孫中才
(三亞學院財經學院,海南 三亞 572022)
技術效率是經濟學研究的主線與核心[1]。在自由市場自行調節(jié)的條件下,技術變化的規(guī)律是經濟學探索的基本目標。其中,技術變化本身,以及這種變化所帶來的組合變化、交叉效應等,成了經濟學最為關注的焦點。
隨著經濟工業(yè)化的進展,農業(yè)喪失了過去在農業(yè)社會中的經濟主導地位,并逐步地成為了工業(yè)部門的附屬,而后又成了包括工業(yè)在內的其他非農業(yè)部門的附屬[2]。由此導致,要對農業(yè)技術的經濟作用做出較為充分的分析,必須在能夠體現(xiàn)農業(yè)附屬性或者可作并列比較的模型里進行。于是,誕生了兩部門分析法[3]。資料表明,在以生產函數(shù)和經營函數(shù)(可以統(tǒng)稱為F函數(shù))為基本范式的科學探索中,關于技術進步規(guī)律的分析和探索,兩部門分析法發(fā)揮了重要的作用,取得了眾多的成果,促使有關研究進展到了相當深入的地步[4,5]。然而,由于這些范式在一般數(shù)學性質上,僅適用于描述單點與單點的對應或者多點對單點的對應,還不能對兩部門分析所需要的空間狀況做出更直接和更完整的描繪,因而由此所得出的初始模型,在陳述經濟體的結構方面還有不足,尚不能做到直觀、明確和嚴謹。
作為經濟學理論的最新綜合,有約束的利潤函數(shù)(以下稱G函數(shù))可直接描述多點對應多點的空間結構,從而使有關兩部門的陳述變得簡單、直觀,也明確、嚴謹了[6]。而由此所得出的分析結果,也更加明確、準確,據(jù)此所做出的數(shù)理分析更加簡單、明了。更重要的是,這些結果往往在更加精確的意義上,給出有關的定義,揭示了有關規(guī)律的細節(jié),增加了某些新的科學知識[7]。
能夠看到,對于農業(yè)技術效率的研究已經有著較為久遠的歷史,也取得了較為深入的研究成果。但是,也正如大量資料所顯示的那樣,由于范式所限,這些結果的相當部分在嚴謹性和明確性上尚存在不足。而那些用自然語言所做出的推想和描述,在準確性和精確性上,更有提高和充實的余地。
本文運用G函數(shù)的理論框架,構建了一個農業(yè)與非農業(yè)兩個部門的生產結構,融入了這兩個部門各自的技術進口市場,從而得到了一個關于兩部門現(xiàn)在所運用的技術與進口技術相耦合的經濟初始陳述模型。從這個模型出發(fā),通過經濟學對Jacobi 向量和Hessian 矩陣所給予的定義,聚焦于關于因子交叉效應的解釋,從中識別出了技術交叉效應的內容,精確地得出了技術互動的定義,從而進一步明確了關于技術引進與技術互動的概念。
設所考慮的技術引進與技術運用的情況均在經濟體的一般結構上,即在宏觀水平上;并設想,該經濟體的內部生產結構可以簡單地劃分為兩個部門:農業(yè)與非農業(yè),它們的生產技術狀況可以用現(xiàn)行的形式表示出來,同時,它們還各自有自己獨立的技術引進機制。于是,在G函數(shù)的框架下,可以寫出其GNP 模型為:
式中,a1--農業(yè)部門的生產技術,即農業(yè)現(xiàn)在所運用的技術,變量;p1--農產品價格;
a2--非農部門的生產技術,即非農業(yè)現(xiàn)在所運用的技術,變量;p2--非農產品的價格;
p1I--農業(yè)技術進口的價格;
p2I--非農業(yè)技術進口的價格;
v--資源稟賦向量,v=[v1,v2,…,vJ],4≤J。
在式(1.1)中,把技術變量直接寫為價格的系數(shù)形式,是因為具體產業(yè)的技術變化能夠以同樣方法化為具體產業(yè)的價格增長模型[8]。
式(1.1)的Jacobi 向量為:
由式(1.2),可以得出它的Hessian 矩陣:
式(1.3)所表示的是式(1.1)里已經定義的各個因子之間的交叉效應,即農業(yè)和非農業(yè)部門現(xiàn)在所運用的技術a1,a2,和這兩個產業(yè)的產品價格p1,p2,以及這兩個部門各自進口技術的價格p1I,p2I,和固定投入的元素vj(j=1,2,…,J)中,任意兩兩因子之間的影響作用。根據(jù)式(1.2)所表明的意義,能夠認為,其中所謂的技術互動,就是包括自身對自身能力的作用在內的,各個技術之間的數(shù)量影響,也就是任意兩個技術之間的交互作用。
式(1.4)表示農業(yè)現(xiàn)在所運用的技術a1對自身效果的作用,是技術變動給自身效果帶來的影響。從技術交叉效應或者從技術互動的角度來看,這是技術變動反過來影響自身能力的效應,所以,可以稱之為是農業(yè)技術的反身效應。
式(1.5)表示農業(yè)現(xiàn)在所運用的技術a1對非農業(yè)現(xiàn)在所運用的技術的能力的效應;
式(1.6)表示農業(yè)現(xiàn)在所運用的技術a1對進口的農業(yè)技術數(shù)量的效應;
式(1.7)則是農業(yè)現(xiàn)在所運用的技術a1對進口的非農業(yè)技術數(shù)量的效應。
式(1.8)為非農業(yè)部門現(xiàn)在所運用的技術a2的反身效應。
式(1.9)表示非農業(yè)現(xiàn)在所運用的技術a2對進口的農業(yè)技術數(shù)量的效應。
式(1.10)則是非農業(yè)現(xiàn)在所運用的技術a2對進口的非農業(yè)技術數(shù)量的效應。
容易理解,對于由式(1.1)所陳述的經濟結構,式(1.4)-(1.7)揭示了農業(yè)現(xiàn)在所運用的技術每變動一個微量給自己的能力和給其他技術數(shù)量所帶來的影響,也就是技術之間的效應。其中有:自身的反身效應,即式(1.4);與非農業(yè)現(xiàn)在所運用的技術之間的交叉互動,即式(1.5);與進口的農業(yè)技術和進口的非農業(yè)技術之間的交叉互動,即式(1.6)和(1.7)。
式(1.8)是非農業(yè)部門現(xiàn)在所運用的技術所具有的自身的反身效應,式(1.9)和(1.10)則揭示了非農業(yè)部門的技術變動與農業(yè)進口技術和非農業(yè)進口技術之間的互動。
似乎也可以認為,從式(1.1)的模型出發(fā),式(1.4)-(1.10)給出了所考慮的農業(yè)與非農業(yè)這兩個部門,在技術上互動的定義和測度。對于特定的經濟體而言,就此展開有關數(shù)據(jù)試驗和實驗,可以進一步明確這些定義和測度的特定含義,也可以得出更精確化的有關知識。
式(1.4)-(1.10)所給出的定義,在具體的數(shù)值試驗中,便可以成為具體的測度和指標,用于衡量和比對所關注經濟的有關效率。對于同一個經濟體來說,這些指標可以明確的表示出,該經濟內農業(yè)與非農業(yè)這兩個部門在技術互動效率上的不同情況。而由此似乎可以透發(fā)出一些有關的信息,指示了這些部門在技術反應、技術融合、技術傳遞和技術轉化等方面存在的差距。因為在一般情況下,式(1.4)-(1.10)的數(shù)值,實際上會綜合這些方面的信息,反映這些方面的差距。特別是,兩個可比數(shù)值明顯不同時,更可以推斷出在這些方面存在的差距。例如,若式(1.8)的值明顯大于式(1.4)的值,即有:
那么,根據(jù)上述分析結果所給出的定義得知,即在該經濟體中,兩個部門現(xiàn)在所運用的技術,在反身效應上,非農業(yè)部門的高于農業(yè)。若其他條件不變,這一定意味著,這兩個部門的技術在自身的反應、融合、傳遞和轉化等方面的綜合效率上,是存在差距的。
若式(1.6)的值大于式(1.10)的值,即
這意味著,在吸收和消化同類進口技術方面,農業(yè)的效率高于非農業(yè)。反之亦然。
若式(1.7)的值不同于式(1.9)的值,即
這意味著,農業(yè)與非農業(yè)這兩個部門所運用的技術,在轉化對方進口技術方面存在效率上的差距。對于兩個可比的不同經濟體來說,進行同類的對比,情況完全是與上述類似的。不過,在進行這種對比時,或許式(1.5)的作用會突出出來。因為在本經濟體內部做上述比較時,這個指標派不上用場,只有在不同經濟體之間進行有關對比時,它才起作用。而且,似乎可以認為,這是唯一僅僅用于經濟體之間進行對比的測度。例如,對于經濟體E1與E2,如果存在著:
