李 琪,金英芝,陳 棟,徐 巧,李雪嬌,劉 斌,尹守春
(杭州師范大學(xué)材料與化學(xué)化工學(xué)院,浙江 杭州 310036)
合成及表征一種含BODIPY和蒽的新型熒光染料
李 琪,金英芝,陳 棟,徐 巧,李雪嬌,劉 斌,尹守春
(杭州師范大學(xué)材料與化學(xué)化工學(xué)院,浙江 杭州 310036)
本文通過鈀催化偶聯(lián)反應(yīng),成功地將蒽基引入到BODIPY母體結(jié)構(gòu)的3-位上,合成了一種以蒽為供體和BODIPY為接受體的分子天線.采用1H NMR、13C NMR和MS等表征手段對(duì)化合物進(jìn)行了結(jié)構(gòu)表征,并對(duì)反應(yīng)結(jié)果進(jìn)行了討論.
BODIPY;蒽;熒光染料;合成
50多年以來,能量轉(zhuǎn)移一直引起科學(xué)界的廣泛關(guān)注.這是因?yàn)槟芰哭D(zhuǎn)移在許多自然和人工過程中都扮演著重要作用,比如水氧化生成氧氣,光合生物體內(nèi)二氧化碳的固定,太陽能的光化學(xué)轉(zhuǎn)換及信息處理等[1-2].很多科學(xué)家為此一直致力于設(shè)計(jì)合成可用于能量轉(zhuǎn)移的分子天線,他們希望設(shè)計(jì)的分子天線中的兩個(gè)或多個(gè)生色團(tuán)間具有很好的匹配性.
在各種生色團(tuán)中,BODIPY(4,4-二氟-4-硼-3a,4a-二氮雜-s-引達(dá)省)熒光染料引起人們廣泛的興趣,這主要是因?yàn)锽ODIPY熒光染料有許多優(yōu)點(diǎn),如在可見光波長范圍內(nèi)有明顯的紫外吸收和熒光發(fā)射峰、較大的摩爾消光系數(shù)、相當(dāng)高的熒光量子產(chǎn)率、較強(qiáng)的抗光和化學(xué)品以及分子結(jié)構(gòu)易于修飾等[3].近年來,已有一些將BODIPY熒光染料作為分子天線中的接受體或供體的報(bào)道.比如BODIPY作為接受體,可以吸收來自多環(huán)芳香碳?xì)浠衔颷4-6],噻吩齊聚物[7],亞酞菁[8]等供體的能量;BODIPY也可作為供體,將自身吸收的能量傳遞到卟啉[9-10],苝二酰亞胺[11],亞酞菁[8-12],富勒烯[13],BODIPY[14-15]等接受體.
本文將報(bào)道一種BODIPY作為接受體和蒽作為受體的分子天線的合成及表征.將蒽共軛地連接在BODIPY接受體的3位,由于蒽和BODIPY間共平面,可使電子沿著供體蒽直接傳遞到受體BODIPY中,同時(shí)也可以有效地增加蒽和BODIPY各自的共軛長度,使它們的吸收和發(fā)射光譜都能發(fā)生一定的紅移[16].
1.1 主要實(shí)驗(yàn)儀器
ZF7三用紫外分析儀(杭州瑞佳精密科學(xué)儀器有限公司);DF-101S集熱式恒溫加熱磁力攪拌器(杭州瑞佳精密科學(xué)儀器有限公司);JBZ-14B型磁力攪拌器(上海志威電器有限公司);NMR由德國布魯克公司生產(chǎn)的Bruker 300型核磁共振儀測定,以TMS為內(nèi)標(biāo);ESI質(zhì)譜由美國Agilent公司生產(chǎn)的Agilent 5975質(zhì)譜儀測定.
1.2 主要實(shí)驗(yàn)試劑
1,4-二碘-2,5-雙十二烷氧基苯[17]、9-乙炔蒽[18]和3,5-二氯BODIPY[19]按照相應(yīng)的參考文獻(xiàn)合成.二氯甲烷、石油醚、乙酸乙酯、鹽酸、碳酸氫鈉、氫氧化鈉、無水硫酸鈉均來自于杭州高晶精細(xì)化工有限公司;300-400目硅膠來自于青島海洋化工廠;三乙胺、四氫呋喃、吡咯、對(duì)甲基苯甲醛、三氟化硼乙醚溶液來自于百靈威科技有限公司;N-氯代丁二酰亞胺、對(duì)四氯苯醌、2-甲基-3-丁炔-2-醇、碘化亞銅、Pd(PPh3)Cl2來自于ACROS公司;所有試劑均為分析純.
