楊玲珍,岳寶花
太原理工大學(xué)物理與光電工程學(xué)院,光電工程研究所,太原030024
光纖激光器因結(jié)構(gòu)簡(jiǎn)單緊湊、制造成本低,廣泛用于光纖傳感、光譜分析、材料加工及光通信等領(lǐng)域,受到人們極大關(guān)注[1-3].被動(dòng)鎖模光纖激光器可以產(chǎn)生亮、暗孤子[4-6].與亮孤子相比,暗孤子具有更好的抗損耗擾動(dòng)和抗相互作用特性,且在傳播過程中具有很好的保形性[7-8],在長(zhǎng)距離通信和傳感中具有廣泛應(yīng)用前景.Ablowitz等[9]理論研究強(qiáng)色散管理的光通信中暗灰孤子的產(chǎn)生機(jī)制和特性.Stratmann等[10]理論研究不同激發(fā)脈沖下,相互吸引的作用力對(duì)時(shí)間暗孤子族演化的作用.徐文成等[11]在環(huán)形光纖激光器中觀察到三波長(zhǎng)暗脈沖族的形成,并發(fā)現(xiàn)在環(huán)形激光器中由單個(gè)暗脈沖構(gòu)成的暗脈沖族的重復(fù)頻率與偏振控制器的位置有關(guān)[12],并在環(huán)形光纖激光器中實(shí)驗(yàn)觀察到單個(gè)暗脈沖的產(chǎn)生[13].南洋理工大學(xué)的Tang Dingyuan課題組在環(huán)形光纖激光器中觀察到一種新型暗孤子[14].Ablowitz等[15]使用功率 -能量可飽和模型研究在鎖模激光器中暗孤子的特性.本研究基于摻鉺環(huán)形光纖激光器,分析在改變線性相移時(shí),暗孤子族的演化規(guī)律.理論研究表明,當(dāng)其他條件不變時(shí),改變光纖激光器中偏振控制器的工作狀態(tài)可使組成暗孤子族的暗孤子個(gè)數(shù)及光譜性質(zhì)發(fā)生改變.
圖1 環(huán)形光纖激光器的理論模型Fig.1 Theoretical model for fiber ring laser
摻鉺環(huán)形光纖激光器的理論模型如圖1.非線性偏轉(zhuǎn)鎖模光纖激光器包括:群速度色散為-21 ps/(nm·km)、長(zhǎng)度為35 m的摻鉺光纖(erbiumdoped fiber,EDF),2段群速度色散均為 20 ps/(nm·km)、長(zhǎng)均為10 m的單模光纖(single-mode fiber,SMF1和SMF2),2個(gè)偏振控制器(polarization controller,PC),1個(gè)偏振相關(guān)隔離器(polarization dependent isolator,PDI),1個(gè)波分復(fù)用器(wavelength division multiplexing,WDM),1個(gè)耦合輸出端(optical coupler,OC).光纖激光器使用980 nm半導(dǎo)體激光器為抽運(yùn)源,抽運(yùn)光通過WDM耦合到摻鉺光纖.光纖耦合器的耦合比為 90∶10,10%的輸出光用于探測(cè).偏振相關(guān)隔離器既可保證腔內(nèi)激光單方向運(yùn)轉(zhuǎn),又可保證輸出光為線偏振光.偏振相關(guān)光隔離器結(jié)合兩個(gè)偏振控制器,利用光纖非線性Kerr效應(yīng)可實(shí)現(xiàn)鎖模,在光纖激光器腔體中形成類可飽和吸收體.
對(duì)環(huán)形腔激光器來(lái)說(shuō),可用改進(jìn)的非線性耦合薛定諤方程來(lái)描述其腔內(nèi)光脈沖演化的動(dòng)力學(xué)方程[16-17]:
其中,u和v表示在兩個(gè)正交偏振模式下,歸一化電場(chǎng)包絡(luò)的慢變振幅;兩個(gè)模式的不同波數(shù)Δβ=β0x,其中,LB=λ/Bm為拍長(zhǎng);δ=(β1x-β1y)/2是兩個(gè)偏振態(tài)之間的群速度差,β1x和β1y分別表示兩個(gè)偏振正交模式下不同的群速度;β2為群速度色散(group velocity dispersion,GVD);β3表示三階色散參量(third-order dispersion,TOD);γ為光纖的非線性系數(shù).通過變換引入以群速度vg移動(dòng)的參考系(即所謂的延時(shí)系)表示由EDF引起的增益色散,Ωg是激光器的增益帶寬,g為EDF的飽和增益.同時(shí),g=Gexp,G為小信號(hào)增益,Psat為歸一化的飽和能量.
