苗圣超 糜堅青
(上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院血液科,上海 200025)
慢性粒細(xì)胞白血病(chronic myeloid leukemia,CML)是一種造血干細(xì)胞克隆增殖性疾病。95%以上的CML患者可檢測到特征性的費城(Ph)染色體和bcr-abl融合基因。該融合基因編碼一種具有酪氨酸激酶活性的蛋白,通過一系列復(fù)雜的細(xì)胞信號轉(zhuǎn)導(dǎo)途徑,使造血干細(xì)胞發(fā)生異常轉(zhuǎn)化而導(dǎo)致CML的發(fā)生[1]。伊馬替尼是治療CML的一線藥物,但隨著伊馬替尼的臨床應(yīng)用范圍的擴大和時間的推移,耐藥現(xiàn)象逐漸顯現(xiàn)。
95%以上的CML患者體內(nèi)可檢測到異常的Ph染色體,它是由9號染色體和22號染色體的長臂相互易位構(gòu)成[t(9;22)(q34;q11)]。這種易位使位于9號染色體長臂(9q34)上的原癌基因abl和位于22號染色體長臂(22q11)上的bcr基因重新組合,從而形成bcr-abl融合基因。形成融合基因時,abl基因的斷裂點較固定,而bcr基因的斷裂點不一,常集中在m-bcr、M-bcr和μ-bcr 3個區(qū)域[2]。從而產(chǎn)生不同形式的bcr-abl融合基因,進而表達分子質(zhì)量為190 kD、210 kD、230 kD的融合蛋白P190、P210、P230。P190主要見于急性淋巴細(xì)胞白血病(acute lymphoblastic leukemia,ALL),P230主要見于慢性中性粒細(xì)胞白血病(chronic neutrophilic leukemia,CNL),P210主要見于CML。CML相關(guān)的bcr基因斷裂點常位于M-bcr,形成的融合基因轉(zhuǎn)錄產(chǎn)物為b2a2或b3a2,進而表達融合蛋白P210[3]。P210融合蛋白在CML的發(fā)病中起關(guān)鍵作用,它具有異常增強的酪氨酸激酶活性,與三磷酸腺苷(ATP)結(jié)合后激活Ras/MAPK、PI3K/Akt、STAT5等通路,導(dǎo)致細(xì)胞惡性增生、凋亡障礙,使骨髓基質(zhì)細(xì)胞黏性下降,造成造血干細(xì)胞的惡性轉(zhuǎn)化,進而導(dǎo)致CML的發(fā)生[4]。
伊馬替尼是人工合成的酪氨酸激酶抑制劑,用于治療Ph染色體陽性的CML急性期、加速期或α-干擾素治療失敗的慢性期患者。目前,伊馬替尼已成為治療CML的一線藥物,它通過競爭性抑制ATP與酪氨酸激酶催化中心的結(jié)合,阻斷酪氨酸激酶的活化,進而干擾CML細(xì)胞生存,達到治療的目的[5-6]。
伊馬替尼的耐藥特點呈現(xiàn)多樣化,常見的有以下幾種:(1)一些新診斷CML的患者對伊馬替尼不敏感,不能達到完全血液學(xué)緩解,另外,20%~25%患者不能達到完全細(xì)胞遺傳學(xué)緩解[7];(2)95%以上的CML患者應(yīng)用伊馬替尼后,雖然已經(jīng)獲得完全細(xì)胞遺傳學(xué)緩解,但體內(nèi)仍殘留BCR-ABL陽性的細(xì)胞[8],這些細(xì)胞對伊馬替尼耐藥,成為疾病惡化的誘因;(3)20%~25%的CML患者,起初對伊馬替尼敏感,但在治療過程中會很快產(chǎn)生耐藥;(4)伊馬替尼對大部分CML慢性期患者有效,但對加速期和急性期患者不敏感,容易出現(xiàn)耐藥[9]。伊馬替尼的耐藥機制可分為BCR-ABL依賴的耐藥機制和BCR-ABL非依賴的耐藥機制。
3.1 BCR-ABL依賴的耐藥機制