2.1 目標(biāo)產(chǎn)物的合成
1.2.1 合成過程
圖1 目標(biāo)產(chǎn)物的合成路線Fig. 1 Synthetic route of target product
1.2.2 4-(2,5-雙十二烷氧基-4-碘苯基)-2-甲基-3-丁炔-2-醇 (1)的合成
氬氣保護(hù)下,將3.49 g (5 mmol) 1,4-二碘-2,5-雙十二烷氧基苯,0.42 g (5 mmol) 2-甲基-3-丁炔-2-醇,80 mL THF,5 mL Et3N,70 mg (0.1 mmol) PdCl2(PPh3)2和20 mg (0.1 mmol) CuI加入到250 mL圓底燒瓶中.室溫下攪拌1 h后,加熱至60 ℃反應(yīng)4 h.旋干溶劑后,加入飽和碳酸氫鈉溶液,用二氯甲烷萃取.二氯甲烷層用無水硫酸鈉干燥.旋掉二氯甲烷后,粗產(chǎn)物經(jīng)硅膠色譜柱分離,展開劑為CH2Cl2/CH3OH=(10:1, v/v),得到白色固體2.42 g,產(chǎn)率為74%.1H NMR (300 MHz, CDCl3),δ(ppm): 7.25 (1H, s), 6.80 (1H, s), 3.92 (4H, t,J=6.4 Hz, OCH2(CH2)10CH3), 2.07 (1H, s, OH), 1.77 (4H, m, OCH2CH2(CH2)9CH3), 1.62 (6H, s, C(CH3)2OH), 1.48 (4H, m, O(CH2)2CH2(CH2)8CH3), 1.26 (32H, m, O(CH2)3(CH2)8CH3), 0.88 (6H, t, J=6.4 Hz, O(CH2)11CH3).13C NMR (75 MHz, CDCl3),δ(ppm): 154.5, 151.9, 123.8, 116.3, 113.1, 98.7, 87.6, 70.2, 69.8, 65.9, 32.1, 31.6, 29.8, 29.5, 29.3, 26.2, 22.8, 14.3. ESI-MS: m/z 1331.7 [2M+Na]+.
1.2.3 4-(4-(2-(9-蒽基)乙炔基)-2,5-雙十二烷氧苯基)-2-甲基-3-丁炔-1-醇 (2)的合成
氬氣保護(hù)下,將8.18 g (12.5 mmol) 化合物1,2.83 g (14 mmol) 9-乙炔蒽,80 mL THF,10 mL Et3N,0.53 g (0.75 mmol) PdCl2(PPh3)2和 0.15 g (0.75 mmol) CuI加入到250 mL圓底燒瓶中.室溫下攪拌1 h后,加熱至60 ℃反應(yīng)4 h.旋干溶劑后,加入飽和碳酸氫鈉溶液,用二氯甲烷萃取.二氯甲烷層用無水硫酸鈉干燥.旋掉二氯甲烷后,粗產(chǎn)物經(jīng)硅膠色譜柱分離,展開劑為CH2Cl2/EtOAc=(1:1, v/v),得到6.83 g淺黃色固體,產(chǎn)率75%.1H NMR (300 MHz, CDCl3),δ(ppm): 8.78 (2H, d,J=8.4 Hz), 8.43 (1H, s), 8.02 (2H, d,J=8.4 Hz), 7.54 (4H, m), 7.18 (1H, s), 6.99 (1H, s), 4.08 (4H, t,J=6.3 Hz, OCH2(CH2)10CH3), 2.02 (2H, m, OCH2CH2(CH2)9CH3), 1.86 (2H, m, OCH2CH2(CH2)9CH3), 1.67 (6H, s, C(CH3)2OH), 1.54 (4H, m, O(CH2)2CH2(CH2)8CH3), 1.27 (36H, m, O(CH2)3(CH2)8CH3), 0.88 (6H, t,J=6.4 Hz, O(CH2)11CH3).13C NMR (75 MHz, CDCl3),δ(ppm): 153.8, 153.6, 132.6, 131.2, 128.6, 127.7, 127.1, 126.4, 125.7, 117.6, 116.7, 116.2, 114.0, 113.5, 99.3, 97.4, 92.1, 78.7, 69.7, 69.4, 65.8, 31.9, 31.5, 29.7, 29.6, 29.5, 29.4, 26.1, 22.7, 14.1. ESI-MS: m/z 1479.8 [M+Na]+.