模擬參數(shù)如下:γ=3(W·km-1),β3=0.1 ps2/(nm·km),Ωg=25 nm,Psat=1 000 PJ,環(huán)形光纖激光器的總長(zhǎng)L=55 m,LB=L/4.起偏器和雙折射光纖快軸的夾角為:θ=0.125π.通過分步傅里葉法求解方程(1)和方程(2).當(dāng)環(huán)形光纖激光器在固定的線性相移(即偏振控制器位于合適位置)和小信號(hào)增益(即抽運(yùn)功率),激光器會(huì)實(shí)現(xiàn)鎖模.當(dāng)鎖模脈沖形成后,脈沖的峰值功率隨小信號(hào)增益的增大而增大.當(dāng)脈沖峰值功率足夠大時(shí),自相位調(diào)制效應(yīng)就能平衡由腔色散效應(yīng)引起的脈沖展寬形成孤子.
圖2 φ=1.23π,G=305時(shí),1個(gè)暗孤子Fig.2 One dark soliton with φ =1.23π,G=305
圖3 φ=1.24π,G=305時(shí),2個(gè)暗孤子Fig.3 Two dark solitons with φ =1.24π,G=305
圖4 φ=1.35π,G=305時(shí),4個(gè)暗孤子Fig.4 Four dark solitons with φ =1.35π,G=305
在數(shù)值模擬過程中,當(dāng)小信號(hào)增益固定為305,改變腔的線性相移時(shí),光纖激光器輸出暗孤子族中暗孤子的個(gè)數(shù)和光譜性質(zhì)會(huì)發(fā)生改變,如圖2~圖4.圖2(a)~圖5(a)和圖2(b)~圖5(b)分別是描述光纖激光器在不同工作狀態(tài)下輸出暗孤子在時(shí)序和光譜上的演化圖.當(dāng)線性相移為1.23π時(shí),激光器輸出單個(gè)暗孤子.當(dāng)線性相移為1.24π,光纖激光器輸出兩個(gè)暗孤子.當(dāng)線性相移增至1.35π,環(huán)形激光器輸出4個(gè)暗孤子構(gòu)成的暗孤子族.同時(shí),還可以觀察到暗孤子族的光譜出現(xiàn)旁瓣.當(dāng)線性相移和小信號(hào)增益取其他值時(shí),光纖激光器也會(huì)輸出不同的暗孤子族.如圖5,當(dāng)線性相移為1.30π,小信號(hào)增益為420時(shí),光纖激光器輸出兩個(gè)暗孤子,且暗孤子族的光譜有明顯旁瓣.
圖5 φ=1.3π,G=420時(shí),2個(gè)暗孤子Fig.5 Two dark solitons with φ =1.3π,G=420
基于非線性偏轉(zhuǎn)旋轉(zhuǎn)技術(shù)鎖模的環(huán)形光纖激光器,其鎖模裝置的透射函數(shù)可描述為[18]
其中,θ為光纖快軸與起偏器之間的夾角;φ為光纖快軸與檢偏器間的夾角;ΔΦ1為由于光纖雙折射所引起的線性相位延遲;ΔΦ1為由非線性效應(yīng)引起的非線性相位延遲.
由式(4)可見,透射函數(shù)是與線性相位延遲和非線性相位延遲有關(guān)的周期函數(shù).在一個(gè)周期里,對(duì)應(yīng)不同的相位延遲,光纖激光器可分別工作在正反饋和負(fù)反饋兩個(gè)不同的區(qū)域.在正反饋區(qū)域時(shí),脈沖的峰值功率隨脈沖能量的增大而增加,負(fù)反饋則反之.由圖2(a)可見,在一定參數(shù)情況下,暗孤子呈穩(wěn)定單暗孤子輸出.在保持增益不變,調(diào)節(jié)偏振控制器的工作狀態(tài),透過率函數(shù)輸出發(fā)生變化,對(duì)穩(wěn)定的單暗孤子在傳播過程中形成擾動(dòng).當(dāng)擾動(dòng)較大時(shí),暗孤子不能克服擾動(dòng)而呈發(fā)散和分裂趨勢(shì),在激光腔內(nèi)暗孤子脈沖將重新分布,進(jìn)而達(dá)到穩(wěn)態(tài)輸出.由圖3(a)和圖4(a)可見,隨著參數(shù)的變化,透過率函數(shù)T值從一個(gè)峰值演變到兩個(gè)乃至多個(gè)峰值,使激光器輸出多個(gè)暗孤子脈沖,形成暗孤子族.
由圖4(b)和圖5(b)可見,暗孤子的光譜出現(xiàn)明顯旁瓣,其產(chǎn)生是由光纖激光器調(diào)制不穩(wěn)定性引起的[19-20].在光纖中傳播的暗孤子可分解成兩個(gè)正交偏振的分量.各分量的大小與偏振控制器的位置和抽運(yùn)功率有關(guān).在光纖中傳播時(shí),相互正交的偏振分量不同,由自相位調(diào)制和互相位調(diào)制作用所引起的非線性相移大小也不同.與時(shí)間有關(guān)的非線性相移變化導(dǎo)致暗孤子頻譜變化,相同頻率不同相位波的相對(duì)相位可發(fā)生相長(zhǎng)和相消干涉,使得暗孤子的頻譜展寬在整個(gè)頻率范圍會(huì)出現(xiàn)新的起伏,即出現(xiàn)旁瓣.由于互相位調(diào)制的存在,激光器輸出的光譜旁瓣是不對(duì)稱的.
