豆峻嶺 劉文革
摘 要:番茄紅素廣泛存在于各種植物中,它不僅是植物花、果實(shí)等形成紅色的主要色素,也是對(duì)人體健康有益的一種類胡蘿卜素。它在植物體內(nèi)的合成及分解涉及許多中間物質(zhì),并且受到多種酶基因的調(diào)控,而這些中間物質(zhì)也參與植物體內(nèi)其他物質(zhì)的合成代謝。目前圍繞著番茄紅素的生物合成以及合成途徑中相關(guān)酶基因的研究越來越多,并且通過對(duì)關(guān)鍵酶基因的超量表達(dá)、RNA沉默已經(jīng)獲得了一些高番茄紅素植株。綜述了國(guó)內(nèi)外關(guān)于番茄紅素合成途徑相關(guān)酶基因的研究、影響其生物合成的一些相關(guān)因素以及為提高植物中番茄紅素含量而進(jìn)行的一些基因工程方面的研究,以期為進(jìn)一步轉(zhuǎn)基因研究以及高番茄紅素植物品種的選育提供思路。
關(guān)鍵詞:番茄紅素; 生物合成; 酶基因; 影響因素
中圖分類號(hào):S65 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980?穴2013?雪04-0697-09
植物色素的種類主要有生物堿類、花青素類、類胡蘿卜素類等物質(zhì)。生物堿類種類繁多,大都由不同的氨基酸或其直接衍生物合成而來。花青素是一類重要的水溶性天然植物色素,屬于類黃酮物質(zhì),廣泛存在于植物的花、葉、果實(shí)、果皮中。而類胡蘿卜素類色素是一類脂溶性的色素,不溶于水,難溶于甲醇,易溶于乙醇、乙醚和氯仿等溶劑,是一類對(duì)人體有益的物質(zhì),番茄紅素(Lycopene)是類胡蘿卜素的一種,又稱ψ-胡蘿卜素,屬于異戊二烯類化合物[1]。番茄紅素作為一種功能性天然色素,具有淬滅活性氧、消除人體自由基、預(yù)防心臟病、減緩動(dòng)脈粥樣硬化、預(yù)防多種癌癥、保護(hù)心血管、抗老化、保護(hù)皮膚等功能[2-6]。
1 番茄紅素生物合成途徑及相關(guān)酶基因的研究
1.1 番茄紅素生物合成途徑
番茄紅素屬于類胡蘿卜素的一種,它是許多類胡蘿卜素生物合成的中間體,經(jīng)過環(huán)化可形成其他類胡蘿卜素。近些年來,人們對(duì)番茄紅素生物合成的認(rèn)識(shí)取得了很大的進(jìn)展[11-13]。4分子的異戊烯基焦磷酸(IPP)在牻牛兒基牻牛兒基焦磷酸合成酶(GGPS)的作用下縮合成牻牛兒基牻牛兒基焦磷酸(GGPP),2分子的GGPP經(jīng)八氫番茄紅素合成酶(PSY)催化,在質(zhì)體中縮合形成無色的八氫番茄紅素,八氫番茄紅素由八氫番茄紅素脫氫酶(PDS)催化形成ζ-胡蘿卜素,再由ζ-胡蘿卜素脫氫酶(ZDS)連續(xù)催化形成粉紅色的番茄紅素,多順式番茄紅素在類胡蘿卜素異構(gòu)酶(CRTISO)的作用下形成全反式番茄紅素。番茄紅素的降解由番茄紅素β環(huán)化酶LCYb和番茄紅素α環(huán)化酶LCYe催化,形成β-胡蘿卜素或α-胡蘿卜素,進(jìn)而降解合成葉黃素、玉米黃素、新黃質(zhì)等其他類胡蘿卜素。
1.2 調(diào)控番茄紅素合成途徑相關(guān)基因的研究
參與植物不同組織器官中番茄紅素生物合成的酶基因具有多種功能。GGPP是植物體內(nèi)類胡蘿卜素、葉綠素、赤霉素、磷酸甘油醛、質(zhì)體醌等多種物質(zhì)的合成前體,GGPS在植物中多以家族的形式存在。在擬南芥中有5個(gè)具有功能的基因,它們表達(dá)的蛋白質(zhì)存在于葉綠體、線粒體和內(nèi)質(zhì)網(wǎng)等亞細(xì)胞中,在不同的部位負(fù)責(zé)不同GGPP的合成[23]。在番茄中,已經(jīng)克隆出LeGGPS1和LeGGPS2兩個(gè)基因,LeGGPS1主要在葉中表達(dá),LeGGPS2主要在花和果實(shí)中表達(dá),并且在番茄果實(shí)成熟過程中對(duì)番茄紅素的積累起重要作用[24]。