1.2.4 10-(2-(2,5-二十二烷氧基-4-苯乙炔基)乙炔)蒽 (3)的合成
氬氣保護(hù)下,將3.65 g (5 mmol) 化合物2和0.80 g (20 mmol) NaOH 溶于150 mL無水甲苯中,加熱回流3 h.冷卻至室溫后,過濾不溶物,旋干溶劑,加入飽和碳酸氫鈉溶液,用二氯甲烷萃取.二氯甲烷層用無水硫酸鈉干燥.旋掉二氯甲烷后,粗產(chǎn)物經(jīng)硅膠色譜柱分離,展開劑為EtOAc / petroleum ether=(1∶4, v/v),得到2.64 g深紅色晶體,產(chǎn)率78.8%.1H NMR (300 MHz, CDCl3),δ(ppm): 8.78 (2H, d,J=8.7 Hz), 8.44 (1H, s), 8.02 (2H, d,J=8.1 Hz), 7.55 (4H, m), 7.21 (1H, s), 7.06 (1H, s), 4.11 (4H, t,J=6.3 Hz, OCH2(CH2)10CH3), 3.39 (1H, s, HC≡C), 2.02 (2H, m, OCH2CH2(CH2)9CH3), 1.86 (2H, m, OCH2CH2(CH2)9CH3), 1.26 (36H, m, O(CH2)2(CH2)9CH3), 0.88 (6H, t,J=6.4 Hz, O(CH2)11CH3).13C NMR (75 MHz, CDCl3),δ(ppm): 154.6, 154.1, 133.0, 131.6, 129.0, 128.2, 127.5, 126.9, 126.1, 118.0, 117.3, 117.1, 113.1, 97.7, 82.8, 70.3, 69.8, 32.3, 30.0, 29.9, 29.8, 26.4, 23.1, 14.5. ESI-MS: m/z 1364.0 [2M+Na]+.
1.2.5 4,4-二氟-8-(4-甲苯基)-3-氯, 5-[10-(2-(2,5-二十二烷氧基-4-苯乙炔基)乙炔)蒽]-4-硼-3a,4a-二氮-s-引達(dá)省(5)的合成
氬氣保護(hù)下,將0.80 g (1.2 mmol)化合物3,0.35 g (1 mmol) 化合物4,42 mg (0.06 mmol) Pd(PPh3)2Cl2和11 mg (0.06 mmol) CuI溶于10 mL NEt3和65 mL THF溶液.室溫下攪拌1 h后,加熱至60 ℃反應(yīng)4 h.旋干溶劑后,加入水溶液,用二氯甲烷萃取.二氯甲烷層用無水硫酸鈉干燥.旋掉二氯甲烷后,粗產(chǎn)物經(jīng)硅膠色譜柱分離,展開劑為EtOAc / petroleum ether=1:4,得到0.39 g綠色固體,產(chǎn)率40%.1H NMR (300 MHz, CDCl3),δ(ppm): 8.79 (2H, d,J=8.7 Hz), 8.44 (1H, s), 8.02 (2H, d,J=8.4 Hz), 7.52 (4H, m), 7.42 (2H, d,J=7.8 Hz), 7.32 (2H, d,J=7.8 Hz), 7.17 (2H, s), 6.89 (1H, d,J=4.5 Hz), 6.86 (1H, d,J=4.2 Hz), 6.74 (1H, d,J=4.5 Hz), 6.43 (1H, d,J=4.2 Hz), 4.16 (4H, t,J=6.3 Hz, OCH2(CH2)10CH3), 2.47 (3H, s, ArCH3), 1.99 (4H, m, OCH2CH2(CH2)9CH3), 1.57 (4H, m, O(CH2)2CH2(CH2)8CH3), 1.25 (32H, m, O(CH2)2(CH2)9CH3), 0.87 (6H, t,J=6.4 Hz, O(CH2)11CH3).13C NMR (75 MHz, CDCl3)δ(ppm): 153.5, 152.7, 142.8, 141.9, 140.1, 137.1, 134.9, 133.5, 131.6, 130.2, 129.6, 129.4, 128.2, 127.6, 126.9, 126.1, 125.5, 124.7, 123.4, 117.3, 116.5, 115.4, 115.3, 114.8, 111.8, 99.3, 96.7, 92.2, 87.4, 68.9, 68.4, 30.9, 28.7, 28.5, 28.3, 25.0, 21.7, 13.1. ESI-MS: m/z 1 007.7 [M+Na]+.
