馬翠,趙心清,李倩,張明明,Jin Soo Kim,白鳳武
1 大連理工大學生命科學與技術(shù)學院,遼寧 大連 1160242 ToolGen, Inc, Seoul, 153-023, South Korea
利用人工鋅指文庫選育高乙醇耐受性工業(yè)酵母菌株
馬翠1,趙心清1,李倩1,張明明1,Jin Soo Kim2,白鳳武1
1 大連理工大學生命科學與技術(shù)學院,遼寧 大連 116024
2 ToolGen, Inc, Seoul, 153-023, South Korea
馬翠, 趙心清, 李倩, 等. 利用人工鋅指文庫選育高乙醇耐受性工業(yè)酵母菌株. 生物工程學報, 2013, 29(5): 612?619.
Ma C, Zhao XQ, Li Q, et al. Breeding of robust industrial ethanol tolerantSaccharomyces cerevisiaestrain using artificial zinc finger protein library. Chin J Biotech, 2013, 29(5): 612?619.
選育高乙醇耐性的釀酒酵母菌株對提高燃料乙醇的發(fā)酵效率具有重要意義。鋅指蛋白廣泛存在于多種生物中,對基因的轉(zhuǎn)錄和翻譯起重要的調(diào)節(jié)作用。利用人工設(shè)計的鋅指蛋白可定向設(shè)計鋅指序列及其排列順序,實現(xiàn)對細胞內(nèi)多個基因的全局調(diào)控。由于與環(huán)境脅迫反應相關(guān)的基因很多,因此可利用人工鋅指蛋白技術(shù)獲得耐受性提高的微生物重組菌。文中將人工鋅指文庫轉(zhuǎn)入到釀酒酵母模式菌株S288c,選育了具有高乙醇耐受性的重組菌株M01,并分離了與乙醇耐受性提高相關(guān)的人工鋅指蛋白表達載體pRS316ZFP-M01,轉(zhuǎn)入工業(yè)釀酒酵母Sc4126,在含有不同濃度乙醇的平板上,工業(yè)酵母Sc4126的重組菌株表現(xiàn)出顯著的耐受性提高。在高糖培養(yǎng)基 (250 g/L) 條件下進行乙醇發(fā)酵,發(fā)現(xiàn)重組菌的乙醇發(fā)酵效率明顯快于野生型,發(fā)酵時間提前24 h,且發(fā)酵終點乙醇濃度提高6.3%。結(jié)果表明人工鋅指文庫能夠提高酵母的乙醇耐受性,為構(gòu)建發(fā)酵性能優(yōu)良的酵母菌種奠定了基礎(chǔ)。
釀酒酵母,人工鋅指蛋白,乙醇耐受性,乙醇發(fā)酵
利用可再生生物質(zhì)資源生產(chǎn)生物燃料,是解決我國能源短缺問題的重要途徑,但目前生物燃料的生產(chǎn)效率還有待提高。發(fā)酵終產(chǎn)物乙醇濃度偏低,導致后續(xù)精餾能耗過高,是影響燃料乙醇工業(yè)化生產(chǎn)的一個關(guān)鍵因素。此外,原料水解過程中產(chǎn)生的多種抑制物 (如乙酸、糠醛等) 對細胞生長和發(fā)酵的抑制,也是影響發(fā)酵效率的主要因素[1-2]。選育對高濃度乙醇和乙酸等抑制物具有較好耐受性的工業(yè)酵母菌株,可提高菌種的細胞活性和發(fā)酵性能,因此近年來引起了普遍的關(guān)注[3-6]。
影響酵母菌乙醇耐受性的基因有很多[7-9],如熱休克蛋白和海藻糖合成相關(guān)基因,細胞能量代謝相關(guān)基因,氨基酸合成及轉(zhuǎn)運相關(guān)基因,細胞壁及細胞質(zhì)膜成分合成基因,以及糖轉(zhuǎn)運蛋白基因等。利用關(guān)鍵途徑的代謝工程改造與全基因組重組技術(shù)相結(jié)合的手段,成功構(gòu)建了脅迫耐性和發(fā)酵效率均提高的基因工程菌株,提高了工業(yè)釀酒酵母的逆境抗性和發(fā)酵性能[10-11],但由于脅迫耐受性受多基因控制,目前提高釀酒酵母乙醇耐受性的有效方法是通過基因組改組 (Genome shuffling),全局轉(zhuǎn)錄工程 (Global transcription machine engineering,gTME) 等基因組工程改造手段,以實現(xiàn)對相關(guān)基因的全局調(diào)控[6,12-14]。