3.1.1 點突變 BCR-ABL點突變是伊馬替尼耐藥的主要機制,約50%耐藥患者可檢測到點突變[10-11]。迄今為止,已發(fā)現(xiàn)90多個不同的點突變與伊馬替尼耐藥有關(guān)[12-13]。突變的BCR-ABL激酶由于氨基酸發(fā)生改變,引起激酶結(jié)構(gòu)的改變,直接阻斷或間接干擾了伊馬替尼與BCR-ABL激酶的結(jié)合,從而導(dǎo)致耐藥的產(chǎn)生[14]。根據(jù)BCR-ABL激酶空間結(jié)構(gòu),點突變可以發(fā)生在以下位置:ATP結(jié)合環(huán)(P-環(huán),第244~255個氨基酸殘基)、激活環(huán)(A-環(huán),第381~402個氨基酸殘基)、催化域(第350~363個氨基酸殘基)、直接與伊馬替尼結(jié)合的殘基[15]。BCR-ABL突變影響CML患者對伊馬替尼的敏感性,且不同的突變類型和位置引起的耐藥程度不同[16-18]。其中,T315I突變和P-環(huán)突變是最常見的突變[11,19],占所有突變類型的85%。T315I突變是第1個被報道的ABL激酶點突變[20]。BCR-ABL激酶第315位的蘇氨酸(T)通過氫鍵直接與伊馬替尼結(jié)合,然而,當(dāng)蘇氨酸突變?yōu)楫惲涟彼?I)時,異亮氨酸由于缺乏氫鍵而不能與伊馬替尼結(jié)合[21],同時異亮氨酸龐大的體積增加了伊馬替尼的空間位阻[22],從而阻斷了伊馬替尼與BCR-ABL激酶的結(jié)合。P-環(huán)突變主要發(fā)生于加速期和急性期的CML患者,與其他位置的突變相比,發(fā)生P-環(huán)突變的CML患者將更迅速地進展至加速期,且預(yù)后更差[18]。
3.1.2 移碼突變 大多數(shù)已知的BCR-ABL突變是點突變,移碼突變非常罕見。移碼突變包括插入突變和缺失突變2種形式。2012年P(guān)ark等[23]報告,在2例韓國CML患者中發(fā)現(xiàn)了1個新的插入突變,該突變是由BCR-ABL激酶域中插入35個堿基引起的(p.Cys475Tyrfs * 11)。此外,他們發(fā)現(xiàn),與點突變相比,移碼突變引起的耐藥程度可能更嚴(yán)重。
針對BCR-ABL突變,第2代酪氨酸激酶抑制劑如達沙替尼、尼羅替尼應(yīng)運而生。第2代酪氨酸激酶抑制劑對大部分的BCR-ABL突變有效,但是對一部分BCR-ABL突變卻不敏感,尤其是T315I突變。長久以來,因為缺乏有效的治療方法,T315I突變成為臨床的難題。Cassuto等[24]證實,第3代酪氨酸激酶抑制劑帕納替尼對所有突變類型耐藥的CML細(xì)胞株均有效,尤其是T315I突變。2012年12月14日,帕納替尼獲美國FDA批準(zhǔn)上市,為酪氨酸激酶抑制劑耐藥的CML患者帶來了福音。
3.1.3 BCR-ABL蛋白高表達 BCR-ABL高表達的發(fā)生機制仍不明確。Gorre等[20]發(fā)現(xiàn),11例獲得性耐藥患者中有3例體內(nèi)可檢測到bcr-abl基因的擴增。但是,在一些耐藥的患者中,雖然BCR-ABL蛋白是高表達的,卻未發(fā)現(xiàn)bcr-abl基因擴增,說明除了bcr-abl基因擴增外,BCR-ABL高表達可能還與其他機制有關(guān)[25-26]。此外,Barnes等[27]發(fā)現(xiàn),CD34+的CML細(xì)胞中BCR-ABL表達水平的不同可能使其對伊馬替尼反應(yīng)的程度與持續(xù)時間不同,如在加速期BCR-ABL表達相對較高的細(xì)胞可較快出現(xiàn)伊馬替尼耐藥;研究[28-29]發(fā)現(xiàn),伊馬替尼無法徹底清除原始細(xì)胞(lin-CD34+CD38-),可能與BCR-ABL蛋白在這些細(xì)胞中表達水平較高有關(guān)。Kumari等[30]發(fā)現(xiàn),BCR-ABL的高表達能催化BCR-ABL突變和伊馬替尼耐藥的發(fā)生。
3.2 BCR-ABL非依賴的耐藥機制
