陳菲菲,鄔應(yīng)龍*
(四川農(nóng)業(yè)大學(xué)食品學(xué)院,四川 雅安 625014)
檸檬酸甘薯淀粉對(duì)齊口裂腹魚生長及腸道菌群的影響
陳菲菲,鄔應(yīng)龍*
(四川農(nóng)業(yè)大學(xué)食品學(xué)院,四川 雅安 625014)
目的:探討飼料中添加檸檬酸甘薯淀粉(citrate sweet potato starch,CSPS)對(duì)齊口裂腹魚生長及腸道微環(huán)境的影響。方法:選用平均體質(zhì)量為(75.47±5.43) g的齊口裂腹魚共180 尾,隨機(jī)分為5 組,每組3 個(gè)重復(fù),每個(gè)重復(fù)12 尾魚。對(duì)照組飼喂基礎(chǔ)日糧,實(shí)驗(yàn)組分別飼喂添加3.5%、7%、14%及28%的CSPS的日糧,連續(xù)飼喂60 d后解剖齊口裂腹魚,稱質(zhì)量后計(jì)算餌料系數(shù)、攝食率、特定生長率,取出腸管測定腸道黏膜皺褶高度,并對(duì)腸道菌群進(jìn)行聚合酶鏈?zhǔn)椒磻?yīng)變性梯度凝膠電泳(polymerase chain reaction-denaturing gradient gel electrophoresis,PCR-DGGE)分析。結(jié)果:7%及14%的劑量組的末質(zhì)量、攝食率、特定生長率顯著高于對(duì)照組(P<0.05);14%、28%劑量組前腸黏膜皺褶高度顯著低于對(duì)照組(P<0.05)。在中腸,對(duì)照組中腸道菌群與3.5%劑量組相似度最高。在前后腸,對(duì)照組與其他各劑量組腸道菌群相似度均較低,但50.0≤q<75.0(中度相似)。結(jié)論:低劑量(7%)的CSPS能夠促進(jìn)生長,而高劑量(28%)會(huì)抑制生長,CSPS能影響齊口裂腹魚的腸道菌群。
檸檬酸甘薯淀粉酯;齊口裂腹魚;攝食率;黏膜皺褶高度;腸道菌群
碳水化合物對(duì)蛋白質(zhì)的節(jié)約效應(yīng)是指在飼料中含有適量的碳水化合物能夠減少飼料蛋白質(zhì)的分解供能,從而提高魚類對(duì)蛋白質(zhì)的利用,起到節(jié)約飼料蛋白質(zhì)的作用。然而飼料中碳水化合物含量過高,會(huì)導(dǎo)致魚的生長受阻,魚體脂肪含量也會(huì)增加[1-3]。1993年由歐洲的抗性淀粉研究行動(dòng)委員會(huì)將抗性淀粉定義為不被健康人體的小腸所消化吸收的淀粉及淀粉降解物的總稱[4]。有研究發(fā)現(xiàn)抗性淀粉可有效降低血脂和預(yù)防脂肪肝的形成,可降低高碳水化合物飼料對(duì)魚生長造成的影響,且適當(dāng)攝入抗性淀粉可以減少結(jié)腸炎的發(fā)生,預(yù)防結(jié)腸癌、便秘等[5-6]。抗性淀粉有益于腸道健康、有益于腸道有益菌的生長,在人類和動(dòng)物體上均有報(bào)道[7-9],但抗性淀粉對(duì)魚類腸道的影響尚未見報(bào)道。魚類腸道的形態(tài)發(fā)育和腸道菌群既影響營養(yǎng)物質(zhì)的吸收,又影響腸道的免疫功能。本實(shí)驗(yàn)擬通過考察不同劑量的檸檬酸甘薯淀粉(citric sweet potato starch,CSPS)對(duì)齊口裂腹魚(Schizothorax prenanti Tchang)腸道形態(tài)發(fā)育和腸道菌群的影響,為CSPS應(yīng)用于魚飼料的開發(fā)提供參考。
1.1 材料與試劑
檸檬酸甘薯淀粉 實(shí)驗(yàn)室自制(抗性淀粉質(zhì)量分?jǐn)?shù)45.96%);E.Z.N.A?Stool DNA Kit 美國Omega公司;Tris 美國Sigma 公司;甲叉雙丙烯酰胺、丙烯酰胺、去離子甲酰胺、尿素(分析純) 美國Amresco公司。
1.2 儀器與設(shè)備