鋅是影響酵母細胞生長和代謝的重要金屬元素,除了作為輔酶影響酶活性,鋅還可結(jié)合多種蛋白和核酸,并對其結(jié)構(gòu)的維持和調(diào)節(jié)功能具有重要作用[15]。鋅指蛋白是含鋅蛋白質(zhì)中最常見的一種,在轉(zhuǎn)錄和翻譯過程中起到至關(guān)重要的作用,可調(diào)控多種重要的細胞代謝途徑。生物信息分析表明,釀酒酵母基因組中含有 31個鋅指蛋白,其中一些鋅指蛋白,如MSN2、MSN4、CRZ1等對乙醇耐性具有調(diào)節(jié)作用[16-17],但很多其他鋅指蛋白的功能還不清楚。利用人工合成的鋅指蛋白在細胞中表達,可實現(xiàn)對細胞中多個基因的同時調(diào)控,從而實現(xiàn)對代謝的多效調(diào)節(jié)[18-20]。已證明人工鋅指蛋白基因在酵母中的表達可提高酵母菌的耐藥性[19],但人工鋅指蛋白在工業(yè)釀酒酵母菌株選育中的應用還沒有報道。
本文將人工鋅指蛋白基因文庫轉(zhuǎn)化到釀酒酵母模式酵母S288c中,成功選育了乙醇耐性提高的重組菌M01,并進一步獲得了乙醇耐性和高糖發(fā)酵性能提高的工業(yè)酵母重組菌。
大腸桿菌DH5α,釀酒酵母模式菌株S288c,以及乙醇工業(yè)酵母Sc4126,本實驗室保存。
YPD培養(yǎng)基 (g/L):葡萄糖20,蛋白胨20,酵母浸粉10;LB培養(yǎng)基 (g/L):蛋白胨10,酵母浸粉5,NaCl 10;種子培養(yǎng)基 (g/L):葡萄糖30,酵母浸粉4,蛋白胨3;發(fā)酵培養(yǎng)基 (g/L):葡萄糖250,酵母浸粉12,蛋白胨10。
大腸桿菌轉(zhuǎn)化子培養(yǎng)加入氨芐青霉素,終濃度為100 μg/mL,酵母菌轉(zhuǎn)化子的篩選利用G418,終濃度為 200 μg/mL (S288c 宿主) 或 300 μg/mL(Sc4126 宿主)。
1.2.1 人工鋅指文庫的轉(zhuǎn)化與乙醇耐性提高的重組菌的獲得
人工鋅指基因文庫由韓國 ToolGen公司提供[19]。為篩選乙醇耐性提高的重組菌株,實驗首先確定了出發(fā)菌株 S288c在 20%乙醇沖擊時細胞活性的變化,在含有20%乙醇的YPD液體培養(yǎng)基中接種S288c,30 ℃、150 r/min搖床培養(yǎng),在2 h、3 h、4 h時分別取樣,涂布于YPD固體培養(yǎng)基中培養(yǎng)24 h,確定使菌體全部死亡的最短沖擊時間。若重組菌株在同樣沖擊條件下可以存活,說明其乙醇耐受性提高,這樣可以使更多耐性提高的重組菌得到富集,達到初步篩選的目的。接著對轉(zhuǎn)化子進行進一步篩選,將轉(zhuǎn)化子用含有20%乙醇的YPD液體培養(yǎng)基中,150 r/min、30 ℃處理3 h,然后涂布于含有10%乙醇的YPD固體培養(yǎng)基中,30 ℃培養(yǎng)。為篩選耐性較強的轉(zhuǎn)化子,將各轉(zhuǎn)化子在YPD液體培養(yǎng)基中,30 ℃、150 r/min搖床培養(yǎng)12 h后,取菌液進行點板實驗,在乙醇終濃度為0%、6%、8%、10% (V/V)的YPD固體培養(yǎng)基上,30 ℃培養(yǎng),從而篩選得到乙醇耐性提高的釀酒酵母重組菌M01,耐性實驗至少重復3次。
1.2.2 人工鋅指蛋白的序列分析及功能驗證