3.2.1 藥物流入和流出 可能與伊馬替尼耐藥有關(guān)的外排性轉(zhuǎn)運蛋白主要包括P-糖蛋白(P-glycoprotein,P-gp;也稱ATP binding cassette B1,ABCB1)、多藥耐藥相關(guān)蛋白-1(multidrug resistance-associated protein 1,MRP1;也稱ATP binding cassette C1,ABCC1)和乳腺癌耐藥蛋白(breast cancer resistance protein,BCRP,也稱ATP binding cassette G2,ABCG2)。伊馬替尼耐藥相關(guān)的攝入性轉(zhuǎn)運蛋白主要為人有機陽離子轉(zhuǎn)運體1(human organic cation transporter 1,hOCT-1)。
伊馬替尼耐藥相關(guān)的藥物轉(zhuǎn)運蛋白中研究較多的是P-gp。P-gp是由多藥耐藥基因MDR1編碼的一種跨膜糖蛋白,它消耗ATP的同時將胞內(nèi)親脂性的藥物泵出細(xì)胞,通過降低胞內(nèi)藥物濃度而導(dǎo)致耐藥的發(fā)生。Mahon等[25]首次報告,伊馬替尼的耐藥與P-gp的高表達有關(guān)。但是,Hatziieremia等[31]發(fā)現(xiàn),P-gp介導(dǎo)的耐藥在CD34+的CML祖細(xì)胞中不明顯。Deenik等[32]發(fā)現(xiàn),接受高劑量伊馬替尼治療的CML患者產(chǎn)生的耐藥與MDR1的基因多態(tài)性有關(guān),表明伊馬替尼的耐藥與P-gp有關(guān)。
MRP1也是一類跨膜糖蛋白,它需通過消耗ATP與谷胱甘肽(glutathione,GSH)結(jié)合,將帶負(fù)電的藥物逆濃度梯度泵出細(xì)胞,降低細(xì)胞內(nèi)藥物濃度,從而導(dǎo)致耐藥。然而,也有學(xué)者持相反意見,如Mukai等[33]和White等[34]認(rèn)為,伊馬替尼不是MRP1的底物,伊馬替尼耐藥與MRP1無關(guān)。
ABCG2首先從乳腺癌細(xì)胞中被發(fā)現(xiàn),故又稱為BCRP。近年來研究發(fā)現(xiàn),它在多藥耐藥方面起著不可忽視的作用。然而,對于伊馬替尼是ABCG2的底物還是抑制物,目前仍有爭議[35-36]。Nakanishi等[37]使表達BCR-ABL蛋白的CML細(xì)胞系K562細(xì)胞選擇性表達ABCG2,形成細(xì)胞系(K562/BCRP-MX10),發(fā)現(xiàn)ABCG2可以保護BCR-ABL陽性的細(xì)胞免受伊馬替尼的殺傷;他們隨后發(fā)現(xiàn),BCR-ABL蛋白通過激活PI3K-Akt通路上調(diào)ABCG2的表達,而伊馬替尼則通過抑制BCR-ABL蛋白的活性下調(diào)ABCG2的表達。但是, 該實驗是在人工導(dǎo)入ABCG2的基礎(chǔ)上進行的,而內(nèi)源性的ABCG2是否在CML細(xì)胞中具有以上作用仍待進一步研究。
hOCT-1是與伊馬替尼耐藥相關(guān)的攝入性轉(zhuǎn)運蛋白。Thomas等[38]認(rèn)為,伊馬替尼通過hOCT1轉(zhuǎn)運到細(xì)胞內(nèi)。White等[34]也認(rèn)為,hOCT1介導(dǎo)的伊馬替尼可進入細(xì)胞。Wang等[39]認(rèn)為,hOCT1表達的減少可能和伊馬替尼的臨床效應(yīng)不佳有關(guān)。
雖然已有大量藥物轉(zhuǎn)運蛋白的研究,但關(guān)于它們在伊馬替尼的耐藥機制中發(fā)揮的作用仍有爭議,仍需進行進一步的研究。
3.2.2 SIRT1去乙?;龆?哺乳動物SIRT1是酵母沉默信息調(diào)節(jié)因子Sir2(silence information regulator 2)的同源物,是一種煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)依賴的蛋白去乙?;竅40]。作為代謝應(yīng)激感受因子,在細(xì)胞遭受代謝、氧化和毒性應(yīng)激時,SIRT1通過將P53[41-42],Ku70[43]和FOXO[44]蛋白等多種底物去乙?;?,維持細(xì)胞的存活。許多研究[45-48]表明,在原發(fā)性實體瘤和血液惡性腫瘤中,SIRT1的表達增多。