WH-866渦旋混合器 江蘇太倉華美生化儀器廠;5415D高速離心機(jī) 德國Eppendorf 公司;聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction,PCR)儀、變性梯度凝膠電泳(denaturing gradient gel electrophoresis,DGGE)系統(tǒng) 美國Bio-Rad公司;DYY-8C型電泳儀 北京六一儀器廠。
1.3 方法
1.3.1 CSPS的制備及定量測定
參考相關(guān)文獻(xiàn)[10-14],以甘薯淀粉為原料,制備得到CSPS。
1.3.2 動(dòng)物分組與管理
齊口裂腹魚購于雅安蘆山雅魚場。選用平均體質(zhì)量為(75.47±5.43)g的健康齊口裂腹魚180尾隨機(jī)分為5 組,每組設(shè)3 個(gè)重復(fù),每個(gè)重復(fù)12 尾。實(shí)驗(yàn)組飼料分別在基礎(chǔ)飼料中添加質(zhì)量分?jǐn)?shù)3.5%、7%、14%及28%的CSPS,日糧組成及營養(yǎng)成分見表1[15]。
實(shí)驗(yàn)前齊口裂腹魚先集中馴養(yǎng)2 周,實(shí)驗(yàn)開始時(shí),魚體稱質(zhì)量分組,將魚的體質(zhì)量調(diào)整至各組間差異不顯著(P>0.05),分別飼養(yǎng)在玻璃缸(規(guī)格為0.60 m×0.45 m×0.45 m)里。晝夜24 h用增氧機(jī)充氣。每天早中晚分別飼喂1次,每次換水量約為50%,每天的飼料投喂量為齊口裂腹魚總體質(zhì)量的2.5%。實(shí)驗(yàn)期間水溫保持在20~22 ℃。
表1 實(shí)驗(yàn)飼料配方和化學(xué)成分Table 1 Formulation and chemical composition of experimental diets
1.3.3 腸道內(nèi)容物及腸組織的采集
實(shí)驗(yàn)進(jìn)行至60 d時(shí),對(duì)各組齊口裂腹魚饑餓24 h后,從每組中隨機(jī)抽取5 尾魚,按常規(guī)方法解剖,稱其體長、體質(zhì)量并記錄,之后迅速取出齊口裂腹魚的前腸、中腸和后腸,將內(nèi)容物迅速轉(zhuǎn)移至滅菌1.5 mL 離心管中,于-20 ℃保存?zhèn)溆?。取各腸段長度約1 cm,用甲醛緩沖液固定、包埋并制作橫斷面切片,常規(guī)蘇木精-伊紅(hematoxylin and eosin,HE)染色。
1.3.4 腸絨毛的形態(tài)觀察和測量
在40 倍的Nikon顯微鏡下觀察著色較好的HE染色切片,并應(yīng)用愛普?qǐng)D像處理分析軟件4.0測量腸道黏膜皺褶高度。
1.3.5 腸道微生物DNA的提取
采用美國Omega公司的E.Z.N.A.?Stool DNA Kit試劑盒提取,提取的DNA于-20 ℃保存?zhèn)溆谩?/p>
1.3.6 腸道微生物16S rDNA的V3區(qū)PCR擴(kuò)增
選取16S rDNA通用引物[16]:上游引物為5’-CGCCCG GGGCGCGCCCCGGGGCGGGGCGGGGGCGCGGGGG GCCTACGGGAGGCAGCAG-3’,攜帶GC夾板;下游引物為5’-ATTACCGCGGCT GCTGG-3’。采用25 μL PCR反應(yīng)體系:ddH2O 8.75 μL、2×mix 12.5 μL、上游引物和下游引物各1.25 μL、DNA 模板2.5 μL。PCR 擴(kuò)增程序?yàn)椋?4 ℃預(yù)變性5 min;94 ℃變性30 s、54 ℃退火30 s、72 ℃延伸1 min,39 個(gè)循環(huán);72 ℃延伸10 min。產(chǎn)物用2%瓊脂糖凝膠電泳檢測,用Bio-Rad凝膠成像系統(tǒng)拍照。
1.3.7 DGGE分析