2.1 目標(biāo)化合物5的結(jié)構(gòu)表征
采用1H NMR、13C NMR和MS對(duì)所合成的中間體和最終化合物進(jìn)行了詳細(xì)的結(jié)構(gòu)表征.圖2所示的是中間體3和4與目標(biāo)化合物5的核磁氫譜對(duì)比圖.從圖2中可以看出,中間體3中蒽環(huán)上9個(gè)氫的吸收峰出現(xiàn)在8.78,8.43,8.02和7.54 ppm處;苯環(huán)上2個(gè)氫由于受到烷氧基供電效應(yīng)的影響,出現(xiàn)在高場處,即7.21和7.06 ppm;特征的末端炔上氫的吸收峰出現(xiàn)在3.39 ppm處.中間體4(3,5-二氯BODIPY)中苯環(huán)上4個(gè)氫的吸收峰出現(xiàn)在7.39和7.33 ppm處,特征的BODIPY母體上4個(gè)氫出現(xiàn)在高場區(qū)6.87和6.44 ppm.中間體3和4經(jīng)鈀催化偶聯(lián)反應(yīng)生成目標(biāo)產(chǎn)物5后,中間體3特征的末端炔上氫的吸收峰完全消失,同時(shí)由于分子對(duì)稱性的增加,其苯環(huán)上2個(gè)氫由原來的兩組吸收峰,7.21和7.06 ppm變成一組吸收峰7.17 ppm;并且中間體4特征的BODIPY母體上4個(gè)氫由原來的兩組吸收峰(1,2),其氫的個(gè)數(shù)之比為2∶2變成4組吸收峰(11,12,21,22),其氫的個(gè)數(shù)之比為1∶1∶1∶1;中間體3和4中其它氫的吸收峰相應(yīng)地都出現(xiàn)在目標(biāo)化合物5的核磁氫譜上.這些結(jié)果充分說明通過鈀催化偶聯(lián)反應(yīng),成功地合成了以蒽為供體,BODIPY為接受體的分子天線5.
圖2 化合物3、4和5的1H NMR譜對(duì)比圖Fig. 2 1H NMR of 3, 4 and 5
2.2 目標(biāo)化合物5合成討論
Wim教授等曾報(bào)道3,5-二氯BODIPY在鈀催化劑作用下,可以和末端炔進(jìn)行偶聯(lián)反應(yīng)生成單取代和雙取代的產(chǎn)物.利用這種方法,他們成功地合成了各種對(duì)稱和非對(duì)稱的3,5-二取代BODIPY化合物[20].然而,和他們報(bào)道不同的是,中間體3和4進(jìn)行鈀催化偶聯(lián)反應(yīng),沒有二取代的副產(chǎn)物生成,僅僅生成單取代產(chǎn)物5.這可能是因?yàn)榘l(fā)生單取代生成化合物5后,一方面由于化合物5分子中含有烷氧基供電子基團(tuán),使得第二個(gè)氯原子的反應(yīng)活性降低;另一方面化合物5分子中兩個(gè)烷氧基比較長,形成了較大的空間位阻,從而阻礙了第二個(gè)氯原子發(fā)生進(jìn)一步偶聯(lián)反應(yīng).
通過鈀催化偶聯(lián)反應(yīng),將蒽和BODIPY這兩種不同的熒光染料分子引入到同一分子中,合成了一種以蒽為供體和BODIPY為接受體的分子天線.由于烷氧基供電子效應(yīng)和長柔性鏈的空間位阻效應(yīng),3,5-二氯BODIPY在鈀催化劑作用下,與末端炔中間體4進(jìn)行的偶聯(lián)反應(yīng)僅能生成單取代產(chǎn)物5.今后的工作將研究目標(biāo)化合物5分子內(nèi)的能量轉(zhuǎn)移過程及效率.
[1] Shammai S. Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: Solution and supersonic jet studies[J]. Chem Rev,1996,96(6):1953-1976.
[2] Jean L B, David B, Veaceslav C,etal. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture[J]. Chem Rev,2004,104(11):4971-5004.
[3] Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties[J]. Chem Rev,2007,107(11):4891-4932.
[4] Raymond Z, Christine G, Gilles U,etal. Intramolecular energy transfer in pyrene-bodipy molecular dyads and triads[J]. Chem Eur J,2005,11(24),7366-7378.
[5] Laure B, Gilles U, Raymond Z. Tailoring the properties of boron dipyrromethene dyes with acetylenic functions at the 2,6,8 and 4-B substitution positions[J]. Org Lett,2008,10(11),2183-2186.
