王慧,田華,汝少國
中國海洋大學(xué)海洋生命學(xué)院,青島266003
性激素在魚類生殖系統(tǒng)發(fā)育中起著決定性的作用。性激素主要由性腺合成并分泌,可以通過血液循環(huán)運輸?shù)狡渌陌薪M織,與細(xì)胞核內(nèi)的雌激素受體、雄激素受體等核受體結(jié)合而發(fā)揮作用。許多環(huán)境內(nèi)分泌干擾物如雙酚A(bisphenol A,BPA)、4–壬基酚、己烯雌酚(diethylstilbestrol,DES)、o,p'–滴滴涕等具有與生物體內(nèi)雌激素相類似的結(jié)構(gòu),可作為配體與雌激素受體結(jié)合[1-2],通過性激素受體介導(dǎo)途徑發(fā)揮類雌激素效應(yīng),這種作用方式被認(rèn)為是環(huán)境內(nèi)分泌干擾物(environmental endocrine disruptors,EEDs)發(fā)揮內(nèi)分泌干擾作用的經(jīng)典作用途徑,這類化合物也被稱為環(huán)境雌激素。此外,環(huán)境中還存在很多化學(xué)物質(zhì),雖然其結(jié)構(gòu)與內(nèi)源性激素并不相似,不能直接與激素受體相結(jié)合,但在體內(nèi)實驗中卻也表現(xiàn)出內(nèi)分泌干擾效應(yīng),這可能是其影響了生物體內(nèi)性激素的合成、轉(zhuǎn)運、代謝、清除等過程,從而影響了性激素的含量,這些作用被統(tǒng)稱為非性激素受體介導(dǎo)途徑[3]。近年來,研究發(fā)現(xiàn),某些典型的環(huán)境雌激素如 17α-炔雌醇(17α-ethinylestradiol,EE2)、BPA也可以通過非性激素受體介導(dǎo)途徑發(fā)揮內(nèi)分泌干擾作用[4-5]。性激素的合成涉及到一系列的酶促反應(yīng),EEDs對性激素合成途徑的干擾可能是影響了性激素合成底物的含量,也可能是影響了類固醇生成酶mRNA的表達(dá)和/或活性。已經(jīng)證實,芳香化酶抑制劑法倔唑、殺菌劑咪鮮胺、除草劑阿特拉津等可通過非受體介導(dǎo)途徑,影響性腺性激素合成途徑中相關(guān)酶的基因表達(dá)和/或活性[6],導(dǎo)致性激素水平紊亂,進而干擾生物體的生殖和發(fā)育過程。本文綜述了魚類的性激素合成途徑,EEDs對性激素合成底物和類固醇生成酶的影響,EEDs影響性激素合成的信號轉(zhuǎn)導(dǎo)機制,以及EEDs對性激素水平的影響和生殖危害,以期為EEDs發(fā)揮內(nèi)分泌干擾效應(yīng)的作用機制研究提供借鑒。
在垂體促性腺激素(gonadotropins,GtHs)包括卵泡刺激素(follicle-stimulating hormone,F(xiàn)SH)和促黃體激素(luteinizing hormone,LH)的調(diào)控下,性腺特化的體細(xì)胞分泌產(chǎn)生性激素,性激素對性腺發(fā)育、卵黃形成、卵細(xì)胞成熟、精子生成和精子排放等生理過程具有重要的調(diào)控作用。一般硬骨魚體內(nèi)發(fā)揮作用的主要性激素為17β-雌二醇(17β-estradiol,E2)、睪酮(testosterone,T)和11-酮基睪酮(11-ketotestosterone,11-KT)[7]。LH 調(diào)控雄激素的合成和分泌,F(xiàn)SH控制雄激素向雌激素的轉(zhuǎn)化。性激素合成的反應(yīng)底物為膽固醇,在類固醇激素合成急性調(diào)節(jié)蛋白(steroidogenic acute regulatory protein,StAR)[8]的作用下,膽固醇由線粒體外膜轉(zhuǎn)運至內(nèi)膜,然后在膽固醇側(cè)鏈裂解酶(cholesterol side chain cleavage enzyme,CYP11A1/P450scc)的作用下,轉(zhuǎn)化為孕烯醇酮。在滑面內(nèi)質(zhì)網(wǎng)中,3β-羥類固醇脫氫酶(3βhydroxysteroid dehydrogenase,3β-HSD)催化孕烯醇酮轉(zhuǎn)化為孕酮,17α羥化酶(又名17,20-裂解酶,cytochrome P450 17 alpha-hydroxylase,17,20-lyase,CYP17/P450c17/P45017α)催化孕烯醇酮和孕酮轉(zhuǎn)化為雄激素。雄烯二酮轉(zhuǎn)化為E2的合成途徑有2條:一是芳香化酶(cytochrome P450 aromatase,CYP19/P450arom)催化雄烯二酮轉(zhuǎn)化為雌酮,然后雌酮經(jīng)17β-羥類固醇脫氫酶 I(17β-hydroxysteroid dehydrogenase type I,17β-HSD1)催化轉(zhuǎn)化為 E2;二是17β-羥類固醇脫氫酶 III(17β-hydroxysteroid dehydrogenase type III,17β-HSD3)催化雄烯二酮轉(zhuǎn)化為T,T再經(jīng)芳香化酶催化轉(zhuǎn)變?yōu)镋2[9]。其中,芳香化酶是E2合成過程的限速酶,其所催化的雄激素向雌激素的轉(zhuǎn)化過程對魚類性腺發(fā)育是必不可少的。11β-羥化酶(11β-hydroxylase,P45011β)催化 T 向11β-羥基睪酮的轉(zhuǎn)化[10],再經(jīng) 11β-羥類固醇脫氫酶II(11β-hydroxysteroid dehydrogenase type II,11β-HSD2)作用生成11-KT,這2種酶對魚類精巢中11-KT的合成具有重要作用。各種酶類催化的反應(yīng)過程如圖1所示。
FSH和LH通過激活cAMP/PKA信號轉(zhuǎn)導(dǎo)途徑,調(diào)節(jié)性激素的合成。類固醇生成酶基因啟動子上的順式作用元件是cAMP/PKA刺激類固醇生成酶基因轉(zhuǎn)錄的作用位點[11-12]。GtHs與其膜受體結(jié)合后,激活G蛋白,活化腺苷酸環(huán)化酶合成cAMP,細(xì)胞內(nèi)cAMP濃度增加可激活蛋白激酶A(protein kinase A,PKA),PKA進而通過調(diào)節(jié)某些轉(zhuǎn)錄因子的磷酸化水平實現(xiàn)對類固醇生成酶轉(zhuǎn)錄水平的調(diào)控。目前已知與類固醇生成酶表達(dá)相關(guān)的轉(zhuǎn)錄因子有甾體生成因子(steroidogenic factor 1,SF-1)和cAMP應(yīng)答元件結(jié)合蛋白(cAMP response element binding protein,CREB)等。研究證實CREB通過133位絲氨酸的磷酸化/去磷酸化作用調(diào)節(jié)P450arom基因啟動子上的cAMP應(yīng)答元件(cAMP response element,CRE),從而起始P450arom基因的轉(zhuǎn)錄[13-14]。SF-1是孤兒核受體超家族的一員,是許多cAMP依賴的靶基因包括P450arom、CYP11A1、StAR等的轉(zhuǎn)錄因子。已有研究證實SF-1是cAMP/PKA途徑的應(yīng)答基因,SF-1存在潛在的PKA磷酸化作用位點,體外實驗直接證實了SF-1磷酸化依賴于PKA的激活[15-16]。Michael等[17]研究表明,cAMP 對人卵巢芳香化酶轉(zhuǎn)錄的刺激作用至少部分是由于SF-1水平升高及其與芳香化酶基因結(jié)合活性增強所致。