采用Bio-Rad Dcode系統(tǒng)進(jìn)行DGGE,DGGE條件:凝膠梯度為35%~65%,使用1×TAE 緩沖液,60 ℃、120 V固定電壓電泳10 h。采用硝酸銀染色并拍照。
1.4 數(shù)據(jù)處理
根據(jù)體長、體質(zhì)量的數(shù)據(jù)應(yīng)用下列公式計(jì)算餌料系數(shù)及攝食率。
式中:mf為飼料投喂總量/g;mt為實(shí)驗(yàn)結(jié)束時(shí)魚體總質(zhì)量/g;m0為實(shí)驗(yàn)初始時(shí)魚體總質(zhì)量/g;m為飼料攝入量/g;t為養(yǎng)殖時(shí)間/d。
應(yīng)用SPSS 16.0統(tǒng)計(jì)軟件的單因素方差分析進(jìn)行生物學(xué)統(tǒng)計(jì),結(jié)果用±s表示,顯著性水平確定為0.05。DGGE指紋圖譜通過Quantity One 4.6.2軟件,采用非加權(quán)組平均法(unweighted pair-group method with arithmetic means,UPGMA)進(jìn)行相似性聚類分析,多樣性指數(shù)用Shannon-Weiner指數(shù)(H’)表示,按照如下公式計(jì)算[17]。
式中:ni為某一條帶的峰高;H為泳道密度曲線所有的峰高的總和。
2.1 CSPS對(duì)齊口裂腹魚生長指標(biāo)的影響
表2 齊口裂腹魚的生長指標(biāo)變化Table 2 Effect of dietary supplementation of CSPS on growth indexes of Schizothorax prenanti Tchang
由表2可知,與對(duì)照組相比,其他各組的體質(zhì)量與攝食率均有所增加。末體質(zhì)量:7%及14% CSPS處理組顯著高于對(duì)照組(P<0.05),分別增加11.72%及9.84%;攝食率:7%、14%及28% CSPS處理組顯著高于對(duì)照組(P<0.05),增加了40.00%、40.95%及38.10%;餌料系數(shù):7%及14% CSPS處理組顯著低于對(duì)照組(P<0.05),減少了17.39%及13.23%;特定生長率:7%及14% CSPS處理組顯著高于對(duì)照組(P<0.05),增加了53.33%及46.67%。
2.2 CSPS對(duì)齊口裂腹魚腸道黏膜皺褶高度的影響
表3 齊口裂腹魚腸道黏膜皺褶高度變化Table 3 Effect of dietary supplementation of CSPS on plica mucosa height of Schizothorax prenanti Tchang
由表3可知,14%及28%的劑量組前腸黏膜皺褶高度顯著低于對(duì)照組(P<0.05);添加CSPS的各實(shí)驗(yàn)組的齊口裂腹魚中后腸道黏膜皺褶高度與對(duì)照組相比,差異均不顯著(P>0.05)。
2.3 CSPS對(duì)齊口裂腹魚腸道菌群的影響
2.3.1 齊口裂腹魚腸道菌群16S rDNA的V3區(qū)PCR擴(kuò)增結(jié)果
以提取的微生物DNA為模板,進(jìn)行PCR擴(kuò)增,產(chǎn)物通過2%瓊脂糖凝膠檢測后發(fā)現(xiàn),均能得到約200 bp的目的產(chǎn)物,且條帶清晰明亮,滿足DGGE分析的要求,如圖1所示。
圖1 齊口裂腹魚腸道菌群16S rDNA V3區(qū)擴(kuò)增結(jié)果Fig.1 16S rDNA V3 region amplification of intestinal flora in Schizothorax prenanti Tchang
2.3.2 齊口裂腹魚腸道菌群PCR-DGGE指紋圖譜的建立與分析
