宋麗紅
(深圳市環(huán)境科學研究院,深圳 518001)
隨著造紙、印染、化學及石油加工等工業(yè)的發(fā)展,大量的廢水排入自然水體。廢水含有大量的有毒、難降解有機物,造成嚴重的環(huán)境問題并威脅著人類的健康,在環(huán)境問題嚴峻、水資源短缺的今天,如何高效、低耗地進行有機廢水中難降解有機物的去除,是水處理領(lǐng)域的一大研究熱點。
在過去的幾十年,水處理技術(shù)主要依賴傳統(tǒng)物理化學及生物方法。這些傳統(tǒng)的方法技術(shù)諸如活性炭吸附、化學氧化和生物降解都有難以避免的缺陷,如僅僅轉(zhuǎn)移污染物、能耗物耗量大、對難降解物質(zhì)去除效果差、需時過長等缺點,讓這些傳統(tǒng)方法在難降解有機物處理方面頗有局限[1]。近年來,高級氧化技術(shù) (Advanced Oxidation Processes,AOPs)在有機污染物的降解處理方面得到廣泛的關(guān)注,原因是高級氧化技術(shù)能產(chǎn)生羥基自由基(Hydroxyl Radicals,·OH),羥基自由基是水體系下氧化性僅次于氟的自由基[2],能具有高活性和無選擇性,能有效降解難以生物降解的有機污染物[3,4],在替代傳統(tǒng)技術(shù)中極具前景。在眾多的高級氧化技術(shù)中,濕式空氣氧化技術(shù) (Wet air oxidation,WAO)是最為經(jīng)濟可行的技術(shù)之一。濕式空氣氧化技術(shù)是在高溫 (200℃ ~320℃)高壓 (0.5~20 MPa)下,以氣態(tài)氧源 (純氧或空氣)作為氧化劑[5,6],使得部分大分子有機物氧化成能生物降解的有機物或完全礦化成水與二氧化碳。濕式空氣催化氧化 (Catalytic Wet Air Oxidation,CWAO)是基于濕式空氣氧化,添加適當?shù)拇呋瘎┬纬筛咝Т呋w系,能大幅提高反應速率,提高難降解有機污染物的去除效率,提高體系污染物負荷,降低反應耗時,降低反應溫度及壓力,從而獲得更好的效率并降低技術(shù)的運行成本[7~10],實現(xiàn)高濃度、有毒有害、難降解的工業(yè)有機廢水的高效處理[11],是對濕式空氣氧化的重要改進。在催化劑方面,用于濕式空氣催化氧化技術(shù)的均相、非均相催化劑都得到了一定的發(fā)展[6]。均相催化劑中,溶解性銅鹽顯示出最高的催化活性[11~13],然而,盡管均相催化劑具有高催化活性,其使用要求對催化體系進行后續(xù)處理以去除催化劑,且無法簡單實現(xiàn)催化劑回收再用增加了技術(shù)運行成本,因此,高效非均相催化的研發(fā)及運用成為該領(lǐng)域近年來的研究熱點。本文以催化劑種類為主線,以酚類廢水為處理目標,對近年來濕式空氣非均相催化氧化研究與進展進行了評述,并探討濕式空氣非均相催化氧化的機理及催化劑失活問題。
在眾多的有機污染物質(zhì)中,酚類物質(zhì)因其顯著的毒性和總量大的排放特性而受到廣泛的關(guān)注[5,14,15],此外,酚類還是多種芳香族化合物氧化降解過程的中間產(chǎn)物,是研究濕式空氣非均相催化氧化技術(shù)降解有機污染物的研究的主要降解目標物質(zhì)之一[16,17]。
金屬氧化物具有造價相對低廉,具有一定催化性能的優(yōu)點而作為非均相催化劑廣泛運用到濕式空氣催化氧化體系中以解決傳統(tǒng)濕式空氣氧化的問題。運用在降解苯酚的金屬氧化物催化劑有銅(Cu)、鈰(Ce)、錳(Mn)、鐵(Fe)、鎳(Ni)、鋁(Al)、鉻(Cr)及鈷(Co)等,這些金屬氧化物常被固定在催化劑載體上以提高其濕熱穩(wěn)定性。金屬氧化物催化濕式空氣氧化苯酚的研究見表1。
表1 金屬氧化物催化濕式空氣氧化苯酚的研究Tab.1 Phenol degradation in CWAO with metal oxide catalysts