按照參考文獻[21]所示的方法提取重組菌M01中的質(zhì)粒 DNA,并轉(zhuǎn)化大腸桿菌,提取含有人工鋅指蛋白的載體 pRS316ZFP-M01。同時以其作為模板,利用設(shè)計的引物 Zinc-4-F2(5¢-CACCAAGTGTAAGCCTATCCCTGAC-3¢) 和Zinc-4-R2 (5¢-GCGGACCTCTGAGTTGATGCTG TAA-3¢) 擴增人工鋅指蛋白基因片段,并進行測序分析 (Invitrogen,上海)。人工鋅指蛋白基因序列已提交GenBank (Accession No. JX982113)。
1.2.3 相關(guān)人工鋅指蛋白對工業(yè)酵母的乙醇耐受性的影響
采用電轉(zhuǎn)化方法,將pRS316ZFP-M01載體轉(zhuǎn)入工業(yè)酵母Sc4126,利用1.2.1中的點板方法比較轉(zhuǎn)化子與野生型菌株之間的乙醇耐受性差異。實驗重復3次,得到可重復性的結(jié)果。
1.2.4 工業(yè)酵母轉(zhuǎn)化子乙醇發(fā)酵性能研究
利用 Sc4126重組菌株和野生型菌株進行高糖發(fā)酵,分別接種到裝有 50 mL種子培養(yǎng)基的250 mL三角瓶中,30 ℃培養(yǎng)16 h。然后以10%的接種量接種到裝有 100 mL發(fā)酵培養(yǎng)基的250 mL三角瓶中,150 r/min、30 ℃發(fā)酵。每隔12 h取樣測定菌體濃度 (OD620) 和殘?zhí)呛浚龤執(zhí)呛康陀?0 g/L時改為每6 h取樣,然后離心取上清液,稀釋適當倍數(shù)后按參考文獻方法測量還原糖和乙醇的含量[22]。發(fā)酵實驗重復3次,得到一致的結(jié)果。
本實驗室前期將人工鋅指蛋白文庫直接轉(zhuǎn)化工業(yè)酵母4126,在20 000個轉(zhuǎn)化子中獲得了約200個乙醇耐性提高的重組菌株,但乙醇發(fā)酵性能與野生型相比沒有明顯提高,而且在不含高濃度乙醇的平板上,重組菌生長速率明顯弱于野生型。因此選擇對乙醇敏感的模式酵母S288c作為宿主進行研究。結(jié)果表明,在20%高濃度乙醇沖擊后,篩選得到耐性可能提高的轉(zhuǎn)化子,選取長勢較快的4株轉(zhuǎn)化子進一步比較,結(jié)果見圖1。在不含乙醇的平板上,重組菌已經(jīng)表現(xiàn)出了比較強的生長優(yōu)勢,而在含有 6%~10%的乙醇平板上,重組菌的生長優(yōu)勢更加明顯 (圖1)。
挑取耐性提高的 4號酵母重組菌 (命名為M01) 提取載體,獲得了含有人工鋅指蛋白的表達載體 pRS316ZFP-M01。利用該載體為模板,擴增出含有鋅指蛋白基因的目標片段,氨基酸序列分析結(jié)果表明,耐性提高的重組菌中鋅指蛋白是四鋅指蛋白,均為Cys2His2 型鋅指,其中含有4個CX2-4CX3FX5LX2HX3-5H (X代表任意氨基酸) 型基序,分別為Zinc 1、2、3、4 (圖2)。通過序列比對發(fā)現(xiàn),pRS316ZFP-M01中編碼鋅指基序的序列分別與已知的鋅指蛋白基因ZNF189、FAM92A1、GRCH37和ZNF314的鋅指基序相似[23],但這些鋅指基序在工業(yè)酵母中識別和控制的基因,以及從而導致的調(diào)控機理還不清楚,目前我們正在對人工鋅指蛋白的作用機理進行進一步的研究。
圖1 釀酒酵母S288c的高乙醇耐性重組菌的篩選Fig. 1 Screening of ethanol tolerant recombinant strains of S288c.
圖2 人工鋅指蛋白氨基酸序列分析Fig. 2 Analysis of amino acid sequences of the artificial zinc finger protein.