圖2 齊口裂腹魚腸道菌群16S rDNA V3區(qū)段擴(kuò)增產(chǎn)物的DGGE圖譜Fig.2 DGGE profile of 16S rDNA amplified products of intestinal flora in Schizothorax prenanti Tchang
圖3 齊口裂腹魚腸道菌群的PCR-DGGE圖譜的聚類分析Fig.3 Cluster analysis of PCR-DGGE profiles of intestinal flora in Schizothorax prenanti Tchang
表4 齊口裂腹魚前腸腸道菌群的PCR-DGGE圖譜的相似系數(shù)Table 4 Similarity coefficients of PCR-DGGE profiles of foregut flora iinn Schizothorax prenanti Tchang
表5 齊口裂腹魚中腸腸道菌群的PCR-DGGE圖譜的相似系數(shù)Table 5 Similarity coefficients of PCR-DGGE profiles of midgut flora iinn Schizothorax prenanti Tchang
表6 齊口裂腹魚后腸腸道菌群的PCR-DGGE圖譜的相似系數(shù)Table 6 Similarity coefficients of PCR-DGGE profiles of hindgut flora in Schizothorax prenanti Tchang
齊口裂腹魚腸道菌群16S rDNA V3區(qū)片段的DGGE圖譜的建立及其聚類分析和相似系數(shù)見圖2、3。由參考文獻(xiàn)[18]可知,當(dāng)0<q(相似系數(shù),下同)<25.0時(shí),極不相似;當(dāng)25.0≤q<50.0時(shí),中等不相似;當(dāng)50.0≤q<75.0時(shí),中等相似;當(dāng)75.0≤q<100.0時(shí),極相似。對(duì)前、中、后腸菌群聚類分析結(jié)果如圖3和表4~6所示。前腸中,14%與28%劑量組相似度最高,為75.5,被聚為一類,而對(duì)照組與其他組相似度最低,為50.3。在中腸,3.5%劑量組與對(duì)照組相似度最高,為76.5,被聚為一類,7%劑量組與其他組相似度最低,為55.5。后腸中,3.5%與7%的劑量組相似度最高,而28%劑量組與其他組相似度最低,為55.0。這說明高劑量的CSPS會(huì)顯著改變齊口裂腹魚的腸道菌群結(jié)構(gòu)。
腸道是機(jī)體消化、吸收營養(yǎng)物質(zhì)的重要場所,腸絨毛作為腸道的重要組成部分,在吸收營養(yǎng)物質(zhì)上至關(guān)重要。Caspary[19]報(bào)道指出腸絨毛高度增加,會(huì)使腸道接觸營養(yǎng)物質(zhì)的面積增大,從而有利于腸道對(duì)營養(yǎng)物質(zhì)的吸收,所以腸絨毛的形態(tài)直接與生長發(fā)育有關(guān)。本實(shí)驗(yàn)結(jié)果表明:與對(duì)照組相比,添加了CSPS的實(shí)驗(yàn)組,攝食率上升;CSPS的添加對(duì)齊口裂腹魚腸道結(jié)構(gòu)有局部損傷。實(shí)驗(yàn)組中齊口裂腹魚的前腸黏膜皺褶高度有明顯降低。已有研究表明,魚類可以分辨不同飼料中常規(guī)營養(yǎng)素和微營養(yǎng)素的組成差異[20]。魚類需要攝食足夠的必需營養(yǎng)物質(zhì),以滿足其能量需求[21],本實(shí)驗(yàn)中,CSPS劑量組可能因?yàn)槟c黏膜對(duì)營養(yǎng)物質(zhì)的吸收差而必須增加攝食量來滿足對(duì)營養(yǎng)物質(zhì)的需要,以致攝食率上升,體質(zhì)量增加。所以一定劑量的CSPS能有效提高魚的攝食率,反而促進(jìn)了生長。而過高劑量的抗性淀粉,會(huì)影響腸道消化酶的活性[22],同時(shí)會(huì)增加腸道的排空速度,所以腸道絨毛有局部損傷。