在眾多的金屬氧化物催化劑中,含銅催化劑表現(xiàn)出較高催化活性,被廣泛應用在濕式催化氧化研究中。在 γ-Al2O3負載銅(Cu)、鎳(Ni)、鈷(Co)、鐵(Fe)及錳(Mn)5種常見過渡金屬氧化物的催化應用研究中,CuOx/γ-Al2O3由于其極高的表面還原活性而表現(xiàn)出最高的催化活性[32]。稀土元素鈰氧化物因具有特殊的氧化還原及形態(tài)特性,已被廣泛運用在催化研究中[33~35]。有研究指出[19],CeO2應用在濕式空氣催化氧化體系中能發(fā)揮較高的催化活性,最佳工藝條件下能對初始濃度為400~2500mg/L的苯酚廢水實現(xiàn)高于90%的降解率;對CeO2進行載體固定用在降解苯酚廢水的研究,也取得成功的實踐,如γ-Al2O3、SiO2、TiO2、CeO2、AlPO4負載。此外,CeO2摻雜過渡金屬,如錳(Mn)[20,36,37]、鈦(Ti)[28]等,能大幅提高催化劑氧化活性、比表面積及穩(wěn)定性。盡管金屬氧化物在CWAO體系中催化活性低于貴金屬,但由于造價相對低廉,仍受到廣泛關(guān)注。
相對于普通金屬氧化物,貴金屬作為催化劑應用在CWAO中,體現(xiàn)出更高的催化活性及結(jié)構(gòu)穩(wěn)定性。常見貴金屬有釕 Ru、銠 Rh、鉑 Pt、鈀 Pd等。貴金屬一般通過負載在催化劑載體上形成,一些貴金屬催化劑應用在CWAO中降解苯酚的研究見表2。
表2 貴金屬催化濕式空氣氧化苯酚的研究Tab.2 Phenol degradation in CWAO with noble metal catalysts
貴金屬催化劑已廣泛運用到CWAO降解苯酚的研究中。其中含Ru催化劑表現(xiàn)出最高的催化活性。不同的催化劑載體對貴金屬催化劑的催化氧化效率有一定的影響[38]。
金屬氧化物及貴金屬催化劑因其較高的催化活性而得到較快的發(fā)展和深入的研究,但由于使用過程中有不同程度的金屬成分的溶出及含碳化合物的表面沉積及吸附,造成了金屬氧化物及貴金屬催化劑鈍化,催化活性降低[43~46]。因此,具有穩(wěn)定催化活性的非均相濕式空氣氧化催化劑研發(fā)成為新的研究熱點之一。碳材料因其良好的化學穩(wěn)定性及優(yōu)良的表面性質(zhì)而常被應用為催化劑載體,如活性炭(Activated carbon,AC),石墨 (Graphite),碳納米管 (Carbon nanotubes,CNTs)及活性炭纖維(Activated carbon fibers,ACF)。近年來一些研究表明,碳材料在不含活性金屬或金屬氧化物成分情況下[47~51],仍表現(xiàn)出一定的催化性能。催化活性來自碳材料表面的活性表面官能團,這些官能團可能是碳材料原有的,也可能是經(jīng)特殊化學修飾后形成的[52,53]。應用在苯酚濕式空氣氧化降解的碳材料催化劑見表3。
表3 碳材料催化濕式空氣氧化苯酚的研究Tab.3 Phenol degradation in CWAO with carbon materials
多壁納米碳管 (Multi-walled carbon nanotubes,MWCNTs)經(jīng)HCl及HNO3-H2SO4處理后在濕式空氣氧化降解苯酚的體系中顯示出優(yōu)良的催化活性及穩(wěn)定性[55]。在反應溫度為 160℃,2.0MPa,O2條件下經(jīng)2小時反應苯酚轉(zhuǎn)化率達到100%,76%TOC實現(xiàn)礦化。MWCNTs經(jīng)HNO3/H2SO4,H2O2,O3及空氣等氧化劑處理后實現(xiàn)功能化[54],經(jīng)處理的MWCNTs均表現(xiàn)出良好的濕式空氣催化氧化活性,其中,O3處理之MWCNTs表現(xiàn)出最優(yōu)的催化活性,最佳工藝條件下苯酚去除率達100%,80%TOC實現(xiàn)礦化,MWCNTs表面的羧酸根和弱酸性質(zhì)在催化活性方面起到重要作用。
目前,絕大多數(shù)研究表明,濕式空氣氧化技術(shù)的關(guān)鍵作用因子是強氧化性自由基,在傳統(tǒng)濕式空氣氧化體系中能觀察到自由基的產(chǎn)生、傳播及撲滅[58]。雖然濕式空氣催化氧化降解有機污染物的機理尚不明確[59],一般認為其降解機理與傳統(tǒng)濕式空氣氧化體系一致[60]。對于有機物降解技術(shù),副產(chǎn)物及最終產(chǎn)物的種類及毒性強弱是重要的評價因子,濕式空氣催化氧化體系最終產(chǎn)物與傳統(tǒng)濕式空氣氧化體系產(chǎn)物相似,除二氧化碳外,多為短鏈有機物如甲酸、乙酸及草酸等,體系中初始有機物質(zhì)的形態(tài)與結(jié)構(gòu)對最終形成產(chǎn)物類型影響較少[61]。