那么意味著,這兩個經濟體的農業(yè)與非農業(yè),在部門間進行相互技術轉換時,實際能力是存在差距的。這或許是表征兩經濟體之間在技術上存在差距的重要指標之一。
綜合全文所述,主要可以得出這樣的結論:(1)正確地運用G函數(shù)可以對兩部門的技術狀況進行有效的陳述,可以得出一個簡單明了的初始模型;(2)該模型的Jacobi 向量,根據(jù)Hotelling 引理,將給出初始描述中所給定的技術的精確定義,解釋了G函數(shù)框架下有關技術能力和技術數(shù)量的構成情況;(3)進一步得出的Hessian 矩陣,解釋了原模型中各個因子之間的交叉效應,其中,根據(jù)Jacobi 向量所定義的內容,可以識別出各個部門現(xiàn)在所運用技術的反身效應,以及所有技術兩兩之間的交叉效應,從而揭示出技術互動的結構;(4)互動結構可以作為測度,度量出經濟體內部或經濟體之間,在技術運行效率上存在的差別。其中,在進行不同經濟體之間的技術效率對比時,各自兩部門現(xiàn)在所運用技術之間的轉化效率,或許會成為顯示經濟體之間技術效率差別的有力標識。另外,似乎還可以設想,結合其它的經濟特征指標,這個轉化效率或許可以成為解釋經濟活力和國際市場行為等問題的重要工具。特別是,它可以衡量出各經濟體之間在農業(yè)技術進步趨勢上的差別,并指明了這種差別的基本原因,從而,在一定程度上,為進一步地探索技術進步的規(guī)律,提供了一個新的起點[10]。
[1]Samuelson,P..Foundations of Economic Analysis [M].Cambridge,MA:Harvard University Press,1947:22-24.
[2]孫中才.理論農業(yè)經濟學[M].北京:中國人民大學出版社,1998:29.
[3]Henrichsmeyer,W..Economic Growth and Agriculture:A Two-Sector Analysis[J].The German Economic Review,1972(10):27-41.
[4]孫中才.農業(yè)增長與科學技術投入[J].農業(yè)技術經濟,1995(2):17-24.
[5]Solow,R.,Technical Change and the Aggregate Production Function [J].Review of Economics and Statistics,August 1957,39(3):312-320.
[6]Kohli,U.ASymmetricNormalizedQuadratic GNP Functionand the U.S.Demand for Imports and Supply of Exports[J].International Economic Review,1993,34(1):243-255.
[7]孫中才.G函數(shù)與經濟學的新進展[J].汕頭大學學報:人文社會科學版,2006(6):20-24.
[8]Harrigan,J.Technology,Factor Supplies,and International Specialization:Estimating the Neoclassical Model [J].The American Economic Review 1997,87(September):475-94.
[9]Debreu,G..Theory of Value--An Axiomatic Analysis of Economic Equilibrium[M].J.Wiley and Sons,New York,1959:21-23.
[10]孫中才.農業(yè)經濟數(shù)理分析[M].北京:中國農業(yè)出版社,2006:30-32.