圖1 魚類性激素合成途徑Fig.1 Sex hormone biosynthesis pathway in fish
理論上,性激素合成途徑中的任何因子均可作為外源化合物作用的潛在靶位點。哺乳動物中,性激素合成的底物——膽固醇的來源包括3個方面:①從頭合成的膽固醇;② 細(xì)胞內(nèi)以膽固醇酯形式儲存的膽固醇;③ 脂蛋白從血漿中攝取的膽固醇[18]。在硬骨魚類中,類固醇合成的底物主要為從血漿中攝取的外源膽固醇[19]。在脂蛋白的作用下,膽固醇經(jīng)血液循環(huán)從合成或吸收部位運送到作用部位。在哺乳動物中,低密度脂蛋白(low density lipoprotein,LDL)起主要作用,Becker等[20]研究表明,谷甾醇是一種治療重度小兒家族性高膽固醇血癥的藥物,同時具有內(nèi)分泌干擾活性,服用3個月后患者血清中LDL的濃度降低了20%。而在魚類中,大多數(shù)的膽固醇轉(zhuǎn)運過程由高密度脂蛋白(high density lipoproteins,HDL)負(fù)責(zé)完成[21]。Sharpe 等[19]研究表明,雄性金魚(Carassius auratus)暴露于10μg·g-1E2中5個月,血漿中HDL和T顯著降低。因此,EEDs也可以通過降低/提高魚類血漿中HDL的含量,影響運輸?shù)叫韵偌?xì)胞的膽固醇含量,最終干擾性激素的合成。
膽固醇被轉(zhuǎn)運至線粒體內(nèi)膜才能啟動性激素合成途徑。研究發(fā)現(xiàn),膽固醇從線粒體外膜轉(zhuǎn)運至內(nèi)膜的跨膜轉(zhuǎn)運是性激素合成的限速步驟[22]。StAR是膽固醇的一種轉(zhuǎn)運蛋白,主要參與膽固醇的代謝。StAR蛋白受損可導(dǎo)致性激素合成水平的急劇下降或性激素合成途徑的中斷,此外EEDs也可能通過改變StARmRNA表達(dá)水平,導(dǎo)致性激素合成底物的減少。例如,雄性金魚(Carassius auratus)暴露于200 μg·g-1的 β-谷甾醇(純度為 72.6%)5 個月,精巢中StAR的轉(zhuǎn)錄水平顯著降低,使進入線粒體內(nèi)膜的膽固醇含量降低,血漿中的T濃度顯著減少[19]。
2.2.1 體內(nèi)實驗檢測EEDs對類固醇生成酶的影響
EEDs可通過干擾性激素合成途徑中類固醇生成酶的mRNA表達(dá)水平或活性,干擾性激素的合成,影響魚類正常的生殖功能。不同的EEDs作用于不同的酶類,例如法倔唑是一種典型的性腺P450arom抑制劑[23],曲洛司坦可選擇性降低 3β-HSD的活性[24],氨魯米特可特異性抑制 CYP11A1的活性[25]。而某些外源化合物可同時作用于多種類固醇生成酶,例如殺菌劑咪鮮胺可抑制性腺P450arom 和 CYP17 的 活 性[26],查 爾 酮 是 性 腺P450arom 和17β-HSD 的抑制劑[27],而酮康唑是細(xì)胞色素P450酶(cytochrome P450 enzymes,CYPs)的非特異性抑制劑,可降低脊椎動物性激素合成途徑中不同CYPs的活性,其中CYP11A1和CYP17為主要的作用靶點[28]。
類固醇生成酶基因表達(dá)的上調(diào)/下調(diào)會導(dǎo)致酶活性的增強/減弱,從而升高/降低魚類體內(nèi)的性激素水平。Ma等[29]研究發(fā)現(xiàn),2,4-二氯酚可減少雌性斑馬魚(Danio rerio)性腺P450arom mRNA表達(dá)量,進而降低E2濃度。但近年來,有研究表明,補償效應(yīng)可能會使類固醇生成酶mRNA水平與酶活性的變化趨勢相反[30]。某些EEDs可降低性激素的合成,魚類對這類EEDs的應(yīng)答之一是通過提高類固醇生成酶mRNA的表達(dá)水平,增強自身性激素的合成[28]。Skolness 等[26]對雌性黑頭呆魚(Pimephales promelas)研究表明,咪鮮胺減少了卵巢中E2的合成,但CYP19 mRNA和CYP17 mRNA的轉(zhuǎn)錄水平上調(diào)。Ankley等[28]研究表明,酮康唑降低了雌雄黑頭呆魚(Pimephales promelas)性腺中T的合成及雌魚中E2的合成,但CYP11A1 mRNA和CYP17 mRNA的表達(dá)增強。
2.2.2 體外實驗證實EEDs對類固醇生成酶的直接影響
H295R細(xì)胞系能夠表達(dá)多種類固醇生成酶[31],Sanderson等[32]采用H295R細(xì)胞系研究發(fā)現(xiàn),咪唑類殺菌劑可以抑制芳香化酶活性,乙烯菌核利和阿特拉津可通過增強細(xì)胞內(nèi)的cAMP水平,誘導(dǎo)芳香化酶的轉(zhuǎn)錄和催化活性。Ma等[33]研究發(fā)現(xiàn),五氯酚和 2,4,6-三氯苯酚抑制了 H295R細(xì)胞系CYP11A1、CYP17、CYP19、3β-HSD 以及 17β-HSD mRNA表達(dá)水平,從而顯著降低了T和E2的含量。Villeneuve等[34]分別采用 H295R細(xì)胞系和黑頭呆魚(Pimephales promelas)卵巢組織離體培養(yǎng)方法,檢測了法倔唑、氯苯嘧啶醇、酮康唑、咪鮮胺、乙烯菌核利和撲滅通對性激素合成的影響,發(fā)現(xiàn)這6種化學(xué)物質(zhì)均能夠顯著影響E2和/或T的合成。
此外,可在共培養(yǎng)的條件下,以癌細(xì)胞系中特異性雌激素調(diào)控基因的轉(zhuǎn)錄水平來反映原代培養(yǎng)細(xì)胞中芳香化酶的表達(dá)情況。例如,人乳腺成纖維細(xì)胞和人乳腺癌細(xì)胞系(human breast adenocarcinoma cell line,MCF-7)共培養(yǎng)條件下,外源化學(xué)物質(zhì)通過刺激乳腺成纖維細(xì)胞中芳香化酶活性導(dǎo)致雌激素合成增強,雌激素水平升高能夠刺激MCF-7細(xì)胞雌激素調(diào)控基因pS2的表達(dá),因此可用pS2基因的表達(dá)水平變化表征外源化合物的雌激素活性大小。Heneweer等[35]采用此體系檢測了 E2、DES、BPA 和地塞米松(dexamethasone,DEX)等化學(xué)物質(zhì)的雌激素活性,其中E2、DES和BPA使pS2的轉(zhuǎn)錄水平呈現(xiàn)3~7倍增長。共培養(yǎng)體系中雌激素化合物如BPA顯示出比僅在MCF-7細(xì)胞培養(yǎng)體系中更強的雌激素活性,即在較低的濃度下即可誘導(dǎo)pS2的表達(dá)[36]。
外源化合物之所以能在轉(zhuǎn)錄水平上影響魚類類固醇生成酶基因的表達(dá),與cAMP、PKA、SF-1等所介導(dǎo)的胞內(nèi)信號轉(zhuǎn)導(dǎo)途徑有關(guān)。cAMP和PKA活性增強是類固醇生成酶基因表達(dá)的第一步[37],在人、大鼠、小鼠等哺乳動物中已經(jīng)證實EEDs可通過影響cAMP和/或PKA濃度,造成孕酮、睪酮、雌激素水平異常。48 h 的 10 nmol·L-12,3,7,8-四氯二苯并二惡英(2,3,7,8-tetrachlorodibenzo-p-dioxin,TCDD)暴露使人卵巢黃素化顆粒細(xì)胞(human luteinizing granulosa cells,LGCs)中PKA和孕酮的含量顯著降低[38];Qu 等[13]推測氰戊菊酯可能是通過減少cAMP的形成而抑制小鼠間質(zhì)細(xì)胞瘤細(xì)胞(mouse Leydig tumor cells,MLTC-1)中人絨毛膜促性腺激素(human chorionic gonadotropin,hCG)誘導(dǎo)的孕酮分泌。Ronco等[39]認(rèn)為,林丹對大鼠精巢中睪酮生成的抑制作用(至少部分)是由間質(zhì)細(xì)胞cAMP水平降低引起的。磷酸二酯酶4(phosphodiesterase4,PDE4)可特異性水解 cAMP,Kucka等[40]證實,PDE4抑制劑阿特拉津可以造成細(xì)胞內(nèi)和細(xì)胞外cAMP的積累,進而激活PKA。