2.3.1 固體培養(yǎng)基上轉(zhuǎn)化子與野生型之間的耐受性差異
將pRS316ZFP-M01轉(zhuǎn)入乙醇發(fā)酵性能較好的工業(yè)酵母 Sc4126中,得到的轉(zhuǎn)化子 Sc4126z在含有0%、8%、10% (V/V) 的乙醇和5 g/L乙酸的固體平板上進行生長比較,結(jié)果見圖3??梢钥闯鯯c4126的轉(zhuǎn)化子在10%乙醇的脅迫下耐性明顯提高,在5 g/L乙酸的平板上也可以表現(xiàn)出細胞生長明顯好于野生型菌株,這說明人工鋅指基因確實可以提高酵母菌對多種環(huán)境脅迫因素的耐受性。但將該載體轉(zhuǎn)化另外一株工業(yè)酵母菌Sc6525,獲得的轉(zhuǎn)化子耐性并未得到改善 (結(jié)果未顯示),表明耐受性的改變與酵母菌的遺傳背景有關(guān)。類似的現(xiàn)象在韓國學者利用同樣的人工鋅指蛋白基因文庫進行癌細胞研究時也發(fā)現(xiàn)過[24],作者將人工鋅指蛋白基因F2840-p65同時轉(zhuǎn)入293細胞和Hela細胞中,并進行基因芯片分析,發(fā)現(xiàn)該基因雖然在兩種細胞中可調(diào)控一些類似的基因群的表達,但一些基因的調(diào)控方式在兩個細胞中也存在差異,推測染色質(zhì)的結(jié)構(gòu)以及DNA含量的不同可能是導致差異的原因。
2.3.2 轉(zhuǎn)化子的高糖發(fā)酵結(jié)果
由于在固體培養(yǎng)基上 Sc4126的重組菌Sc4126z與野生型相比,乙醇耐性表現(xiàn)出了明顯提高,因此選擇該重組菌進行高糖乙醇發(fā)酵實驗,結(jié)果見圖4。由圖4A可以看出,在相同接種量的情況下,重組菌與野生型生長趨勢基本一致,重組菌株生長略好于野生型。由圖4B中可以看出,與野生型相比,重組菌的最終乙醇產(chǎn)量為 85.28 g/L,而野生型的最終乙醇產(chǎn)量為80.19 g/L,重組菌比野生型的乙醇產(chǎn)量高6.3%;培養(yǎng)基中殘?zhí)堑淖兓?,兩個菌株也表現(xiàn)出顯著差異,在發(fā)酵進行60 h后,重組菌培養(yǎng)基中的葡萄糖基本完全消耗,而此時野生型培養(yǎng)基中的殘?zhí)橇扛哌_23.19 g/L,即使延長發(fā)酵時間殘?zhí)且矡o法完全消耗 (圖4B)。
圖3 含人工鋅指蛋白的工業(yè)酵母Sc4126重組菌環(huán)境脅迫耐受性提高Fig. 3 Stress tolerance was improved by artificial zinc finger protein in industrial yeast strain Sc4126. Upper panel: Sc4126; lower panel: Sc4126z.
圖4 高糖發(fā)酵中菌體濃度 (A)、乙醇和還原糖濃度的變化 (B)Fig. 4 Cell growth (A), ethanol production and glucose consumption (B) of the yeast strains under high concentration substrate condition.
目前對人工鋅指蛋白作用機理的研究還不夠深入。人工鋅指蛋白可結(jié)合基因組上多個DNA位點,這些位點通常是基因的啟動子區(qū)域,同一鋅指蛋白可同時上調(diào)某些基因的表達和抑制某些基因的表達,從而實現(xiàn)對基因組全局水平的調(diào)控[23]。本實驗室近期的研究發(fā)現(xiàn),鋅對釀酒酵母乙醇發(fā)酵過程中乙醇耐受性和乙酸、高溫等耐受性都具有保護作用[22,25],但這種保護作用是否與鋅指蛋白參與的調(diào)控相關(guān)還不清楚,目前正在進行深入的機理研究,從而尋找可能的提高乙醇耐性的目標基因,進行進一步理性的代謝工程改造。本文的結(jié)果表明,利用人工鋅指蛋白可提高釀酒酵母的乙醇耐性,獲得高乙醇耐性的工業(yè)酵母重組菌。對耐性提高的工業(yè)酵母重組菌進行進一步的分析,將揭示人工鋅指蛋白對細胞代謝的調(diào)控機制,為定向改造工業(yè)酵母菌株,提高燃料乙醇的生產(chǎn)效率奠定基礎(chǔ)。
[1]Zhang SS, Huang RB, Zhou X, et al. Advances in research on the mechanisms ofSaccharomyces cerevisiaeethanol tolerance. China Microbiol,2009, 36(10): 1604?1608 (in Chinese).