腸道微生物種類多,有一部分不能分離培養(yǎng)。因此,傳統(tǒng)培養(yǎng)法不能反映出菌群多樣性。變性梯度凝膠電泳技術(shù)是采用細(xì)菌通用引物擴(kuò)增菌群總DNA的16S rDNA可變區(qū),通過分析其核酸序列多樣性而獲知菌群多樣性情況,比傳統(tǒng)培養(yǎng)法更能獲得豐富的菌群信息。本實(shí)驗(yàn)中,前腸菌群聚類分析表明:對(duì)照組與其他組相似度最低,這表明了在齊口裂腹魚飼料中添加CSPS會(huì)對(duì)其前腸菌群結(jié)構(gòu)和種類有所影響;14%與28%劑量組相似度最高,聚為一類。這可能是當(dāng)劑量達(dá)到14%以上,出現(xiàn)一個(gè)明顯的影響。CSPS做為一種抗性淀粉,雖然有報(bào)道指出其低劑量利于有益菌的生長[23-24],但過高的劑量可能會(huì)影響腸道健康進(jìn)而對(duì)腸道菌群產(chǎn)生不良影響。而在中腸,3.5%劑量組與對(duì)照組相似度最高,被聚為一類,而7%劑量組與其他組相似度最低。這表明3.5%劑量組和對(duì)照組菌群更接近,7%的劑量組的中腸菌群可能與其他各組存在著很大不同。這可能是7%劑量組中CSPS促進(jìn)乳酸菌、雙歧桿菌等有益菌[25-26]的生長達(dá)到一個(gè)顯著水平。后腸中,3.5%與7%的劑量組相似度最高,這表明低劑量的CSPS促進(jìn)了后腸有益菌的生長,而3.5%劑量組也達(dá)到了顯著水平。因此可以推測,在齊口裂腹魚飼料中添加CSPS會(huì)對(duì)腸道菌群產(chǎn)生影響;低劑量(3.5%、7%)的CSPS可能會(huì)有利于有益菌的生長,但高劑量的反而產(chǎn)生不良影響。
綜上所述,添加CSPS實(shí)驗(yàn)組的魚由于吸收差而代償性的增加了攝食量,致使魚體質(zhì)量增加,即促進(jìn)了魚的生長。也正是由于魚體質(zhì)量增加,其消化酶活性也增加,從而加快腸道的排空速度,所以腸道絨毛有局部損傷。CSPS具體如何改變齊口裂腹魚的腸道菌群還有待進(jìn)一步研究。
[1] DIAS J S J. Regulation of hepatic lipogenesis by dietary protein/ energy in juvenile European sea bass (Dicentrarchus labrax)[J]. Aquaculture, 1998, 161: 169-186.
[2] GRISDALE-HELLAND B, HELLAND S J. Macronutrient utilization by Atlantic halibut (Hippoglossus hippoglossus): diet digestibility and growth of 1 kg fish[J]. Aquaculture, 1998, 166: 57-65.
[3] 田麗霞, 劉永堅(jiān), 馮健, 等. 不同種類淀粉對(duì)草魚生長、腸系膜脂肪沉積和魚體組成的影響[J]. 水產(chǎn)學(xué)報(bào), 2002, 26(3): 247-251.
[4] ESCARPA A, GONZALEZ M C, MORALES M D. An approach to the influence of nutrients and other food constituents on resistant starch formation[J]. Food Chemistry, 1997, 60(4): 527-532.
[5] 付蕾, 田紀(jì)春. 抗性淀粉制備、生理功能和應(yīng)用研究進(jìn)展[J]. 中國糧油學(xué)報(bào), 2008, 23(2): 51-54.
