張慧清 徐偉 許 勇
(西北工業(yè)大學(xué)應(yīng)用數(shù)學(xué)系,西安 7 10072)
色噪聲激勵(lì)下三勢(shì)阱系統(tǒng)邏輯隨機(jī)共振研究*
張慧清?徐偉 許 勇
(西北工業(yè)大學(xué)應(yīng)用數(shù)學(xué)系,西安 7 10072)
本文利用基于Simulink的數(shù)值模擬方法研究了高斯色噪聲激勵(lì)下三勢(shì)阱系統(tǒng)的邏輯隨機(jī)共振現(xiàn)象.首先對(duì)于獨(dú)立的加性和乘性高斯色噪聲激勵(lì)下的三勢(shì)阱系統(tǒng),發(fā)現(xiàn)僅有加性噪聲作用不能實(shí)現(xiàn)可靠的邏輯操作,但加性噪聲和乘性噪聲共同作用可誘導(dǎo)良好的邏輯隨機(jī)共振現(xiàn)象.和高斯白噪聲相比較,高斯色噪聲激勵(lì)下能產(chǎn)生可靠邏輯隨機(jī)共振的(D,Q)平面上的區(qū)域范圍更大.進(jìn)一步討論了加性和乘性噪聲之間的關(guān)聯(lián)對(duì)于邏輯隨機(jī)共振現(xiàn)象的影響,發(fā)現(xiàn)噪聲關(guān)聯(lián)對(duì)邏輯隨機(jī)共振現(xiàn)象起著破壞性的作用.
邏輯隨機(jī)共振, 三勢(shì)阱系統(tǒng), 高斯色噪聲
隨機(jī)共振是由Benzi等[1]首先提出的,它反映了噪聲對(duì)于非線性系統(tǒng)所起的積極作用,一定量的噪聲可增強(qiáng)系統(tǒng)的響應(yīng).目前,隨機(jī)共振成為了非線性領(lǐng)域研究的熱點(diǎn),其理論方面近年的發(fā)展及在物理化學(xué)等領(lǐng)域的應(yīng)用可見(jiàn)Gammaitoni等的綜述性文章[2].近年來(lái),非高斯噪聲誘導(dǎo)隨機(jī)共振現(xiàn)象得到了廣泛的關(guān)注,例如Duffing系統(tǒng)中Levy噪聲誘導(dǎo)的隨機(jī)共振現(xiàn)象已被研究[3].
隨著現(xiàn)代科技的發(fā)展,對(duì)數(shù)字電路精度的要求不斷提高,噪聲成為了電路設(shè)計(jì)中不可忽略的因素.能否利用噪聲和非線性的協(xié)同作用成了電路設(shè)計(jì)的關(guān)鍵問(wèn)題,為了將隨機(jī)共振的思想和電路設(shè)計(jì)結(jié)合來(lái)更好的利用電路中的噪聲,Murali等[4]提出了邏輯隨機(jī)共振的概念.他們研究了一非常簡(jiǎn)單的非線性系統(tǒng),當(dāng)系統(tǒng)輸入包含兩個(gè)隨機(jī)方波時(shí),輸入和輸出是某種邏輯關(guān)聯(lián)的關(guān)系,通過(guò)調(diào)整系統(tǒng)參數(shù)可執(zhí)行不同的邏輯操作.隨后,邏輯隨機(jī)共振現(xiàn)象得到了廣泛的研究.例如,Zhang[5]研究了加性高斯色噪聲對(duì)于雙穩(wěn)系統(tǒng)隨機(jī)共振的影響,發(fā)現(xiàn)了成功率曲線隨關(guān)聯(lián)時(shí)間增加而右移以及關(guān)聯(lián)時(shí)間在某個(gè)區(qū)域內(nèi)成功率才接近1的現(xiàn)象.Bulsara等[6]研究了乘性高斯白噪聲對(duì)于邏輯隨機(jī)共振現(xiàn)象的影響.Singh等[7]發(fā)現(xiàn)了光學(xué)雙穩(wěn)系統(tǒng)中的邏輯隨機(jī)共振現(xiàn)象.Dari等[8]考察了關(guān)聯(lián)高斯白噪聲對(duì)于基因網(wǎng)絡(luò)系統(tǒng)的影響.Wu等[9]研究了系統(tǒng)耦合對(duì)于邏輯隨機(jī)共振的影響,發(fā)現(xiàn)和單個(gè)雙穩(wěn)系統(tǒng)比較,耦合系統(tǒng)可產(chǎn)生可靠邏輯操作的噪聲范圍更寬.針對(duì)雙穩(wěn)系統(tǒng)有可能出現(xiàn)信息丟失的現(xiàn)象,Storni等[10]研究了加性高斯白噪聲激勵(lì)下勢(shì)函數(shù)為分段光滑的三勢(shì)阱系統(tǒng)的邏輯隨機(jī)共振現(xiàn)象,可實(shí)現(xiàn)多種邏輯操作.