然而,SIRT1激活在造血祖細(xì)胞的惡性轉(zhuǎn)化和CML發(fā)展中的作用仍不清楚。Wang等[49]發(fā)現(xiàn),SIRT1在CML細(xì)胞株KCL-22和K562中表達明顯增加。隨后,Yuan等[50]證實,BCR-ABL可以在轉(zhuǎn)錄水平激活SIRT1。伊馬替尼可以通過抑制BCR-ABL而部分減少SIRT1的表達,進而增強CML細(xì)胞對伊馬替尼的敏感性。敲除SIRT1基因并聯(lián)合應(yīng)用伊馬替尼可以延長CML小鼠模型的生存期。Wang等[51]證明,抑制SIRT1的去乙?;蚯贸齋IRT1基因可以阻斷應(yīng)用酪氨酸激酶抑制劑導(dǎo)致的BCR-ABL獲得性突變以及CML復(fù)發(fā)。以上研究表明,SIRT1可能成為克服伊馬替尼耐藥的潛在治療靶點。
3.2.3 SK-1/S1P表達的增加 鞘磷脂(sphingomyelin)是膜脂質(zhì)的一個家族,包括神經(jīng)酰胺(ceramide,Cer)、鞘氨醇(sphingosine,Sph)和1-磷酸鞘氨醇(sphingosine 1-phosphate,S1P)等,對調(diào)節(jié)脂質(zhì)雙分子層的流動性和結(jié)構(gòu)具有重要作用[52]。這些分子在細(xì)胞增殖、凋亡、轉(zhuǎn)移和衰老及炎性反應(yīng)中發(fā)揮了必要作用[53-55]。Cer發(fā)揮促細(xì)胞凋亡的作用,而S1P則促進細(xì)胞增殖或抗凋亡。Cer可被神經(jīng)酰胺酶水解成鞘氨醇(Sph),在鞘氨醇激酶(sphingosine kinase,SK)中的SK-1或SK-2的作用下,Sph被磷酸化,得到S1P[56]。Baran等[57]報告,在K562細(xì)胞株中,SK-1介導(dǎo)的Cer和S1P平衡的改變導(dǎo)致了伊馬替尼的耐藥,但機制尚不明確。Salas等[58]證明,SK-1/S1P通過抑制伊馬替尼耐藥細(xì)胞株中蛋白酶體對BCR-ABL的降解,加強BCR-ABL蛋白的穩(wěn)定性;相反,敲除SK-1則可明顯降低耐藥細(xì)胞株BCR-ABL的穩(wěn)定性。
3.2.4 Twist1基因表達增多 Twist1基因是堿性螺旋-環(huán)-螺旋轉(zhuǎn)錄因子的重要成員,它作為轉(zhuǎn)錄因子參與胚胎的形成、未分化細(xì)胞的增殖和細(xì)胞的存活[59-61]。許多研究表明,Twist1作為重要的癌基因,在表皮-間葉細(xì)胞轉(zhuǎn)換(epithelial-mesenchymal transition,EMT)過程中起重要作用,參與多種實體腫瘤的發(fā)生和發(fā)展過程,但其在造血系統(tǒng)疾病中的作用仍不明確。Cosset等[62]認(rèn)為,Twist1基因可能參與CML的發(fā)生發(fā)展過程及伊馬替尼的耐藥。他們發(fā)現(xiàn)在CML活動期的患者中,Twist1基因是上調(diào)的;酪氨酸激酶抑制劑能下調(diào)Twist1基因的水平,而在酪氨酸激酶抑制劑耐藥的患者中,Twist1基因是上調(diào)的。有關(guān)Twist1基因在CML中的作用以及與酪氨酸激酶抑制劑耐藥關(guān)系,尚有待進一步研究。
綜上所述,伊馬替尼的出現(xiàn)為CML的治療及改善患者預(yù)后提供了希望,但隨著臨床應(yīng)用的推廣,其耐藥現(xiàn)象不斷顯現(xiàn)。了解伊馬替尼耐藥的機制有助于制定合理的治療方案,從而進一步提高CML患者的生存率和生存質(zhì)量。伊馬替尼的耐藥機制非常復(fù)雜,不僅涉及BCR-ABL蛋白的突變及表達水平改變等BCR-ABL依賴的耐藥機制,還包括多種非BCR-ABL依賴的耐藥機制。雖然在伊馬替尼的耐藥機制研究方面已取得很大的進步,但仍未被完全闡明,且多種耐藥機制之間的相互作用亦不明確。靶向多種耐藥位點可能成為克服伊馬替尼耐藥的新方向。