PSY基因是控制番茄紅素合成的一個(gè)限速酶基因,它控制著GGPP向八氫番茄紅素的轉(zhuǎn)化。在黃花龍膽中至少有2個(gè)PSY基因,PSYI基因在花中特異性表達(dá)[25]。目前已經(jīng)有研究證明水稻中有3個(gè)PSY基因,其中PSY3與植物的抗逆性有關(guān)[26]。蘋果中有4個(gè)PSY基因,并且在不同時(shí)期不同組織中它們的表達(dá)量也不同[27]。PDS、ZDS、CRTISO 3個(gè)基因共同作用將八氫番茄紅素轉(zhuǎn)化為全反式番茄紅素。Giuliano等[28]從擬南芥中克隆了PDS、ZDS,生成的主要產(chǎn)物是原番茄紅素,即順式番茄紅素。果實(shí)中番茄紅素主要以反式番茄紅素的形式存在,CRTISO基因具有將順式番茄紅素轉(zhuǎn)化為反式番茄紅素的功能。LCYb和LCYe是番茄紅素分解的2個(gè)關(guān)鍵酶基因,研究表明LCYb位于辣椒第10號(hào)染色體上,催化番茄紅素生成β-胡蘿卜素,LCYb活性減弱會(huì)導(dǎo)致β-胡蘿卜素及其下游產(chǎn)物的減少。LCYe位于辣椒第9號(hào)染色體上,LCYe的上調(diào)表達(dá)導(dǎo)致γ-胡蘿卜素大量積累,并最終使得果實(shí)發(fā)育成橙色[29]。
1.3 果實(shí)發(fā)育過程中調(diào)控番茄紅素代謝關(guān)鍵酶基因表達(dá)水平研究
不同物種間相關(guān)基因的研究已經(jīng)較為深入,而同一物種不同性狀或不同倍性間相關(guān)基因的表達(dá)情況研究尚少。研究表明西瓜不同瓤色品種以及同一品種不同染色體倍性材料(2x、3x、4x)番茄紅素含量存在明顯的差異,通過研究不同瓤色西瓜PSY、PDS、ZDS、CRTISO、LCYb、CHYB和ZEP酶基因的轉(zhuǎn)錄表達(dá)發(fā)現(xiàn),淡黃瓤中未發(fā)現(xiàn)CRTISO表達(dá),橙黃色瓤中CRTISO表達(dá)量較低,而其他基因在不同瓤色和組織中均有表達(dá),但并未發(fā)現(xiàn)表達(dá)差異,西瓜番茄紅素生物合成的酶基因表達(dá)可能存在轉(zhuǎn)錄后調(diào)控現(xiàn)象[34-37]。西瓜不同倍性間番茄紅素含量均為M3x>M4x>M2x,袁平麗等[34,38]的研究表明PSY、LCYb 2個(gè)基因的表達(dá)量均是先增高后降低,不同倍性之間,基因的表達(dá)量也存在著明顯的差異,多倍體中兩個(gè)基因的表達(dá)量都要比二倍體的高。目前,番茄、西瓜等多種作物的全基因組測(cè)序都已經(jīng)完成,這為轉(zhuǎn)基因研究奠定了基礎(chǔ),也為番茄紅素關(guān)鍵酶基因的研究提供了極好的平臺(tái)。
1.4 番茄紅素基因改良的研究
目前很多研究者都通過轉(zhuǎn)基因的方法來增加果實(shí)中的番茄紅素含量,而研究最多的是基因的超量表達(dá)和基因沉默(RNAi)。PSY是番茄紅素生物合成途徑的一個(gè)限速酶,而LCYb控制著番茄紅素的分解,這2種基因目前主要應(yīng)用于轉(zhuǎn)基因研究。
1.4.1 基因超量表達(dá) Zhang等[39]從柑橘中克隆了PSY,通過在大腸桿菌中異源表達(dá)證明了它的活性,將此基因轉(zhuǎn)入植物中過量表達(dá),果實(shí)中番茄紅素、β-胡蘿卜素等類胡蘿卜素的含量有顯著的提高。Dharmapuri等[40]將LCYb基因和辣椒CHYB基因在番茄果實(shí)特異性啟動(dòng)子的驅(qū)動(dòng)下導(dǎo)入番茄中,使轉(zhuǎn)基因番茄中玉米黃質(zhì)和β-隱黃質(zhì)的含量增加100多倍,β-胡蘿卜素和總類胡蘿卜素含量也增加將近10倍,但是番茄紅素的含量卻減少一半。周文靜[41]將紅肉臍橙中LCYb基因轉(zhuǎn)入到番茄果實(shí)中使LCYb超量表達(dá)后也發(fā)現(xiàn),各種類胡蘿卜素的含量均發(fā)生了顯著的變化,β-胡蘿卜素含量明顯增加,而番茄紅素積累減少。而在轉(zhuǎn)基因的甘薯中,通過LCYe的下游調(diào)控可以增加類胡蘿卜素的含量,而降低番茄紅素含量[42]。