本文首先研究獨(dú)立加性和乘性高斯色噪聲激勵(lì)下三勢(shì)阱系統(tǒng)的邏輯隨機(jī)共振現(xiàn)象,進(jìn)一步研究加性和乘性色噪聲之間的關(guān)聯(lián)對(duì)于邏輯隨機(jī)共振的影響.
考慮一粒子沿三勢(shì)阱系統(tǒng)的運(yùn)動(dòng),其相應(yīng)的郎之萬(wàn)方程為[11]
其中U(x)=x2(bx2-c)2為對(duì)稱(chēng)的勢(shì)函數(shù),中間阱代表了反應(yīng)態(tài),兩邊阱代表了平行反應(yīng)的生成態(tài).b,c是系統(tǒng)參數(shù),γ為耗散常數(shù).本文中令 b =0.1,c=1,γ=1.ξ(t)和η(t)是均值為零的 O rnstein-Uhlenbeck過(guò)程,由如下微分方程生成
其中ξw(t),ηw(t)為均值為零的高斯白噪聲,滿足:
Q和D為噪聲強(qiáng)度,λ為噪聲關(guān)聯(lián)強(qiáng)度,當(dāng)λ=0時(shí),噪聲獨(dú)立.當(dāng)噪聲關(guān)聯(lián)時(shí)間τi→0(i=1,2)時(shí),高斯色噪聲退化為高斯白噪聲.I(t)=I1(t)+I2(t)為邏輯輸入信號(hào).(I1,I2)構(gòu)成了四個(gè)不同的邏輯輸入集(0,0),(0,1),(1,0),(1,1).令 Ii(i=1,2)?。?.8相應(yīng)于邏輯輸入0,取0.8相應(yīng)于邏輯輸入1.通過(guò)改變邏輯輸出的值來(lái)實(shí)現(xiàn)不同的邏輯操作(表1).
表1 不同邏輯門(mén)輸出的定義Table 1 Definitions of the outputs for different logic gates
經(jīng)典隨機(jī)共振理論中常用信噪比作為隨機(jī)共振的度量.類(lèi)似的,為了量化邏輯隨機(jī)共振,Murali等[4]引入了成功率的概念:
每次運(yùn)行包括了四個(gè)不同邏輯輸入集(0,0),(0,1),(1,0),(1,1)的所有可能的排列.當(dāng)成功率近似為1時(shí),認(rèn)為發(fā)生了可靠的邏輯操作.
圖1 Simulink仿真圖Fig.1 Simulink simulation diagram
本文采用基于Simulink的數(shù)值模擬方法來(lái)研究高斯色噪聲對(duì)于成功率的影響,仿真圖見(jiàn)圖1.
圖2顯示了噪聲獨(dú)立且 D=0.01,τ2=0.1 時(shí)成功率作為乘性噪聲強(qiáng)度的變化曲線.可看出當(dāng)噪聲關(guān)聯(lián)時(shí)間固定時(shí),存在特定的噪聲窗口使得成功率接近1,即乘性噪聲可誘導(dǎo)邏輯隨機(jī)共振.由圖2還可看出隨噪聲關(guān)聯(lián)時(shí)間的增加,優(yōu)化噪聲窗口右移且寬度變寬.和高斯白噪聲情形比較,高斯色噪聲需要的噪聲更強(qiáng)范圍更廣,這使得較大噪聲情形下也有可能產(chǎn)生可靠邏輯隨機(jī)共振.
圖2 成功率P作為乘性噪聲強(qiáng)度Q的函數(shù)其中 λ =0,D=0.01,τ2=0.1.Fig.2 The success probability P versus multiplicative noise strength Q with λ =0,D=0.01,τ2=0.1.
圖3 成功率隨加性和乘性噪聲強(qiáng)度的變化λ =0,τ1= τ2=0.Fig.3 The success probability P as a function of versus multiplicative noise strength Q and additive noise strength D with λ =0,τ1= τ2=0.
圖3顯示了加性和乘性噪聲獨(dú)立且都是高斯白噪聲時(shí)(D,Q)平面上產(chǎn)生可靠邏輯隨機(jī)共振的區(qū)域.圖4顯示了高斯色噪聲情形下τ1=τ2=1時(shí)(D,Q)平面上產(chǎn)生可靠邏輯隨機(jī)共振的區(qū)域.兩圖比較可看出高斯色噪聲下產(chǎn)生可靠邏輯操作的噪聲窗口范圍比高斯白噪聲情形下更廣.
圖4 成功率隨加性和乘性噪聲強(qiáng)度的變化λ =0,τ1= τ2=1.Fig.4 The success probability P as a function of versus multiplicative noise strength Q and additive noise strength D with λ =0,τ1= τ2=1.
圖5 成功率隨加性和乘性噪聲強(qiáng)度的變化λ =0,τ1= τ2=3.Fig.5 The success probability P as a function of versus multiplicative noise strength Q and additive noise strength D with λ =0,τ1= τ2=3.
圖6 成功率隨加性和乘性噪聲強(qiáng)度的變化λ =0.9,τ1= τ2=3.Fig.6 The success probability P as a function of versus multiplicative noise strength Q and additive noise strength D with λ =0.9,τ1= τ2=3.