cAMP激活PKA,引發(fā)一系列的信號級聯(lián)放大,最終增強轉(zhuǎn)錄因子如SF-1的活性和類固醇生成酶基因的表達(dá)。EEDs可能通過改變某些轉(zhuǎn)錄因子的表達(dá),影響類固醇生成酶的mRNA表達(dá)水平或酶活性,進而干擾性激素的合成途徑。斑馬魚(Danio rerio)腦芳香化酶基因cyp19a2包含一個雌激素應(yīng)答元件(estrogen responsive element,ERE),對雌激素的應(yīng)答有重要作用,而性腺芳香化酶基因cyp19a1包含SF-1轉(zhuǎn)錄調(diào)控元件,阿特拉津暴露導(dǎo)致斑馬魚cyp19a1表達(dá)上調(diào),而cyp19a2表達(dá)無顯著變化[41],這表明阿特拉津是通過非性激素受體介導(dǎo)途徑發(fā)揮內(nèi)分泌干擾效應(yīng)的。Govoroun等[42]檢測到虹鱒魚(Oncorhynchus mykiss)經(jīng) E2暴露后精巢中 3β-HSD、P450c17、P45011βmRNA表達(dá)水平均降低,推測可能受同一個上游轉(zhuǎn)錄因子如SF-1的調(diào)控。這種“轉(zhuǎn)錄因子SF-1水平異?!迸c“性激素濃度紊亂”的相關(guān)關(guān)系已經(jīng)在嚙齒類、哺乳類中得到證實。如妊娠期暴露鄰苯二甲酸二辛酯(diethylhexyl phthalate,DEHP)導(dǎo)致新生小鼠精巢中SF-1 mRNA表達(dá)水平降低,進而造成StAR和P450scc 基因表達(dá)下調(diào)[43];Du 等[44]研究表明,全氟辛酸(perfluorooctanoic acid,PFOA)能夠顯著降低人腎上腺皮質(zhì)瘤H295R細(xì)胞中SF-1mRNA和蛋白水平的表達(dá),進而進一步抑制類固醇生成酶CYP11A1和CYP17 mRNA的表達(dá)。
EEDs可通過對魚類性激素合成途徑的干擾作用改變性激素正常的合成和/或分泌水平,進而干擾魚類正常的生殖功能[45]。如 Govoroun 等[42]證實了外源雌激素暴露情況下,虹鱒魚(Oncorhynchusmykiss)精巢分化期和分化后期P450c17、3β-HSD和P45011βmRNA的表達(dá)水平受抑制與雄魚雌性化有關(guān);Yokota等[46]研究表明≥238 μg·L-14-叔戊基苯酚(4-tertpentylphenol,4-PP)暴露使基因型雄性青鳉(Oryzias latipes)精巢中P45011β的mRNA水平受到顯著抑制,并導(dǎo)致性逆轉(zhuǎn)現(xiàn)象;對于與E2結(jié)構(gòu)差異較大的有機磷農(nóng)藥久效磷,體外實驗證實其不能模擬E2與雌激素受體結(jié)合[47],卻能夠通過促進性腺芳香化酶的表達(dá),造成雄性金魚(Carassius auratus)體內(nèi)E2水平升高和T水平降低[48],并誘導(dǎo)雄性孔雀魚(Poecilia reticulata)及斑馬魚(Danio rerio)雌性化[49-50]。
EEDs在環(huán)境中不易降解,一旦進入水體等環(huán)境介質(zhì),將會對魚類造成生殖危害。早在20世紀(jì)90年代初,Purdom等[51]在英國污水處理廠出水口下游的瀉湖中發(fā)現(xiàn)了具有雌雄兩性特征的斜齒鳊魚(Rutilus rutilus)。近年來研究表明,污水處理廠排水中含有E2、17α-炔雌醇、烷基酚和雙酚A,導(dǎo)致類固醇生成酶基因表達(dá)異常、體內(nèi)性激素水平改變,從而誘導(dǎo)魚類產(chǎn)生卵精巢兼性結(jié)構(gòu)[52-54]。自然界中EEDs對魚類的繁殖影響已非常普遍,對魚類的生存和繁衍構(gòu)成了嚴(yán)重的威脅,佛羅里達(dá)州的阿波普卡湖污染嚴(yán)重,抗雄激素污染物使雄性食蚊魚(Gambusia holbrooki)精子數(shù)目減少,生殖足變短[55]。密西西比河有機氯殺蟲劑污染嚴(yán)重,其中29%的雄性密西西比鏟鱘(Scaphirhynchus platyorynchus)出現(xiàn)雌雄同體現(xiàn)象[56]。
性激素的調(diào)控是一個復(fù)雜的過程,涉及到生殖軸線上多個位點的正負(fù)反饋調(diào)節(jié)機制。因此,體內(nèi)實驗中所表現(xiàn)出的類固醇生成酶mRNA表達(dá)和/或活性的變化,既可能是外源化合物對性腺組織的直接作用,也可能是上游生殖內(nèi)分泌系統(tǒng)擾亂的間接體現(xiàn)。例如,酮康唑可以直接作用于性激素合成途徑中的CYP11A1和CYP17,是類固醇生成酶的抑制劑[28],Villeneuve 等[57]研究表明,酮康唑(400 μg·L-1)暴露可導(dǎo)致雄性黑頭呆魚(Pimephales promelas)FSH-βmRNA表達(dá)水平升高,LH-βmRNA表達(dá)水平降低,進一步增強其對性激素合成的抑制效應(yīng)。Tian 等[48,58]研究表明,久效磷農(nóng)藥暴露造成雄性和雌性金魚(Carassius auratus)體內(nèi)FSH水平升高,同時LH水平降低,從而進一步強化性腺芳香化酶基因表達(dá)升高所造成的雄雌激素比例失衡。性激素的合成與分泌受到GtHs的調(diào)節(jié),同時性激素水平的變化對上游激素的合成與分泌調(diào)控也具有反饋作用,從而維持生殖軸線中各種激素的正常水平[59]。因此,某些 EEDs是否通過影響 GtHs間接干擾性激素合成,需要結(jié)合GtHs與性激素的合成與分泌水平以及GtHsmRNA表達(dá)水平等進行綜合探討。
信號轉(zhuǎn)導(dǎo)通路涉及多個轉(zhuǎn)錄因子,這些轉(zhuǎn)錄因子并不是唯一和獨立的,可能是彼此聯(lián)系、相互調(diào)節(jié)、協(xié)同或拮抗的。已有研究證實了SF-1和CREB的相互作用[60],其相互作用包括直接和共激活作用[61],也有研究認(rèn)為,cAMP途徑可能是通過磷酸化作用增加SF-1的轉(zhuǎn)錄活性,但Zheng等[62]的研究表明,SF-1的磷酸化作用不是其與CREB共同作用的關(guān)鍵。Lan等[63]建立了3個常見轉(zhuǎn)錄因子同源結(jié)構(gòu)域相互作用蛋白激酶3(homeodomain-interacting protein kinase 3,HIPK3)、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)和 c-Jun與 SF-1作用間的聯(lián)系。研究表明,在cAMP刺激下,HIPK3使轉(zhuǎn)錄因子c-Jun和JNK磷酸化,此過程對SF-1的活性和CYP11A1的表達(dá)具有重要作用。采用哺乳動物細(xì)胞系實驗證實,阿特拉津不直接與SF-1結(jié)合發(fā)揮內(nèi)分泌干擾作用,而是通過激活SF-1的磷酸化作用、增強SF-1配體的產(chǎn)生、促進cAMP的產(chǎn)生等3種途徑間接影響SF-1的表達(dá),導(dǎo)致性腺芳香化酶過量表達(dá)[41]??梢?,EEDs對類固醇生成酶基因表達(dá)水平的影響可能與上游的多種轉(zhuǎn)錄因子、多個調(diào)節(jié)途徑有關(guān),其精細(xì)的分子調(diào)控機制有待于進一步研究。