非均相催化劑在濕式空氣催化氧化技術(shù)中的運用則是利用其活化、加速反應物降解產(chǎn)生自由基,同時,催化劑通過絡(luò)合等作用加速了體系中氧原子的傳遞[62],同樣增強了體系氧化作用。
盡管非均相催化劑的使用克服了均相催化劑的諸多問題,且在濕式空氣氧化降解有機污染物的運用中起到重要的提高氧化效率的作用,但非均相催化劑的使用普遍存在失活問題,這是該技術(shù)主要存在問題[45,46]。眾多研究表明,在濕式空氣催化氧化技術(shù)中,非均相催化劑失活的原因主要有催化劑表面碳沉積及催化劑溶出。如何解決非均相催化劑的失活問題,成為該技術(shù)研究的重點之一。
與眾多的高級氧化技術(shù)一樣,催化劑表面碳沉積影響濕式空氣催化氧化體系主要是通過阻隔反應物及溶解氧與催化劑表面活性位的接觸。濕式空氣催化氧化體系通過催化劑的使用能有效降低反應體系要求的溫度與壓力,但溫和的反應環(huán)境增加了催化劑表面中間產(chǎn)物及聚合物的吸附,降低了氧化反應效率[63]。在錳(Mn),鐵(Fe),鈷(Co),鎳(Ni)及銅(Cu)等常見的應用在濕式空氣催化氧化的過度金屬中,錳 (Mn)表現(xiàn)出最嚴重的碳沉積現(xiàn)象[23],貴金屬催化劑同樣存在嚴重的表面碳沉積現(xiàn)象[64,65]。
催化劑溶出是均相催化氧化技術(shù)的主要問題之一。非均相催化濕式空氣氧化降解有機污染物體系中,隨著反應進行,有機酸中間產(chǎn)物生成降低體系的pH值[66],加之反應溫度較高,壓力較大,在這樣的體系中,酸性介質(zhì)對金屬催化劑及催化劑載體的溶出作用明顯[67],活性組分的流失將嚴重影響催化劑的活性,降低體系的氧化反應速率,此外,嚴重的金屬溶出還將影響水質(zhì)。眾多研究表明[68~70],擁有高催化活性的銅系非均相催化劑在濕式空氣催化氧化體系中存在嚴重的溶出問題,在pH低于4的介質(zhì)中,銅溶出極為嚴重[68]。
解決催化劑失活或活性降低的問題有多重途徑,針對催化劑表面碳沉積,熱處理是主要的催化劑再生方法,通常是將碳沉積催化劑置于400℃左右的氧化性氣流中[71],在熱處理過程中去除表面沉積碳成分;有機溶劑沖洗也是去除表面沉積碳成分的主要方法[72]。針對金屬溶出,有研究針對反應體系pH進行控制,加入緩沖溶液以控制pH使得氧化反應在中性環(huán)境中進行,能有效降低催化劑中金屬成分的溶出,但嚴重影響了氧化反應效率[69];金屬溶出的主要解決思路是對催化劑進行摻雜、改性等,如對MnO2-CeO2進行鉑(Pt)或銀(Ag)的摻雜,能有效降低催化劑反應過程的碳沉積[73];有研究對催化劑進行有機模板改性,利用模板的憎水性減少催化劑跟液相的接觸,但不阻礙污染物在催化劑表面的吸附及分散,能有效減低溶液介質(zhì)對金屬成分的溶解作用[74]。
非均相催化濕式空氣氧化技術(shù)能解決傳統(tǒng)濕式空氣氧化技術(shù)的缺點,大幅提高反應速率,提高難降解有機污染物的去除效率,提高體系污染物負荷,降低反應耗時,降低反應溫度及壓力,從而獲得更好的效率并降低技術(shù)的運行成本,是極具前景的有機廢水處理技術(shù)。運用在濕式空氣催化氧化技術(shù)中的非均相催化劑主要有過度金屬氧化物、貴金屬及碳材料等。研究表明,自由基的氧化作用為該技術(shù)的作用因子,催化劑失活導致反應速率下降為該技術(shù)的主要問題,包括碳沉積及金屬溶出為均相催化劑失活的主要原因。針對技術(shù)特點及研究現(xiàn)狀,高催化活性、可重復利用非均相催化劑的研發(fā)為其主要發(fā)展方向之一。
[1]Yap P,Lim T.Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite[J].Applied Catalysis B:Environmental,2011,101(3-4):709-717.
[2]Liu H,Wang C,Li X,et al.A novel electro-fenton process for water treatment:reaction-controlled pH adjustment and performance assessment.[J].Environ Sci Technol,2007,41(8):2937-2942.
