM,McCollum GW,Savage SR,et al.Hypoxia-induced expression of VEGF splice variants and protein in four retinal cell types[J].Exp Eye Res,2013,116(3):240.
[13]Xin X,Rodrigues M,Umapathi M,et al.Hypoxic retinal Muller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4[J].Proc Natl Acad Sci USA,2013,110(36):3425.
[14]Rodrigues M,Xin X,Jee K,et al.VEGF secreted by hypoxic muller cells induces MMP-2expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy[J].Diabetes,2013,62(11):3863.
[15]DU Y,SARTHY V P,KERN T S.Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats[J].American journal of physiology Regulatory,integrative and comparative physiology,2004,287(4):735.
[16]Guidry C.The role of Muller cells in fibrocontractive retinal disorders[J].Progress in retinal and eye research,2005,24(1):75.
[17]Yanni SE,McCollum GW,Penn JS.Genetic deletion of COX-2 diminishes VEGF production in mouse retinal Müller cells[J].Exp Eye Res,2010,91(1):34.
[18]Cheng L,Bu H,Portillo JA,et al.Modulation of Retinal Muller Cells by Complement Receptor C5aR[J].Invest Ophthalmol Vis Sci,2013,54(13):8191.
[19]Li SY,F(xiàn)ung FK,F(xiàn)u ZJ,et al.Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury:in vivo and in vitro studies[J].Invest Ophthalmol Vis Sci,2012,53(10):5976.
[20]劉 紅,谷萬章,陶 源,等.Muller細(xì)胞在非增殖性糖尿病視網(wǎng)膜病變中的作用[J].航空航天醫(yī)藥,2010,21(5):635.