[1]Goldman JM,Melo JV.Chronic myeloid leukemia--advances in biology and new approaches to treatment[J].N Engl J Med,2003,349(15):1451-1464.
[2]Faderl S,Talpaz M,Estrov Z,et al.The biology of chronic myeloid leukemia[J]. N Engl J Med,1999,341(3):164-172.
[3]Faderl S,Hochhaus A,Hughes T.Monitoring of minimal residual disease in chronic myeloid leukemia[J].Hematol Oncol Clin North Am,2004, 18(3):657-670,ix-x.
[4]Alvarez RH,Kantarjian H,Cortes JE.The biology of chronic myelogenous leukemia:implications for imatinib therapy[J].Semin Hematol,2007,44(1 Suppl 1):S4-S14.
[5]Druker BJ,Talpaz M,Resta DJ,et al.Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia[J].N Engl J Med, 2001,344(14):1031-1037.
[6]Cohen MH,Williams G,Johnson JR,et al.Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia[J].Clin Cancer Res,2002,8(5):935-942.
[7]O′Brien SG,Guilhot F,Larson RA,et al.Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia[J].N Engl J Med,2003,348(11):994-1004.
[8]Hughes TP,Kaeda J,Branford S,et al.Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia[J].N Engl J Med,2003,349(15):1423-1432.
[9]Apperley JF.Part I:mechanisms of resistance to imatinib in chronic myeloid leukaemia[J].Lancet Oncol,2007,8(11):1018-1029.
[10]Branford S,Rudzki Z,Walsh S,et al.Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance,and mutations in the ATP phosphate-binding loop(P-loop) are associated with a poor prognosis[J].Blood,2003,102(1):276-283.
[11]Hochhaus A,Kreil S,Corbin AS,et al.Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy[J].Leukemia,2002, 16(11):2190-2196.
[12]Soverini S,Hochhaus A,Nicolini FE,et al.BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors:recommendations from an expert panel on behalf of European LeukemiaNet[J].Blood,2011,118(5):1208-1215.