[3]Pignatello J J.Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide[J].Environmental Science & Technology,1992,26(5):944-951.
[4]Sun Y,Pignatello J J.Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV[J].Environmental science & technology,1993,27(2):304-310.
[5]Mishra V S,Mahajani V V,Joshi J B.Wet air oxidation[J].Industrial& engineering chemistry research,1995,34(1):2-48.
[6]Hua L,Ma H,Zhang L.Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3[J].Chemosphere,2013,90(2):143-149.
[7]Vallet A,Ovejero G,Rodríguez A,et al.Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction[J].Journal of Hazardous Materials,2013,244-245,46-53.
[8]Oliviero L,Barbier Jr.J,Duprez D.Wet Air Oxidation of nitrogen-containing organic compounds and ammonia in aqueous media[J].Applied Catalysis B:Environmental,2003,40(3):163-184.
[9]Levec J,Pintar A.Catalytic wet-air oxidation processes:A review[J].Catalysis Today,2007,124(3-4):172-184.
[10]Dai Q,Zhou M,Lei L.Wet electrolytic oxidation of cationic red X-GRL[J].Journal of Hazardous Materials,2006,137(3):1870-1874.
[11]Bhargava S K,Tardio J,Prasad J,et al.Wet oxidation and catalytic wet oxidation[J].Industrial & engineering chemistry research,2006,45(4):1221-1258.
[12]Lopes R J G,Silva A M T,Quinta-Ferreira R M.Screening of catalysts and effect of temperature for kinetic degradation studies of aromatic compounds during wet oxidation[J].Applied Catalysis B:Environmental,2007,73(1-2):193-202.
[13]Kim S,Lee D.Catalytic wet peroxide oxidation of dyehouse effluents with Cu/Al2O3and copper plate[J].Studies in Surface Science and Catalysis,2006,159:393-396.
[14]Yu H,Nie E,Xu J,et al.Degradation of Diclofenac by Advanced Oxidation and Reduction Processes:Kinetic Studies,Degradation Pathways and Toxicity Assessments[J].Water research,2013,47(5):1909-1918.