張穗生, 黃日波, 周興, 等. 釀酒酵母乙醇耐受性機理研究進展. 微生物學通報, 2009, 36(10):1604?1608.
[2]Li HX, Zhang XR, Shen Y, et al. Inhibitors and their effects onSaccharomyces cerevisiaeand relevant countermeasures in bioprocess of ethanol production from lignocellulose-a review. Chin J Biotech, 2009, 25(9): 1321?1328 (in Chinese).
李洪興, 張笑然, 沈煜, 等. 纖維素乙醇生物加工過程中的抑制物對釀酒酵母的影響及應對措施. 生物工程學報, 2009, 25(9): 1321?1328.
[3]Tao XL, Zheng DQ, Liu TZ, et al. A novel strategy to construct yeastSaccharomyces cerevisiaestrains for very high gravity fermentation. PLoS ONE,2012, 7(2): 31?35.
[4]Zheng DQ, Wu XC, Tao XL, et al. Screening and construction ofSaccharomyces cerevisiaestrains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol,2011, 102(3): 3020?3027.
[5]Zhang JG, Liu XY, He XP, et al. Improvement of acetic acid tolerance and fermentation performance ofSaccharomyces cerevisiaeby disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett,2011, 33(2): 277?284.
[6]Shi DJ, Wang CL, Wang KM. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity ofSaccharomyces cerevisiae.J Ind Microbiol Biotechnol, 2009, 36(1): 139?147.
[7]Zhang QM, Zhao XQ, Jiang RJ, et al. Ethanol tolerance in yeast: molecular mechanisms and genetic engineering. Chin J Biotech, 2009, 25(4):481?487 (in Chinese).
張秋美, 趙心清, 姜如嬌, 等. 釀酒酵母乙醇耐性的分子機制及基因工程改造. 生物工程學報,2009, 25(4): 481?487.
[8]Hirasawa T, Yoshikawa K, Nakakura Y, et al.Identification of target genes conferring ethanol stress tolerance toSaccharomyces cerevisiaebased on DNA microarray data analysis. J Biotechnol,2007, 131(1): 34?44.
[9]Dinh TN, Nagahisa K, Yoshikawa K, et al.Analysis of adaptation to high ethanol concentration inSaccharomyces cerevisiaeusing DNA microarray. Bioprocess Biosyst Eng, 2009,32(5): 681?688.
[10]Zhang XY, Du FG, Chi XQ, et al. Construction ofSaccharomyces cerevisiaestrains improved stress tolerance and ethanol fermentation performance through metabolic engineering and genome recombination. China Biotechnol, 2011, 31(7):91?97 (in Chinese).
張曉陽, 杜風光, 池小琴, 等. 代謝工程與全基因組重組構(gòu)建釀酒酵母抗逆高產(chǎn)乙醇菌株. 中國生物工程雜志, 2011, 31(7): 91?97.
[11]Hasunuma T, Sanda T, Yamada R, et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain ofSaccharomyces cerevisiae. Microb Cell Fact, 2011,10(2):1?13.
[12]Pinel D, D'Aoust F, Cardayre SB, et al.Saccharomyces cerevisiaegenome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol, 2011, 77(14): 4736?4743.
[13]Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 2006,314(5805): 1565?1568.
[14]Liu HM, Yan M, Lai CG, et al. gTME for improved xylose fermentation ofSaccharomyces cerevisiae.Appl Biochem Biotechnol, 2010, 160(2): 574?582.
[15]Zhao XQ, Bai FW. Zinc and yeast stress tolerance:Micronutrient plays a big role. J Biotechnol, 2012,15(84): 176?183.