黑頭呆魚(Pimephales promelas)、斑馬魚(Danio rerio)和日本青鳉(Oryzias latipes)被認(rèn)為是內(nèi)分泌干擾物篩選和測試的模式生物[64]。不同硬骨魚類的性激素合成步驟大致相同,但在類固醇生成酶及其所調(diào)控性激素的類別、時空分布及活性方面略有差異。例如,在虹鱒魚(Oncorhynchusmykiss)中,僅存在一個 3β-HSD 基因[65];而 Kazeto 等[66]從日本鰻鱺(Anguilla japonica)卵巢中克隆得到了2種3β-HSD亞型,即3β-HSDI和3β-HSDII,這2種亞型的核苷酸和氨基酸序列高度同源,3β-HSDI活性高于3β-HSDII。在精子發(fā)生的不同階段,某些類固醇生成酶的表達(dá)情況存在差異。例如,精子發(fā)生早期,P45011β的表達(dá)水平較低,精子形成期急劇上升并最終達(dá)到最高水平[67]。而同一種類固醇生成酶在不同物種間所發(fā)揮的催化作用也不盡相同。例如,在日本鰻鱺(Anguilla japonica)、斑馬魚(Danio rerio)和尼羅羅非魚(Oreochromis niloticus)中,17β-HSD1的功能主要是高效地催化從雌酮到E2的反應(yīng),但尼羅羅非魚17β-HSD1是一種多功能的酶,還能催化雄烯二酮和睪酮之間的反應(yīng),只是其催化效率較低[68]。此外,發(fā)揮主要生殖調(diào)節(jié)作用的性激素種類也具有一定的物種特異性,在大多數(shù)魚類中11-KT是最主要的雄激素,但對雄性食蚊魚(Gambusia holbrooki)和孔雀魚(Poecilia reticulates)等花鳉亞科魚性征發(fā)育起主要調(diào)控作用的是睪酮[69]。這些差異可能會導(dǎo)致EEDs對不同物種、同一物種不同發(fā)育時期性激素合成干擾效應(yīng)的不同。因此,在設(shè)計EEDs非受體介導(dǎo)機制實驗、解釋結(jié)果并進行物種間外推時,應(yīng)充分考慮到上述因素。
魚類生殖不僅受生殖軸線的調(diào)控,而且受生殖軸線、甲狀腺軸和腎間腺軸的協(xié)同調(diào)控。正是由于各個軸線間存在著復(fù)雜的交互作用,使得環(huán)境中的某些化學(xué)物質(zhì)可同時引起靶向多個內(nèi)分泌系統(tǒng)的復(fù)合毒性效應(yīng)。一方面,EEDs對類固醇生成途徑的影響可引起甲狀腺軸和/或腎間腺軸的相關(guān)變化。例如:芳香化酶抑制劑法倔唑處理不僅可使黑頭呆魚(Pimephates promelas)和日本青鳉(Oryzias latipes)血漿中E2濃度降低,產(chǎn)卵量下降,還可調(diào)節(jié)甲狀腺激素相關(guān)基因的表達(dá)[70-71]。另一方面,在體內(nèi)實驗中EEDs引起的類固醇生成酶的變化也可能是甲狀腺軸和/或腎間腺軸擾亂的間接效應(yīng)。Nelson等[72]研究表明,體內(nèi)三碘甲腺原氨酸(3,3’,5-triiodo-L-thyronine,T3)處理能夠下調(diào)金魚(Carassius auratus)精巢和卵巢中P450arom mRNA表達(dá)水平;丙基硫氧嘧啶(propylthiouracil,PTU)為臨床上最常用的一種治療甲狀腺功能亢進癥的藥物,Liu等[73]對成熟的雌性斑馬魚(Danio rerio)的研究表明,PTU暴露引起的甲狀腺素(L-thyroxine,T4)和T3濃度降低可進一步導(dǎo)致FSH和LH分泌升高,進而促進類固醇合成;Kirby等[74]認(rèn)為,腎上腺軸和生殖軸線在多個層面存在相互作用,研究表明,應(yīng)激所誘導(dǎo)的大鼠腎上腺糖皮質(zhì)激素含量增加可以導(dǎo)致血漿LH濃度降低。由此可見,EEDs可能通過復(fù)雜的交互作用機制影響魚類內(nèi)分泌系統(tǒng),這也為EEDs非性激素受體介導(dǎo)機制研究提出了新的難題,需要結(jié)合更多的體內(nèi)和體外實驗進行綜合探討。
[1] Lee H R,Jeung E B,Cho M H,etal.Molecularmechanism(s)of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors[J].Journal of Cellular and Molecular Medicine,2013,17(1):1-11
[2] Jung E M,An B S,Yang H,et al.Biomarker genes for detecting estrogenic activity of endocrine disruptors via estrogen receptors[J].International Journal of Environmental Research and Public Health,2012,9(3):698-711
[3] 史熊杰,劉春生,余珂,等.環(huán)境內(nèi)分泌干擾物毒理學(xué)研究[J].化學(xué)進展,2009,21(2-3):340-349 Shi X J,Liu CS,Yu K,et al.Toxicological research on environmental endocrine disruptors[J].Progress in Chemistry,2009,21(2-3):340-349(in Chinese)
[4] Liu SZ,Qin F,Wang H P,et al.Effects of17α-ethinylestradiol and bisphenol A on steroidogenic messenger ribonucleic acid levels in the rare minnow gonads[J].Aquatic Toxicology,2012,122-123:19-27
[5] Rhee JS,Kim BM,Lee C J,et al.Bisphenol A modulates expression of sex differentiation genes in the selffertilizing fish,Kryptolebias marmoratus[J].Aquatic Toxicology,2011,104(3-4):218-229
[6] Sanderson JT.The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals[J].Toxicological Sciences,2006,94(1):3-21