[6] SUZUKI T, YOSHIDA S, HARA H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability[J]. British Journal of Nutrition, 2008, 100(2): 297-305.
[7] 李瑞, 廖振林, 方祥, 等. 抗性淀粉對(duì)HFA 小鼠腸道菌群的影響[J].中國微生態(tài)學(xué)雜志, 2013, 25(7): 762-765.
[8] HAENEN D, da SILVA C S, ZHANG Jing, et al. Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in proximal colon of male pigs[J]. Journal of Nutrition, 2013, 143(11): 123-129.
[9] MAKI K C, PELKMAN C L, FINOCCHIAROET, et al. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obesemen[J]. Nutrition and Disease, 2012, 142(4): 717-723.
[10] RENATA B, KAMILA J, KATARZYNA S. The effect of citric acidmodified enzyme-resistant dextrin on growth and metabolism of selected strains of probiotic and other intestinal bacteria[J]. Journal of Functional Foods, 2010(2): 126-133.
[11] SANG I S, CHANG J L, KIM D I, et al. Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment[J]. Journal of Cereal Science, 2007, 45: 24-33.
[12] CHANG J L, SANG I S. Structural characteristics of low-glycemic response rice starch produced by citric acid treatment[J]. Carbohydrate Ploymers, 2009, 78(3): 588-595.
[13] MA Xiaofei, CHANG P R, YU Jiugao, et al. Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites[J]. Carbohydrate Polymers, 2009, 75: 1-8.
[14] 于密軍. 檸檬酸改性豌豆淀粉的研究[D]. 天津: 天津大學(xué), 2008: 19-27.
[15] 段彪, 向裊, 周興華, 等. 齊口裂腹魚飼料中適宜脂肪需要量的研究[J].動(dòng)物營養(yǎng)學(xué)報(bào), 2007, 19(3): 232-236.
[16] LIU Huaide, WANG Lei, LIU Mei, et al. The intestinal microbial diversity in Chinese shrimp (Fenneropenaeus chinensis) as determined by PCR-DGGE and clone library[J]. Aquaculture, 2011, 317: 32-36.
[17] VANCE J M, JOYCE M S, RODERICK I M, et al. Molecular ecological analysis of dietary and antibiotic-induced alterations of the mouse intestinal microbiota[J]. Journal of Nutrition, 2001, 131(6): 1862-1870.
[18] PANGLOLI P, HUNG Y C, BEUCHAT L R, et al. Reduction of Escherichia coli O157:H7 on produce by use of electrolyzed water under simulated food service operation conditions[J]. Journal of Food Protection, 2009, 72(9): 1854-1861.
[19] CASPARY W F. Physiology and pathophysiology of intestinal absorption[J]. American Journal of Clinical Nutrition, 1992, 55: 299-308.
[20] ARANDA A, SANCHEZ-VAZQUEZ F J, MADRID J A. Effect of short-term fasting on macronutrient self-selection in sea bass[J]. Physiology and Behavior, 2001, 73: 105-109.
[21] SANCHEZ-VAZQUEZ F J, YAMAMOTO T, AKIYAMA T, et al. Macronutrient self-selection through demand-feeders in rainbow trout[J]. Physiology and Behavior, 1999, 66: 45-51.
[22] 黃瑾, 熊邦喜, 陳潔, 等. 魚類消化酶活性與體長、體重和水質(zhì)的相關(guān)性研究[J]. 水生態(tài)學(xué)雜志, 2012, 33(2): 121-126.
[23] 何梅, 洪潔, 楊月欣, 等. 抗性淀粉對(duì)大鼠腸道菌群的影響[J]. 衛(wèi)生研究, 2005, 34(1): 85-87.
[24] 戴求仲, 劉紹偉, 李湘, 等. 飼糧直/支鏈淀粉比對(duì)黃羽肉雞血液生化指標(biāo)和后腸微生物菌群的影響[J]. 動(dòng)物營養(yǎng)學(xué)報(bào), 2010, 22(4): 904-910.