[15]Mukherjee S,Basak B,Bhunia B,et al.Potential use of polyphenol oxidases(PPO)in the bioremediation of phenolic contaminants containing industrial wastewater[J].Reviews in Environmental Science and Bio/Technology,2013,12(1):61-73.
[16]Ding Z,Aki S N V K,Abraham M A.Catalytic Supercritical Water Oxidation:Phenol Conversion and Product Selectivity[J].Environmental Science & Technology,1995,29(11):2748-2753.
[17]Santos A,Yustos P,Durban B,et al.Catalytic Wet Oxidation of Phenol:Kinetics of the Mineralization Rate[J].Industrial& Engineering Chemistry Research,2001,40(13):2773-2781.
[18]Arena F,Giovenco R,Torre T,et al.Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol[J].Applied Catalysis B:Environmental,2003,45(1):51-62.
[19]Lin S S,Chen C L,Chang D J,et al.Catalytic wet air oxidation of phenol by various CeO2catalysts[J].Water Research,2002,36(12):3009-3014.
[20]Chen H,Sayari A,Adnot A,et al.Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation[J].Applied Catalysis B:Environmental,2001,32(3):195-204.
[21]Arena F,Trunfio G,Negro J,et al.Synthesis of highly dispersed MnCeOxcatalysts via a novel“redox-precipitation”route[J].Materials Research Bulletin,2008,43(3):539-545.
[22]Hoc∨evar S,Kra?ovec U O,Orel B,et al.CWO of phenol on two differently prepared CuO-CeO2catalysts[J].Applied Catalysis B:Environmental,2000,28(2):113-125.
[23]Kim S,Ihm S.Nature of carbonaceous deposits on the alumina supported transition metal oxide catalysts in the wet air oxidation of phenol[J].Topics in catalysis,2005,33(1-4):171-179.
[24]Kim S,Kim K,Ihm S.The characteristics of wet air oxidation of phenol over CuOx/Al2O3catalysts:Effect of copper loading[J].Chemosphere,2007,68(2):287-292.
[25]Chang L,Chen I,Lin S.An assessment of the suitable operating conditions for the CeO2/γ-Al2O3catalyzed wet air oxidation of phenol[J].Chemosphere,2005,58(4):485-492.
[26]Chen I,Lin S,Wang C,et al.CWAO of phenol using CeO2/γ-Al2O3with promoter—Effectiveness of promoter addition and catalyst regeneration[J].Chemosphere,2007,66(1):172-178.
[27]Chen I,Lin S,Wang C,et al.Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol[J].Applied Catalysis B:Environmental,2004,50(1):49-58.
[28]Yang S,Zhu W,Wang J,et al.Catalytic wet air oxidation of phenol over CeO2-TiO2catalyst in the batch reactor and the packed-bed reactor[J].Journal of Hazardous Materials,2008,153(3):1248-1253.
[29]Quintanilla A,Menéndez N,Tornero J,et al.Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol:Influence on activity,selectivity and stability[J].Applied Catalysis B:Environmental,2008,81(1-2):105-114.
[30]Quintanilla A,Casas J A,Zazo J A,et al.Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst[J].Applied Catalysis B:Environmental,2006,62(1-2):115-120.
[31]Wu Q,Hu X,Yue P L,et al.Copper/MCM-41 as catalyst for the wet oxidation of phenol[J].Applied Catalysis B:Environmental,2001,32(3):151-156.
[32]Kim S,Ihm S.Nature of carbonaceous deposits on the alumina supported transition metal oxide catalysts in the wet air oxidation of phenol[J].Topics in Catalysis,2005,33(1-4):171-179.
[33]Fuku K,Goto M,Sakano T,et al.Efficient degradation of CO and acetaldehyde using nano-sized Pt catalysts supported on CeO2and CeO2/ZSM-5 composite[J].Catalysis Today,2013,201:57-61.
[34]De Leitenburg C,Goi D,Primavera A,et al.Wet oxidation of acetic acid catalyzed by doped ceria[J].Applied Catalysis B:Environmental,1996,11(1):L29-L35.
[35]Imamura S,Okumura Y,Nishio T,et al.Wet-Oxidation of a Model Domestic Wastewater on a Ru/Mn/Ce Composite Catalyst[J].Industrial& Engineering Chemistry Research,1998,37(3):1136-1139.