[7] Thibaut R,Porte C.Effects of endocrine disrupters on sex steroid synthesis and metabolism pathways in fish[J].Journal of Steroid Biochemistry and Molecular Bi-ology,2004,92(5):485-494
[8] MillerW L.Steoidogenic acute regulatory protein(StAR),a novel mitochondrial cholesterol transporter[J].Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids,2007,1771(6):663-676
[9] Miller W L.Minireview:Regulation of steroidogenesis by electron transfer[J].Endocrinology,2005,146(6):2544-2550
[10] Zhang W L,Zhou L Y,Senthilkumaran B,et al.Molecular cloning of two isoforms of 11β-hydroxylase and their expressions in the Nile tilapia,Oreochromis niloticus [J].General and Comparative Endocrinology,2010,165(1):34-41
[11] Stocco D M.StAR protein and the regulation of steroid hormone biosynthesis[J].Annual Review of Physiology,2001,63:193-213
[12] Ascoli M,F(xiàn)anelli F,Segaloff D L.The lutropin/choriogonadotropin receptor,a 2002 perspective [J].Endocrine Reviews,2002,23(2):141-174
[13] Qu JH,Hong X,Chen J F,et al.Fenvalerate inhibits progesterone production through cAMP-dependent signal pathway[J].Toxicology Letters,2008,176(1):31-39
[14] Gonzalez G A,Montminy M R.Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133[J].Cell,1989,59(4):675-680
[15] Carlone D L,Richards JS.Evidence that functional interactions of CREB and SF-1 mediate hormone regulated expression of the aromatase gene in granulose cells and constitutive expression in R2C cells[J].The Journal of Steroid Biochemistry and Molecular Biology,1997,61(3-6):223-231
[16] Jacob A L,Lund J.Mutations in the activation function-2 core domain of steroidogenic factor-1 dominantly suppresses PKA-dependent transactivation of the bovine CYP17 gene[J].The Journal of Biological Chemistry,1998,273(22):13391-13394
[17] Michael M D,Kilgore M W,Morohashi K I,et al.Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter(PII)of the human aromatase P450(CYP19)gene in the ovary[J].The Journal of Biological Chemistry,1995,270(22):13561-13566
[18] Sharpe R L,DroletM,MacLatchy D L.Investigation of de novo cholesterol synthetic capacity in the gonads of goldfish(Carassius auratus)exposed to the phytosterol beta-sitosterol[J].Reproductive Biology and Endocrinology,2006,4(1):60-70
[19] Sharpe R L,Woodhouse A,Moon TW,et al.β-Sitosterol and 17β-estradiol alter gonadal steroidogenic acute regulatory protein(StAR)expression in goldfish,Carassius auratus[J].General and Comparative Endocrinology,2007,151(1):34-41
[20] Becker M,Staab D,Bergmann K V.Treatment of severe familial hypercholesterolemia in childhood with sitosterol and sitostanol[J].The Journal of Pediatrics,1993,122(2):292-296
[21] Babin P J,Vernier JM.Plasma lipoproteins in fish[J].Journal of Lipid Research,1989,30:467-489
[22] Jefcoate CR,Mcnamara BC,Artemenko I,etal.Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis[J].The Journal of Steroid Biochemistry and Molecular Biology,1992,43(8):751-767
[23] Villeneuve D L,Mueller N D,Martinovi D,et al.Direct effects,compensation,and recovery in female fatheadminnows exposed to amodelaromatase inhibitor[J].Environmental Health Perspectives,2009,117(4):624-631
[24] Ankley G T,Cavallin JE,Durhan E J,etal.Temporal evaluation of effects of amodel 3β-hydroxysteroid dehydrogenase inhibitor on endocrine function in the fathead minnow[J].Environmental Toxicology and Chemistry,2011,30(9):2094-2102