通過改變線性相移和小信號(hào)增益的大小,對(duì)摻鉺環(huán)形激光器中暗孤子族的演化進(jìn)行理論分析.結(jié)果表明,基于非線性偏轉(zhuǎn)旋轉(zhuǎn)鎖模技術(shù)形成的類可飽和吸收體的特性,使暗孤子在脈沖演變過程中具有與光纖快軸與起偏器、檢偏器之間的夾角相關(guān)的透過率周期函數(shù).在小信號(hào)增益保持不變,調(diào)節(jié)偏振控制器的工作狀態(tài)時(shí),使激光器透過率函數(shù)的峰值發(fā)生變化,形成多個(gè)暗孤子脈沖,進(jìn)而形成暗孤子族.暗孤子族光譜旁瓣的產(chǎn)生,由自相位調(diào)制和互相位調(diào)制所產(chǎn)生的非線性相移之間相干相長(zhǎng)或相消干涉所引起的.
/References:
[1]Du Geguo,Zhang Lingcong,Zhao Junqing,et al.Actively Q-switched thulium-doped double-clad fiber laser [J].Journal of Shenzhen University Science and Engineering,2012,29(5):417-420.(in Chinese)杜戈果,張靈聰,趙俊清,等.主動(dòng)調(diào)Q摻銩雙包層光纖激光器 [J].深圳大學(xué)學(xué)報(bào)理工版,2012,29(5):417-420.
[2]Du Geguo,Hu Hui,Yan Peiguang,et al.Experimental study on tunable thulium-doped double-cladding fiber laser[J].Journal of Shenzhen University Science and Engineering,2011,28(2):105-108.(in Chinese)杜戈果,胡 輝,閆培光,等.可調(diào)諧摻銩雙包層光纖激光器實(shí)驗(yàn)研究 [J].深圳大學(xué)學(xué)報(bào)理工版,2011,28(2):105-108.
[3]Cheng Jianqun,Ruan Shuangchen,Guo Chunyu,et al.Narrow linewidth Erbium-doped photonic crystal fiber laser[J].Journal of Shenzhen University Science and Engineering,2011,28(5):396-404.
[4]Li Xiaohui,Wang Yishan,Zhao Wei,et al.Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers[J].Optics Communications,2012,285(19):1356-1361
[5]Yang Lingzhen,Zhu Jianfeng,Qiao Zhanduo,et al.Periodic intensity variations on the pulse-train of a passively mode-locked fiber ring laser[J].Optics Communications,2010,283(19):3798-3802
[6]Zhang Han,Tang Dingyuan,Zhao Luming,et al.Dark pulse emission of a fiber laser[J].Physical Review A,2009,80(4):045803-1-045803-4.
[7]Lisak M,Anderson D,Malomed B A.Dissipative damping of dark solitons in optical fibers[J].Optics Letters,1991,16(24):1936-1937.
[8]Zhao W,Bourkoff E.Interactions between dark solitons[J].Optics Letters,1989,14(24):1371-1373.
[9]Ablowitz M J,Musslimani Z H.Dark and gray strong dispersion-managed solitons[J].Physical Review E,2003,67(2):025601-1-025601-4.
[10]Stratmann M,Mitschke F.Chains of temporal dark solitons in dispersion-managed fiber[J].Physical Review E,2005,72(6):066616-1-066616-6.
[11]Yin Haisen,Xu Wencheng,Luo Aiping,et al.Observation of dark pulse in a dispersion-managed fiber ring laser[J].Optics Communications,2010,283(21):4338-4341.
[12]Wang Luyan,Xu Wencheng,Luo Zhichao,et al.Dark pulses with tunable repetition rate emission from fiber ring laser[J].Optics Communications,2011,285(8):2113-2117.
[13]Li H P,Xia H D,Jing Z,et al.Dark pulse generation in a dispersion managed fiber laser [J].Laser Physics,2011,22(1):261-264.
[14]Zhang Han,Tang Dingyuan,Zhao Luming,et al.Vector dark domain wall solitons in a fiber ring laser[J].Optics Express,2010,18(5):4228-4433.
[15]Mark J A,Theodoros P H,Sean D N,et al.Dark solitons in mode-locked lasers [J].Optics Letters,2011,36(6):793-795.
[16]Zhao Luming,Tang Dingyuan,Lin Feng,et al.Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity[J].Optics Express,2004,12(19):4573-4578.
[17]Wu Jin,Tang Dingyuan,Zhao Luming,et al.Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique [J].Physical Review E,2006,74(4):046605-1-046605-7.
[18]Chen C J,Wai P K,Menyuk C R.Soliton fiber ring laser[J].Optics Letters,1992,17(6):417-419.
[19]Tang Dingyuan,F(xiàn)leming S,Man W S,et al.Subsideband generation and modulational Instability lasing in a fiber soliton laser[J].Journal of the Optical Society of America B,2001,18(10):1443-1450.
[20]Luo Z C,Xu W C,Song C X,et al.Modulation instability induced by periodic power variation in soliton fiber ring lasers[J].The European Physical Journal D,2009,45(3):693-697.