1.4.2 基因沉默(RNAi) 除了通過向植物中導(dǎo)入關(guān)鍵酶基因,增加番茄紅素合成前體物質(zhì)的供應(yīng)這一方式來提高番茄紅素外,還可通過RNAi技術(shù)抑制番茄紅素下游基因的表達(dá)從而提高番茄紅素的含量,Rosati等[43]和萬群等[44]分別通過干擾技術(shù)抑制LCYb的表達(dá),使番茄果實(shí)中的番茄紅素含量有了顯著的提高。馬超等[45]也通過RNA干擾阻斷番茄紅素下游的LCYb基因的表達(dá)來達(dá)到調(diào)控番茄紅素大量積累的目的。由此可見,利用反向調(diào)控手段對(duì)LCYb基因?qū)嵤└蓴_來提高果實(shí)番茄紅素含量也是一條較為有效的途徑。
2 影響番茄紅素生物合成的其他因素
2.1 植物內(nèi)源激素的影響
目前研究較多的是ABA和GA對(duì)番茄紅素合成途徑的調(diào)控。Galpaz等[9]研究認(rèn)為,番茄ABA缺失突變體中由于ABA的缺乏導(dǎo)致了色素分割區(qū)域的變大,這可能是由于色素分裂的增加促進(jìn)了色素的儲(chǔ)藏能力。Sun[48]通過對(duì)番茄ABA合成途徑中編碼9-順式-環(huán)氧類胡蘿卜素雙加氧酶的基因SlNCED1的RNAi發(fā)現(xiàn),ABA的合成受到SlNCED1的抑制后會(huì)導(dǎo)致番茄紅素以及β-胡蘿卜素的增加,所有受到RNAi的果實(shí)都會(huì)表現(xiàn)出深紅色,從而認(rèn)為ABA可能在番茄果實(shí)成熟過程中起著調(diào)控果實(shí)著色的程度以及類胡蘿卜素的成分的作用。Gao等[49]的研究表明乙烯僅僅影響番茄紅素的積累,并間接影響與番茄紅素相關(guān)的揮發(fā)性物質(zhì)的積累。Minlee等[8]對(duì)番茄以及其野生近緣種的研究也顯示出,對(duì)SlERF6的RNAi能夠增加果實(shí)成熟期番茄紅素和乙烯的含量。王貴元等[50]對(duì)紅肉甜橙的研究表明番茄紅素和β-胡蘿卜素的積累伴隨著GA含量的下降和ABA含量的上升,表明內(nèi)源GA和ABA對(duì)番茄紅素和β-胡蘿卜素的積累分別具有負(fù)調(diào)控和正調(diào)控的效應(yīng)。
除此以外,對(duì)各種突變體的遺傳分析顯示,圍繞著番茄紅素代謝途徑還存在其他激素信號(hào)。Sorefan等[51]對(duì)擬南芥一個(gè)多分枝突變體MAX(more axillary)的分析顯示,誘導(dǎo)擬南芥腋芽發(fā)生的是一個(gè)作用于類胡蘿卜素下游的基因MAX。而它編碼類胡蘿卜素雙加氧裂解酶(CCD),CCD與多種酶共同作用催化類胡蘿卜素形成具有抑制分枝的獨(dú)腳金內(nèi)酯類化合物[52-53]。盡管目前對(duì)于類胡蘿卜素以及與之緊密相關(guān)的赤霉素、脫落酸、獨(dú)腳金內(nèi)酯等激素的代謝途徑已經(jīng)較為清楚,但是代謝調(diào)控角度的研究進(jìn)展并不是很多,尚有一些參與代謝的酶基因有待于克隆鑒定。
2.2 外源施用激素的影響
內(nèi)源激素的變化與番茄紅素的合成具有很大的相關(guān)性,外源激素的施用對(duì)番茄紅素的合成應(yīng)該也會(huì)有一定的影響。研究表明,乙烯利處理番茄果實(shí)可促進(jìn)PSY基因的表達(dá),可提高番茄紅素上游物質(zhì)的合成量,抑制番茄紅素向下游物質(zhì)的轉(zhuǎn)化[54-55]。這說明乙烯利的處理兼有提高前體物質(zhì)合成和減少下游物質(zhì)轉(zhuǎn)化的雙重作用。該研究還表明葡萄糖3.0%、谷氨酸鈉3.0%、乙烯利1.0%的這3種物質(zhì)混合配比可以提高番茄中番茄紅素的含量,處理不同的品種結(jié)果也不相同,番茄紅素的含量最多能提高191%[56]。