[6] Anthony H, Laura J M, Sébastien G,etal. Electronic energy transfer to the S2 level of the acceptor in functionalised boron dipyrromethene dyes[J]. Chem Eur J,2009,15(18):4553-4564.
[7] Samia Z, Pauline R, Bruno A,etal. Engineering tunable light-harvesting Systems with oligothiophene donors and mono- or bis-bodipy acceptors[J]. J Org Chem,2008,73(4):1563-1566.
[8] Liu Jianyong, Hoi S Y, Xu Wei,etal. Highly efficient energy transfer in subphthalocyanine-BODIPY conjugates[J]. Org Lett,2008,10(11):5421.
[9] Robin K L, Arounaguiry A, Thiagarajan B,etal. Structural control of photoinduced energy transfer between adjacent and distant sites in multiporphyrin arrays[J]. J Am Chem Soc,2000,122(31):7579-7591.
[10] Dewey H, David F B, Jonathan S L. Probing electronic communication in covalently linked multiporphyrin arrays: A guide to the rational design of molecular photonic devices[J]. Acc Chem Res,2002,35(1):57-69.
[11] Deniz Y, Altan B, Engin U. Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative[J]. Org Lett,2006,8(10):2871-2873.
[12] Liu Jianyong, Eugeny A E, Beate R,etal. Switching the photo-induced energy and electron-transfer processes in BODIPY-phthalocyanine conjugates[J]. Chem Commun,2009(12):1517-1519.
[13] Francis D, Phillip M S, Melvin E Z,etal. Energy transfer followed by rlectron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex[J]. J Am Chem Soc,2004,126(25):7898.
[14] Vladimir A A, Anna S, Francois D. Geometrically precisely defined multinanometer expansion/contraction motions in a resorcin arene cavitand based molecular switch[J]. Angew Chem Int Ed,2005,44(29):4635-4638.
[15] Anthony H, Laura J M, Kristopher J E,etal. Length dependence for intramolecular energy transfer in three- and four-color donor-spacer-acceptor arrays[J]. J Am Chem Soc,2009,131(37):13375-13386.
[16] Leen V, Breaken E, Luckermans K,etal. A versatile, modular synthesis of monofunctionalized BODIPY dyes[J]. Chem Commun,2009(30):4515-4517.
[17] Yasuhiro S, Zhao Yuming, Cheng Long,etal. Facile synthesis of multifullerene-OPE hybrids via in situ ethynylation[J]. Org Lett,2004,6(13):2129-2132.
[18] Alexander N, Andrei Y K, Ulrich N,etal. Anthracene-BODIPY dyads as fluorescent sensors for biocatalytic Diels-Alder reactions[J]. J Am Chem Soc,2010,132(8):2646-2654.
[19] Rohand T, Baruah M, Qin Wenwu,etal. Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution[J]. Chem Commun,2006(3):266-268.
[20] Rohand T, Qin Wenwu, Boens N,etal. Palladium-Catalyzed Coupling Reactions for the Functionalization of BODIPY Dyes with Fluorescence Spanning the Visible Spectrum[J]. Eur J Org Chem,2006(20):4658-4663.
SynthesisandCharacterizationofaNewFluorescentDyewithBODIPYandAnthracene
LI Qi, JIN Yingzhi, CHEN Dong, XU Qiao, LI Xuejiao, LIU Bin, YIN Shouchun
(College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China)
The papere introduction of the anthryl group to the BODIPY dyes at 3-position then synthesized a kind of molecular antenna with anthracene as the donor and BODIPY as the acceptor by palladium catalyzed coupling reactions. All the synthetic compounds were characterized by1H NMR,13C NMR and MS and the reaction results were discussed.
BODIPY; anthracene; fluorescent dye; synthesis
2012-07-16
國家重大研究計(jì)劃培育項(xiàng)目(91127032);國家自然科學(xué)基金面上項(xiàng)目(21174035);浙江省自然科學(xué)基金項(xiàng)目(Y4100287);杭州師范大學(xué)優(yōu)秀中青年教師支持計(jì)劃資助項(xiàng)目(HNUEYT 2011-01-019);浙江省新材料及加工工程省重中之重學(xué)科開放課題資助項(xiàng)目(20121109).
尹守春(1976—),男,教授,主要從事超分子化學(xué)、光電功能高分子和熒光探針方面的研究.E-mail:yinsc@ustc.edu
10.3969/j.issn.1674-232X.2013.02.013
O626.32
A
1674-232X(2013)02-0150-06