[13]Soverini S,Martinelli G,Amabile M,et al.Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to Imatinib[J].Clin Chem,2004,50(7):1205-1213.
[14]An X,Tiwari AK,Sun Y,et al.BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia:a review[J].Leuk Res,2010,34(10):1255-1268.
[15]Jabbour E,Parikh SA,Kantarjian H,et al.Chronic myeloid leukemia:mechanisms of resistance and treatment[J].Hematol Oncol Clin North Am,2011,25(5):981-995.
[16]Soverini S,Colarossi S,Gnani A,et al.Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients:by the GIMEMA Working Party on Chronic Myeloid Leukemia[J]. Clin Cancer Res,2006,12(24):7374-7379.
[17]Kantarjian HM,Talpaz M,O′Brien S,et al.Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia[J].Blood,2003,101(2):473-475.
[18]Nicolini FE,Corm S,Lê QH,et al.Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients:a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP)[J].Leukemia,2006,20(6):1061-1066.
[19]Quintás-Cardama A,Kantarjian H,Cortes J.Flying under the radar:the new wave of BCR-ABL inhibitors[J].Nat Rev Drug Discov,2007,6(10):834-848.
[20]Gorre ME,Mohammed M,Ellwood K,et al.Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification[J].Science, 2001,293(5531):876-880.
[21]Shah NP,Nicoll JM,Nagar B,et al.Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia[J]. Cancer Cell,2002,2(2):117-125.
[22]Hochhaus A,La Rosée P.Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance[J].Leukemia,2004, 18(8):1321-1331.
[23]Park SH,Chi HS,Kwon MR,et al.Rare frameshift mutation Cys475Tyrfs(*)11 in the BCR/ABL kinase domain contributes to imatinib mesylate resistance in 2 Korean patients with chronic myelogenous leukemia[J].Ann Lab Med,2012, 32(6):452-454.
[24]Cassuto O,Dufies M,Jacquel A,et al.All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to ponatinib[J].Oncotarget, 2012,3(12):1557-1565.
[25]Mahon FX,Deininger MW,Schultheis B,et al.Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance[J].Blood,2000, 96(3):1070-1079.
[26]le Coutre P,Tassi E,Varella-Garcia M,et al.Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification[J].Blood,2000,95(5):1758-1766.
[27]Barnes DJ,Palaiologou D,Panousopoulou E,et al.Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia[J].Cancer Res,2005,65(19):8912-8919.
[28]Jiang X,Zhao Y,Smith C,et al.Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies[J]. Leukemia,2007,21(5):926-935.
[29]Jiang X,Saw KM,Eaves A,et al.Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells[J].J Natl Cancer Inst,2007, 99(9):680-693.
[30]Kumari A,Brendel C,Hochhaus A,et al.Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib[J].Blood,2012,119(2):530-539.
[31]Hatziieremia S,Jordanides NE,Holyoake TL,et al.Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib[J]. Exp Hematol,2009,37(6):692-700.
[32]Deenik W,van der Holt B,Janssen JJ,et al.Polymorphisms in the multidrug resistance gene MDR1 (ABCB1) predict for molecular resistance in patients with newly diagnosed chronic myeloid leukemia receiving high-dose imatinib[J].Blood,2010,116(26):6144-6145;author reply 6145-6146.
[33]Mukai M,Che XF,Furukawa T,et al.Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells[J].Cancer Sci,2003, 94(6):557-563.
[34]White DL,Saunders VA,Dang P,et al.OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib[J]. Blood,2006,108(2):697-704.
[35]Burger H,van Tol H,Boersma AW,et al.Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump[J]. Blood,2004,104(9):2940-2942.
[36]Houghton PJ,Germain GS,Harwood FC,et al.Imatinib mesylate is a potent inhibitor of the ABCG2(BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro[J].Cancer Res,2004,64(7):2333-2337.