圖5顯示了噪聲獨(dú)立時(shí),隨噪聲關(guān)聯(lián)時(shí)間的增加,優(yōu)化噪聲窗口范圍進(jìn)一步擴(kuò)大.圖6是噪聲關(guān)聯(lián)情形下成功率隨加性、乘性噪聲強(qiáng)度的變化情況,和圖5對(duì)比可看出隨噪聲關(guān)聯(lián)強(qiáng)度的增加,優(yōu)化噪聲窗口急劇收縮,由此顯示了噪聲的關(guān)聯(lián)對(duì)于邏輯隨機(jī)共振現(xiàn)象起著破壞性的作用.另外,從圖4~6還可看出加性噪聲不能單獨(dú)誘導(dǎo)邏輯隨機(jī)共振現(xiàn)象,乘性噪聲出現(xiàn)才可產(chǎn)生可靠的邏輯操作.
本文利用數(shù)值模擬方法研究了高斯色噪聲激勵(lì)下三勢(shì)阱系統(tǒng)的邏輯隨機(jī)共振現(xiàn)象.研究結(jié)果表明僅僅出現(xiàn)加性噪聲不能產(chǎn)生好的邏輯隨機(jī)共振現(xiàn)象,乘性噪聲的出現(xiàn)才能誘導(dǎo)邏輯隨機(jī)共振.另外,和高斯白噪聲比較,高斯色噪聲產(chǎn)生邏輯隨機(jī)共振的范圍更廣.本文進(jìn)一步研究了關(guān)聯(lián)噪聲對(duì)于邏輯隨機(jī)共振的影響,發(fā)現(xiàn)加性和乘性噪聲之間的關(guān)聯(lián)對(duì)于邏輯隨機(jī)共振現(xiàn)象起著破壞性的作用.
1 Benzi R,Sutera A.The mechanism of stochastic resonance.Journal of Physics A:Mathematical and General,1981,14:453~457
2 Gammaitoni L,Hanggi P,Jung P and Marchesoni F.Stochastic resonance.Reviews of Modern Physics,1998,70:223~288
3 李娟娟,許勇,馮晶.Duffing系統(tǒng)中Levy噪聲誘導(dǎo)的隨機(jī)共振與相轉(zhuǎn)移.動(dòng)力學(xué)與控制學(xué)報(bào),2012,10(3):278~282(Li J J,Xu Y,F(xiàn)eng J.Lévy noise induced the stochastic resonance and phase transition in Duffing system.Journal of Dynamics and Control,2012,10(3):278 ~ 2 82(in Chinese))
4 Murali K,Sinha S,Ditto W L and Bulsara A R.Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor.Physical Review Letters,2009,102:104101
5 Zhang L,Song A G and He J.Effect of colored noise on logical stochastic resonance in bistable dynamics.Physical Review E,2010,82:051106
6 Bulsara A R,Dari A,Ditto W.L,Murali K,Sinha S.Logical stochastic resonance.Chemical Physics,2010,375:424~434
7 Singh K P and Sinha S.Enhancement of“l(fā)ogical”response by noise in a bistable optical system.Physical Review E,2011,83:046219
8 Dari A,Kia B,Bulsara A.R,Ditto W.L.Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block.Chaos,2011,21:047521
9 Wu H,Jiang H J,Hou Z H.Array-enhanced logical stochastic resonance in coupled bistable systems.ChineseJournal of Chemical Physics,2012,25:70~76
10 Storni R,Ando H,Aihara K,Murali K and Sinha S.Manipulating potential wells in logical stochastic resonance to obtain XOR logic.Physics Letters A,2012,376(8):930~937
11 Ghosh P K,Bag B C,Ray D S.Noise correlation-induced splitting of Kramers'escape rate from a metastable state.The Journal of Chemical Physics,2007,127:044510
*The project supported by the National Natural Science Foundation of China(10972181,11102157,1117223)and NPU Foundation for Fundamental Research
? Corresponding author E-mail:huiqingzhang@nwpu.edu.cn
THE STUDY OF LOGICAL STOCHASTIC RESONANCE IN A TRIPLE-WELL POTENTIAL SYSTEM WITH COLORED NOISE*
Zhang Huiqing?Xu WeiXu Yong
(Department of Applied Mathematics,Northwestern Polytechnical University,Xi'an710072,China)
In this paper,the logic stochastic resonance(LSR)phenomenon in a triple-well potential system is investigated by performing Simulink simulation.When the additive noise and multiplicative noise are uncorrelated,it is shown that LSR can be successfully induced by multiplicative Gaussian colored noise instead of additive noise.Compared with the Gaussian white noise,the reliable region in plane(D,Q)expands with increasing noise color.Furthermore,we find that the LSR is destroyed by the correlation between the additive noise and multiplicative noise.
Logical stochastic resonance, triple-well potential system, Gaussian colored noise
11 June 2012,
13 June 2012.
10.6052/1672-6553-2013-050
2012-06-11 收到第 1 稿,2012-06-13 收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(10972181,11102157,11172233)、西北工業(yè)大學(xué)基礎(chǔ)研究基金資助項(xiàng)目
E-mail:huiqingzhang@nwpu.edu.cn