[25] Moore RW,Jefcoate CR,Peterson R E.2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits steroidogenesis in the rat testis by inhibiting the mobilization of cholesterol to cytochrome P450scc[J].Toxicology and Applied Pharmacology,1991,109(1):85-97
[26] Skolness SY,Durhan E J,Garcia R N,et al.Effects of a short-term exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows(Pimephales promelas)[J].Aquatic Toxicology,2011,103(3-4):170-178
[27] Bail JL,PougetC,F(xiàn)agnere C,etal.Chalconesare potent inhibitors ofaromatase and 17β-hydroxysteroid dehydrogenase activities[J].Life Sciences,2001,68:751-761
[28] Ankley G T,Cavallin JE,Durhan E J,et al.A timecourse analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows[J].Aquatic Toxicology,2012,114(115):88-95
[29] Ma Y B,Han J,Guo Y Y,et al.Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol[J].A-quatic Toxicology,2012,106-107:173-181
[30] Ankley G T,Jensen K M,Kahl M D,et al.Ketoconazole in the fathead minnow(Pimephales promelas):Reproductive toxicity and biological compensation[J].Environmen-tal Toxicology and Chemistry,2007,26(6):1214-1223
[31] Sanderson JT,Seinen W,Giesy JP,et al.2-Chloro-striazine herbicides induce aromatase(CYP19)activity in H295R human adrenocortical carcinoma cells:A novelmechanism for estrogenicity?[J].Toxicological Sciences,2000,54(1):121-127
[32] Sanderson JT,Boerma J,Lansbergen GW,et al.Induction and inhibition of aromatase(CYP19)activity by various classes of pesticides in H295R human adrenocortical carcinoma cells[J].Toxicology and Applied Pharmacology,2002,182(1):44-54
[33] Ma Y B,Liu CS,Lam PK S,etal.Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP[J].Toxicology,2011,282(3):146-153
[34] Villeneuve D L,Ankley G T,Makynen E A,et al.Comparison of fatheadminnow ovary explantand H295R cell-based steroidogenesis assays for identifying endocrine-active chemicals[J].Ecotoxicology and Environmental Safety,2007,68(1):20-32
[35] Heneweer M,Muusse M,Dingemans M,et al.Co-culture of primary human mammary fibroblasts and MCF-7 cells as an in vitro breast cancermodel[J].Toxicological Sciences,2005,83(2):257-263
[36] Heneweer M,Berg M,Geest M C,et al.Inhibition of aromatase activity bymethyl sulfonyl PCBmetabolites in primary culture of humanmammary fibroblasts[J].Toxicology and Applied Pharmacology,2005,202(1):50-58
[37] Simpson E R,Waterman M R.Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH[J].Annual Review of Physiology,1988,50:427-440
[38] Enan E,Lasley B,Stewart D,et al.2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)modulates function of human luteinizing granulosa cells via cAMP signaling and early reduction of glucose transporting activity[J].Reproductive Toxicology,1996,10(3):191-198
[39] Ronco A M,Valdós K,Marcus D,etal.Themechanism for lindane-induced inhibition of steroidogenesis in cultured rat Leydig cells[J].Toxicology,2001,159(1-2):99-106
[40] Kucka M,Majkic K P,F(xiàn)a S,et al.Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4[J].Toxicology and Applied Pharmacology,2012,265(1):19-26
[41] Suzawa M,Ingraham H A.The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells[J].PLoSONE,2008,3(5):e2117