[37]Nakanishi T,Shiozawa K,Hassel BA,et al.Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells:BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression[J].Blood,2006,108(2):678-684.
[38]Thomas J,Wang L,Clark RE,et al.Active transport of imatinib into and out of cells:implications for drug resistance[J].Blood,2004,104(12):3739-3745.
[39]Wang L,Giannoudis A,Lane S,et al.Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia[J].Clin Pharmacol Ther,2008,83(2):258-264.
[40]Guarente L.Sirtuins in aging and disease[J].Cold Spring Harb Symp Quant Biol,2007,72:483-488.
[41]Luo J,Nikolaev AY,Imai S,et al.Negative control of p53 by Sir2alpha promotes cell survival under stress[J].Cell,2001,107(2):137-148.
[42]Vaziri H,Dessain SK,Ng Eaton E,et al.hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase[J].Cell,2001,107(2):149-159.
[43]Cohen HY,Miller C,Bitterman KJ,et al.Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase[J].Science,2004, 305(5682):390-392.
[44]Brunet A,Sweeney LB,Sturgill JF,et al.Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase[J].Science,2004, 303(5666):2011-2015.
[45]Huffman DM,Grizzle WE,Bamman MM,et al.SIRT1 is significantly elevated in mouse and human prostate cancer[J].Cancer Res,2007, 67(14):6612-6618.
[46]Bradbury CA,Khanim FL,Hayden R,et al.Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors[J].Leukemia,2005, 19(10):1751-1759.
[47]Jang KY,Hwang SH,Kwon KS,et al.SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma[J].Am J Surg Pathol,2008, 32(10):1523-1531.
[48]Nosho K,Shima K,Irahara N,et al.SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer[J].Mod Pathol,2009,22(7):922-932.
[49]Wang B,Hasan MK,Alvarado E,et al.NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response[J]. Oncogene,2011,30(8):907-921.
[50]Yuan H,Wang Z,Li L,et al.Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis[J].Blood,2012,119(8):1904-1914.
[51]Wang Z,Yuan H,Roth M,et al.SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells[J].Oncogene,2013,32(5):589-598.
[52]Ogretmen B,Hannun YA.Biologically active sphingolipids in cancer pathogenesis and treatment[J].Nat Rev Cancer,2004,4(8):604-616.
[53]Hannun YA,Obeid LM.The Ceramide-centric universe of lipid-mediated cell regulation:stress encounters of the lipid kind[J].J Biol Chem,2002, 277(29):25847-25850.
[54]Merrill AH Jr,Schmelz EM,Dillehay DL,et al.Sphingolipids-the enigmatic lipid class:biochemistry,physiology,and pathophysiology[J].Toxicol Appl Pharmacol,1997,142(1):208-225.
[55]Futerman AH,Hannun YA.The complex life of simple sphingolipids[J]. EMBO Rep,2004,5(8):777-782.
[56]Hla T.Physiological and pathological actions of sphingosine 1-phosphate[J]. Semin Cell Dev Biol,2004,15(5):513-520.
[57]Baran Y,Salas A,Senkal CE,et al.Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells[J].J Biol Chem, 2007,282(15):10922-10934.
[58]Salas A,Ponnusamy S,Senkal CE,et al.Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A[J].Blood,2011,117(22):5941-5952.
[59]Sakatani T,Kaneda A,Iacobuzio-Donahue CA,et al.Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice[J].Science,2005, 307(5717):1976-1978.
[60]Puisieux A,Valsesia-Wittmann S,Ansieau S.A twist for survival and cancer progression[J].Br J Cancer,2006,94(1):13-17.
[61]Valsesia-Wittmann S,Magdeleine M,Dupasquier S,et al.Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells[J].Cancer Cell,2004,6(6):625-630.
[62]Cosset E,Hamdan G,Jeanpierre S,et al.Deregulation of TWIST-1 in the CD34+ compartment represents a novel prognostic factor in chronic myeloid leukemia[J].Blood,2011,117(5):1673-1676.