[36]Santiago A F J,Sousa J F,Guedes R C,et al.Kinetic and wet oxidation of phenol catalyzed by non-promoted and potassium-pro-moted manganese/cerium oxide[J].Journal of Hazardous Materials,2006,138(2):325-330.
[37]Arena F,Negro J,Parmaliana A,et al.Improved MnCeOxSystems for the Catalytic Wet Oxidation(CWO)of Phenol in Wastewater Streams[J].Industrial& Engineering Chemistry Research,2007,46(21):6724-6731.
[38]Castillejos-López E,Maroto-Valiente A,Nevskaia D M,et al.Comparative study of support effects in ruthenium catalysts applied for wet air oxidation of aromatic compounds[J].Catalysis Today,2009,143(3-4):355-363.
[39]Wang J,Zhu W,Yang S,et al.Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts[J].Applied Catalysis B:Environmental,2008,78(1-2):30-37.
[40]Pintar A,Batista J,Ti ler T.Catalytic wet-air oxidation of aqueous solutions of formic acid,acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts[J].Applied Catalysis B:Environmental,2008,84(1-2):30-41.
[41]Masende Z,Kuster B,Ptasinski K J,et al.Support and dispersion effects on activity of platinum catalysts during wet oxidation of organic wastes[J].Topics in catalysis,2005,33(1-4):87-99.
[42]Taboada C D,Batista J,Pintar A,et al.Preparation,characterization and catalytic properties of carbon nanofiber-supported Pt,Pd,Ru monometallic particles in aqueous-phase reactions[J].Applied Catalysis B:Environmental,2009,89(3-4):375-382.
[43]Alejandre A,Medina F,F(xiàn)ortuny A,et al.Characterisation of copper catalysts and activity for the oxidation of phenol aqueous solutions[J].Applied Catalysis B:Environmental,1998,16(1):53-67.
[44]Zhang Q,Chuang K T.Treatment of Combined Bleach Plant Effluents via Wet Oxidation over a Pd-Pt-Ce/Alumina Catalyst[J].Environmental Science & Technology,1999,33(20):3641-3644.
[45]Lee D,Kim D,Kim T,et al.Deactivation of Pt catalysts during wet oxidation of phenol[J].Catalysis Today,2010,154(3-4):244-249.
[46]Kouraichi R,Delgado J J,López-Castro J D,et al.Deactivation of Pt/MnOx-CeO2catalysts for the catalytic wet oxidation of phenol:Formation of carbonaceous deposits and leaching of manganese[J].Catalysis Today,2010,154(3-4):195-201.
[47]Liu Z,Ma J,Cui Y,et al.Influence of different heat treatments on the surface properties and catalytic performance of carbon nanotube in ozonation[J].Applied Catalysis B:Environmental,2010,101(1-2):74-80.
[48]Keller N,Maksimova N I,Roddatis V V,et al.The Catalytic Use of Onion-Like Carbon Materials for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene[J].Angewandte Chemie International Edition,2002,41(11):1885-1888.
[49]Li L,Ye W,Zhang Q,et al.Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J].Journal of Hazardous Materials,2009,170(1):411-416.
[50]Serp P,Corrias M,Kalck P.Carbon nanotubes and nanofibers in catalysis[J].Applied Catalysis A:General,2003,253(2):337-358.
[51]Rocha R P,Sousa J P S,Silva A M T,et al.Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid:The role of the basic nature induced by the surface chemistry[J].Applied Catalysis B:Environmental,2011,104(3-4):330-336.
[52]Besson M,Gallezot P,Perrard A,et al.Active carbons as catalysts for liquid phase reactions[J].Catalysis Today,2005,102-103:160-165.
[53]Korovchenko P,Donze C,Gallezot P,et al.Oxidation of primary alcohols with air on carbon-supported platinum catalysts for the synthesis of aldehydes or acids[J].Catalysis Today,2007,121(1-2):13-21.
[54]Yang S,Wang X,Yang H,et al.Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol[J].Journal of Hazardous Materials,2012,233-234:18-24.