[42] Govoroun M,Mcmeel OM,Mecherouki H,et al.17β-Estradiol treatment decreases steroidogenic enzymemessenger ribonucleic acid levels in the rainbow trout testis[J].Endocrinology,2001,142(5):1841-1848
[43] Borch J,Metzdorff SB,Vinggaard A M,et al.Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis [J].Toxicology,2006,223(1-2):144-155
[44] Du G Z,Huang H Y,Hu JL,et al.Endocrine-related effects of perfluorooctanoic acid(PFOA)in zebrafish,H295R steroidogenesis and receptor reporter gene assays[J].Chemosphere,2013,http://dx.doi.org/10.1016/j.chemosphere.2013.01.012
[45] Arukwe A.Cellular and molecular responses to endocrinemodulators and the impacton fish reproduction[J].Marine Pollution Bulletin,2001,42(8):643-655
[46] Yokota H,Abe T,Nakai M,et al.Effects of 4-tertpentylphenol on the gene expression of P450 11βhydroxylase in the gonad of medaka(Oryzias latipes)[J].Aquatic Toxicology,2005,71(2):121-132
[47] Chen H,Xiao J,Hu G,et al.Estrogenicity of organophosphorus and pyrethroid pesticides[J].Journal of Toxicology and Environmental Health,Part A:Current Issues,2002,65(19):1419-1435
[48] Tian H,Ru S,Bing X,et al.Effects ofmonocrotophos on the reproductive axis in themale goldfish(Carassius auratus):Potential mechanisms underlying vitellogenin induction[J].Aquatic Toxicology,2010,98(1):67-73
[49] Tian H,Li Y,Wang W,et al.Exposure tomonocrotophos pesticide during sexual development causes the feminization/demasculinization of the reproductive traits and a reduction in the reproductive success ofmale guppies(Poecilia reticulata)[J].Toxicology and Applied Pharmacology,2012,263(2):163-170
[50] Zhang X,Gao L,Yang K,et al.Monocrotophos pesticide modulates the expression of sexual differentiation genes and causes phenotypic feminization in zebrafish(Danio rerio)[J].Comparative Biochemistry and Physiology Part C:Toxicology& Pharmacology,2013,157(1):33-40
[51] Purdom CE,Hardiman PA,Bye V J,etal.Estrogenic effects of effluents from sewage treatment works[J].Chemistry and Ecology,1994,8(4):275-285
[52] Vajda A M,Barber L B,Gray JL,et al.Reproductive disruptions in fish downstream from an estrogenic wastewater effluent[J].Environmental Science &Technology,2008,42(9):3407-3414
[53] Vigan L,Benfenati E,Botteroc S,et al.Endocrinemodulation,inhibition of ovarian developmentand hepatic alterations in rainbow troutexposed to polluted riverwater[J].Environmental Pollution,2010,158(12):3675-3683
[54] Vajda A M,Barber L B,Gray J L,et al.Demasculinization ofmale fish by wastewater treatment plant effluent[J].Aquatic Toxicology,2011,103(3-4):213-221
[55] Toft G,Edwards TM,Baatrup E,et al.Disturbed sexual characteristics inmalemosquitofish(Gambusia holbrooki)from a lake contaminated with endocrine disruptors[J].Environmental Health Perspectives,2003,111(5):695-701
[56] Harshbarger JC,Coey M J,Young M Y.Intersexes in Mississippi River shovelnose sturgeon sampled below Saint Louis,Missouri,USA[J].Marine Environmental Research,2000,50(1-5):247-250
[57] Villeneuve D L,Miracle A L,Jensen K M,et al.Development of quantitative real-time PCR assays for fathead minnow(Pimephales promelas)gonadotropinβ subunitmRNAs to support endocrine disruptor research[J].Comparative Biochemistry and Physiology,Part C,2007,145(2):171-183