[25] 馬相杰, 汪立平, 趙勇, 等. 甘露寡糖對(duì)羅非魚幼魚腸道微生物的影響[J]. 微生物學(xué)通報(bào), 2010, 37(5): 708-713.
[26] 李衛(wèi)芬, 沈濤, 陳南南, 等. 飼料中添加枯草芽孢桿菌對(duì)草魚消化酶活性和腸道菌群的影響[J]. 大連海洋大學(xué)學(xué)報(bào), 2012, 27(3): 221-225.
Abstract: Xiaguan Tuocha is a functional drink and known to possess some health properties. In order to identify the chemical components and investigate preventive effects of Xiaguan raw (unfermented) Tuocha (XRT) on gastric injury in vivo, liquid chromatography-mass spectrometry (LC-MS) and cytokine analysis were used in this study, and the gastric secretion and pH of gastric juice were also tested. Twelve components were found in XRT, all of which contributed to the preventive effect on gastric injury. XRT at higher concentration reduced the levels of serum proinflammatory cytokines such as IL-6 and TNF-α compared with at lower concentration. The 1 000 mg/kg XRT showed the best inhibitory effect on gastric injury (78.7% inhibitory rate). The 1 000 mg/kg XRT treated rats also exhibited similarly low gastric secretion (2.0 mL) and higher pH of gastric juice (pH 3.1) compared with normal rats. Xiaguan Tuocha contained many functional components and exerted a strong preventive effect on gastric injury.
Key words: Tuocha; gastric injury; cytokine; rat
Effect of RS4-Type Sweet Potato Resistant Starch on Growth and Intestinal Microenvironment of Schizothorax prenanti Tchang
CHEN Fei-fei, WU Ying-long*
(College of Food Science, Sichuan Agricultural University, Ya’an 625014, China)
Objective: To investigate the effect of dietary supplementation of citrate sweet potato starch (CSPS), prepared using esterification with citric acid, on the growth and intestinal microenvironment of Schizothorax prenanti Tchang. Methods: Totally 180 fish with an average body weight of (75.47 ± 5.43) g were randomly divided into five groups of 12 fish in each group, with three replicates for each group. Control group was fed a basal diet, and three test groups were fed a diet supplemented with CSPS at doses of 3.5%, 7%, 14% and 28%, respectively. Sixty days later, all fish were weighed and dissected, and feed conversion rate, feeding rate and specific growth rate were calculated. After removing the intestine, the intestinal mucosa height was measured. The intestinal flora was analyzed by PCR-DGGE. Results: Compared with the control group, final body weight, feeding rate and specific growth rate were significantly increased in 7% and 14% CSPS groups (P < 0.05). Foregut plica mucosa height was significantly decreased in 14% and 28% CSPS groups (P < 0.05). As for the midgut, the intestinal flora in 3.5% CSPS group was more similar to in the control group. The foregut and hindgut intestinal flora revealed an extremely significant difference between the control group and three test groups, despite showing 50.0 ≤ q < 75.0 (moderate similar). Conclusion: The growth of Schizothorax prenanti Tchang is promoted by dietary supplementation of CSPS at a low dose (7%) but inhibited at a high dose (28%). At the same time, CSPS can affect the intestinal flora of Schizothorax prenanti Tchang.
citrate sweet potato starch; Schizothorax prenanti Tchang; food intake rate; plica mucosa height; intestinal flora
Chemical Composition of Xiaguan Raw Tuocha and Its Preventive Activity on HCl/Ethanol-Induced Gastric Injury in SD Rats
WANG Rui, ZHAO Xin*
(Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China)
TS254
A
1002-6630(2014)13-0266-05
10.7506/spkx1002-6630-201413053
2013-10-10
四川農(nóng)業(yè)大學(xué)“211”工程雙支計(jì)劃項(xiàng)目(2010)
陳菲菲(1988—),女,碩士研究生,研究方向?yàn)楣δ苄允称贰-mail:672394220@qq.com
*通信作者:鄔應(yīng)龍(1963—),男,教授,博士,研究方向?yàn)楣δ苄允称?。E-mail:wuyinglong99@163.com