[55]Yang S,Li X,Zhu W,et al.Catalytic activity,stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol[J].Carbon,2008,46(3):445-452.
[56]Cordero T,Rodríguez-Mirasol J,Bedia J,et al.Activated carbon as catalyst in wet oxidation of phenol:Effect of the oxidation reaction on the catalyst properties and stability[J].Applied Catalysis B:Environmental,2008,81(1-2):122-131.
[57]Santos A,Yustos P,Cordero T,et al.Catalytic wet oxidation of phenol on active carbon:stability,phenol conversion and mineralization[J].Catalysis Today,2005,102-103:213-218.
[58]Robert R E L,Barbati S E P,Ricq N,et al.Intermediates in wet oxidation of cellulose:identification of hydroxyl radical and characterization of hydrogen peroxide[J].Water research,2002,36(19):4821-4829.
[59]Mantzavinos D,Hellenbrand R,Livingston A G,et al.Catalytic wet oxidation of p-coumaric acid:Partial oxidation intermediates,reaction pathways and catalyst leaching[J].Applied Catalysis B:Environmental,1996,7(3-4):379-396.
[60]Debellefontaine H,F(xiàn)oussard J N E L.Wet air oxidation for the treatment of industrial wastes.Chemical aspects,reactor design and industrial applications in Europe[J].Waste management,2000,20(1):15-25.
[61]Eftaxias A,F(xiàn)ont J,F(xiàn)ortuny A,et al.Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing[J].Applied Catalysis B:Environmental,2001,33(2):175-190.
[62]Cavani F,Trifir O F.Classification of industrial catalysts and catalysis for the petrochemical industry[J].Catalysis today,1997,34(3-4):269-279.
[63]Cybulski A,Trawczy N Ski J.Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts[J].Applied Catalysis B:Environmental,2004,47(1):1-13.
[64]Mikulov A J,Barbier J,Rossignol S,et al.Wet air oxidation of acetic acid over platinum catalysts supported on cerium-based materials:Influence of metal and oxide crystallite size[J].Journal of catalysis,2007,251(1):172-181.
[65]Lee D,Kim D,Kim T,et al.Deactivation of Pt catalysts during wet oxidation of phenol[J].Catalysis Today,2010,154(3):244-249.
[66]Alejandre A,Medina F,Rodriguez X,et al.Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions[J].Applied Catalysis B:Environmental,2001,30(1-2):195-207.
[67]Kouraichi R,Delgado J J,López-Castro J D,et al.Deactivation of Pt/MnOx-CeO2catalysts for the catalytic wet oxidation of phenol:Formation of carbonaceous deposits and leaching of manganese[J].Catalysis Today,2010,154(3-4):195-201.
[68]Santos A,Yustos P,Quintanilla A,et al.Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts:Causes and effects[J].Applied Catalysis B:Environmental,2005,61(3-4):323-333.
[69]Santos A,Yustos P,Durbán B,et al.Oxidation of phenol in aqueous solution with copper catalysts[J].Catalysis Today,2001,66(2-4):511-517.
[70]Kim K,Kim J,Ihm S.Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65Zr0.35O2prepared by continuous hydrothermal synthesis in supercritical water[J].Journal of Hazardous Materials,2009,167(1-3):1158-1162.
[71]Massa P,Ivorra F,Haure P,et al.Catalytic wet air oxidation of phenol aqueous solutions by 1%Ru/CeO2-Al2O3catalysts prepared by different methods[J].Catalysis Communications,2007,8(3):424-428.
[72]Chen I,Lin S,Wang C,et al.CWAO of phenol using CeO2/γ-Al2O3with promoter—Effectiveness of promoter addition and catalyst regeneration[J].Chemosphere,2007,66(1):172-178.
[73]Hamoudi S,Sayari A,Belkacemi K,et al.Catalytic wet oxidation of phenol over PtxAg1-xMnO2/CeO2catalysts[J].Catalysis Today,2000,62(4):379-388.
[74]Massa P,Ivorra F,Haure P,et al.Optimized wet-proofed CuO/Al2O3catalysts for the oxidation of phenol solutions:Enhancing catalytic stability[J].Catalysis Communications,2009,10(13):1706-1710.