[58] Tian H,Ru S,Wang W,et al.Effects of monocrotophos on the reproductive axis in the female goldfish(Carassius auratus)[J].Comparative Biochemistry and Physiology,Part C,2010,152(1):107-113
[59] Nett T M,Turzillo A M,Baratta M,et al.Pituitary effects of steroid hormones on secretion of follicle-stimulating hormone and luteinizing hormone[J].Domestic Animal Endocrinology,2002,23(1-2):33-42
[60] Manna P R,Eubank D W,Lalli E,et al.Transcriptional regulation of themouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1[J].Journal of Molecular Endocrinology,2003,30:381-397
[61] Jacob A L,Lund J,Martinez P,et al.Acetylation of steroidogenic factor 1 protein regulates its transcriptional activity and recruits the coactivator GCN5[J].The Journal of Biological Chemistry,2001,276(40):37659-37664
[62] ZhengW C,Jefcoate CR.Steroidogenic factor-1 interacts with cAMP response element-binding protein to mediate cAMP stimulation of CYP1B1 via a far upstream enhancer[J].Molecular Pharmacology,2005,67(2):499-512
[63] Lan H C,Li H J,Lin G,et al.Cyclic AMP stimulates SF-1-dependent CYP11A1 expression through homeodomain-interacting protein kinase 3-mediated Jun N-terminal kinase and c-Jun phosphorylation[J].Molecular and Cellular Biology,2007,27(6):2027-2036
[64] Ankley G T,Johnson R D.Small fishmodels for identifying and assessing the effects of endocrine-disrupting chemicals[J].ILAR Journal,2004,45(4):469-483
[65] Sakai N,Tanaka M,Takahashi M,et al.Ovarian 3βhydroxysteroid dehydrogenase/△5–△4 isomerase of rainbow trout:Its cDNA cloning and properties of the enzyme expressed in amammalian cell[J].FEBS Letters,1994,350(2-3):309-313
[66] Kazeto Y,Ijiri S,Matsubara H,et al.Molecular cloning and characterization of 3β-hydroxysteroid dehydrogenase/△5–△4 isomerase cDNAs from Japanese eel ovary[J].Journal of Steroid Biochemistry and Molecular Biology,2003,85(1):49-56
[67] Maugars G,Schmitz M.Gene expression profiling during spermatogenesis in early maturing male Atlantic salmon parr testes[J].General and Comparative Endocrinology,2008,159(2-3):178-187
[68] Zhou L Y,Wang D S,Senthilkumaran B,et al.Cloning,expression and characterization of three types of 17β-hydroxysteroid dehydrogenases from the Nile tilapia,Oreochromis niloticus[J].Journal of Molecular Endocrinology,2005,35:103-116
[69] Borg B.Androgens in teleost fishes[J].Comparative Biochemistry and Physiology Part C:Pharmacology,Toxicology and Endocrinology,1994,109(3):219-245
[70] Ankley G T,Kahl M D,Jensen KM,etal.Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fatheadminnow(Pimephates promelas)[J].Toxicological Sciences,2002,67(1):121-130
[71] Zhang X,Hecker M,Park JW,et al.Real-time PCR array to study effects of chemicals on the Hypothalamic-Pituitary-Gonadal axis of the Japanese medaka[J].A-quatic Toxicology,2008,88(3):173-182
[72] Nelson E R,Allan E R,Pang F Y,et al.Thyroid hormone and reproduction:Regulation of estrogen receptors in goldfish gonads[J].Molecular Reproduction and Development,2010,77(9):784-794
[73] Liu C S,Zhang X W,Deng J,et al.Effects of prochloraz or propylthiouracil on the cross-talk between the HPG,HPA,and HPT axes in zebrafish[J].Environmental Science& Technology,2011,45(2):769-775
[74] Kirby E D,Geraghty A C,Ubuka T,et al.Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(27):11324-11329 ◆