[16]Lewis JA, Elkon IM, McGee MA, et al. Exploiting natural variation inSaccharomyces cerevisiaeto identify genes for increased ethanol resistance.Genetics, 2010, 186(4): 1197?1205.
[17]Araki Y, Wu H, Kitagaki H, et al. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway inSaccharomyces cerevisiae. J Biosci Bioeng, 2009, 107(1): 1?6.
[18]Sera T. Zinc-finger-based artificial transcription factors and their applications. Adv Drug Delivery Rev, 2009, 61(7): 513?526.
[19]Park KS, Lee DK, Lee H, et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol, 2003, 21(10): 1208?1214.
[20]Lee JY, Sung BH. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors inEscherichia coli.Nucleic Acids Res, 2008, 36(16): 1?10.
[21]Amberg DC, Huo KK. Methods in Yeast Genetics.Beijing: Science Press, 2009: 87?88 (in Chinese).
安伯格, 霍克克. 酵母遺傳學方法試驗指南. 北京: 科學出版社, 2009: 87?88.
[22]Zhao XQ, Xue C, Ge XM, et al. Impact of zinc supplementation on the improvement of ethanol tolerance and ethanol yield of self-flocculating yeast in continuous ethanol fermentation. J Biotechnol, 2009, 139(1): 55?60.
[23]Bae KH, Kwon YD, Shin HC, et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol,2003, 21(3): 275?280.
[24]Lee DK, Park JW, Kim YJ, et al. Toward a functional annotation of the human genome using artificial transcription factors. Genome Res, 2003,13(12): 2708?2716.
[25]Xu GH, Zhao XQ, Bai FW, et al. Improvement of acetic acid tolerance of self-flocculating yeast by zinc supplementation. CIESC J, 2012, 63(6):1823?1829 (in Chinese).
徐桂紅, 趙心清, 白鳳武, 等. 鋅離子提高絮凝酵母高濃度乙酸脅迫耐受性的研究. 化工學報,2012, 63(6): 1823?1829.
November 11, 2012; Accepted: January 4, 2013
Xinqing Zhao. Tel: +86-411-84706319; Fax: +86-411-84706329; E-mail: xqzhao@dlut.edu.cn
國家自然科學基金 (No. 21076040),國家高技術(shù)研究發(fā)展計劃 (863計劃) (Nos. 2012AA101805,2012AA021205) 資助。
Breeding of robust industrial ethanol-tolerantSaccharomyces cerevisiaestrain by artificial zinc finger protein library
Cui Ma1, Xinqing Zhao1, Qian Li1, Mingming Zhang1, Jin Soo Kim2, and Fengwu Bai1
1School of Life Science and Biotechnology,Dalian University of Technology,Dalian116024,Liaoning,China
2ToolGen,Inc.,Seoul, 153-023,South Korea
Breeding of robust industrialSaccharomyces cerevisiaestrains with high ethanol tolerance is of great significance for efficient fuel ethanol production. Zinc finger proteins play important roles in gene transcription and translation, and exerting control on the regulation of multiple genes. The sequence and localization of the zinc finger motif can be designed and engineered, and the artificial zinc finger protein can be used to regulate celluar metabolism. Stress tolerance of microbial strains is related to multiple genes. Therefore, it is possible to use artificially-designed zinc finger proteins to breed stress tolerant strains. In this study, a library containing artificial zinc finger protein encoding genes was transformed into the model yeast strain S288c. A recombinant strain named M01 with improved ethanol tolerance was obtained. The plasmid in M01 was isolated, and then transformed into the industrial yeast strain Sc4126. Ethanol tolerance of the recombinant strain of Sc4126 were significantly improved. When high gravity ethanol fermentation using 250 g/L glucose was performed, comparing with the wild-type strain, fermentation time of the recombinant strain was decreased by 24 h and the final ethanol concentration was enhanced by 6.3%. The results of this study demonstrate that artificial zinc finger proteins are able to exert control on stress tolerance of yeast strains, and these results provide basis to construct robust industrial yeast strains for efficient ethanol fermentation.
Saccharomyces cerevisiae, artificial zinc finger protein, ethanol tolerance, ethanol fermentation
Supported by: National Science Foundation of China (No. 21076040), National High Technology Research and Development Program of China(863 Program) (Nos. 2012AA101805, 2012AA021205).
(本文責編 陳宏宇)