ABA的合成途徑是番茄紅素合成途徑的一個(gè)延伸,故通過外源施用ABA可以反饋調(diào)節(jié)番茄紅素的生物合成,翁倩等[57]通過對(duì)番茄外施一定濃度的ABA顯示ABA可以促進(jìn)番茄紅素積累,其含量隨外源ABA濃度的增加表現(xiàn)出先增加后減少的現(xiàn)象,表明較低濃度的外源ABA更有利于番茄紅素的積累。施用極低濃度的油菜素內(nèi)酯(BR)也能促進(jìn)番茄紅素的積累,且濃度越低,促進(jìn)效果越明顯。王貴元等[58]測(cè)定了紅肉臍橙果實(shí)發(fā)育期間和果實(shí)轉(zhuǎn)色前不同濃度的外源ABA和GA3處理后果皮葉綠素和類胡蘿卜素的動(dòng)態(tài)含量,并測(cè)定了外源ABA和GA3處理后成熟紅肉臍橙果皮色澤的表現(xiàn)。果實(shí)轉(zhuǎn)色前,用外源ABA和GA3處理都抑制了果皮類胡蘿卜素的積累,嚴(yán)重阻礙了果皮番茄紅素的合成。
2.3 外界關(guān)鍵生境因子的影響
光質(zhì)也影響植物番茄紅素代謝。Albar等[60]研究發(fā)現(xiàn),用短暫的紅光照射綠熟期的番茄果實(shí)可刺激果實(shí)番茄紅素比對(duì)照提高2.1倍,但這種紅光誘導(dǎo)的番茄紅素積累會(huì)被隨后的遠(yuǎn)紅光處理逆轉(zhuǎn)。Northern分析表明果實(shí)中光敏色素A的mRNA在果實(shí)成熟時(shí)增加了11.4倍。果皮組織的光譜測(cè)定表明果實(shí)從綠熟期到紅色成熟期階段紅光/遠(yuǎn)紅光的光譜比值增加了4倍,表明番茄果實(shí)中番茄紅素積累是由位于果實(shí)中的光敏色素通過光誘導(dǎo)調(diào)節(jié)的。
2.3.2 溫度 溫度對(duì)番茄紅素積累的影響與其對(duì)果實(shí)形成的影響相似,在番茄的研究中顯示,溫度高于30 ℃或者低于10 ℃時(shí),番茄紅素的合成受抑制,溫度高于32 ℃時(shí)活性完全被抑制,18~26 ℃時(shí)活性最高[61]。溫度變化控制番茄紅素合成的酶濃度,而酶濃度的變化最終控制著番茄紅素的表達(dá)水平。孫明奇[62]對(duì)柑橘果皮類胡蘿卜素的研究表明,高溫條件下,柑橘果皮類胡蘿卜素重組異構(gòu)化程度較高,主要為反式向順勢(shì)的異構(gòu)化,但程度仍不如氧化降解。其特征變化為順式-α-隱黃質(zhì)和13-順式-β-胡蘿卜素含量的增加。這使得高溫對(duì)番茄紅素等類胡蘿卜素有降解的作用,而低溫條件下,它們較為穩(wěn)定。
2.3.3 栽培措施及肥水管理等因素的影響 除了光照和溫度外,施肥、灌溉、栽培等條件也會(huì)對(duì)番茄紅素的積累產(chǎn)生影響。牛曉麗等[63]對(duì)番茄的研究表明,番茄中番茄紅素含量隨灌水量、施磷量以及有機(jī)肥用量呈開口向下的拋物線型變化,隨氮、鉀肥用量呈開口向上的拋物線型變化。交互效應(yīng)表現(xiàn)為,磷與鉀、氮與鉀、磷與有機(jī)肥以及鉀與有機(jī)肥用量間存在極顯著的交互作用,水分與其他因素間的交互效應(yīng)不顯著。何楠等[64]的研究也表明通過外源施用鉀肥可以提高西瓜果肉中番茄紅素的含量。在一定范圍內(nèi),番茄紅素含量隨鉀肥的增加而增加。栽培環(huán)境也對(duì)番茄紅素的積累有較大影響,有研究表明,露地栽培的番茄中番茄紅素的含量要明顯高于大棚栽培的番茄。而且設(shè)施栽培對(duì)各成熟度番茄紅素含量也有影響,在夏季,陽光充足,溫度適宜,露地栽培番茄從紅熟期到過熟期番茄紅素含量增加較快,而大棚內(nèi)溫度過高,番茄成熟過快,番茄紅素合成速度則較慢[65]。李紀(jì)鎖[66]的研究表明,露地栽培條件下,果實(shí)不同遮光處理對(duì)番茄紅素的含量有明顯的影響,果實(shí)內(nèi)番茄紅素的含量隨光照強(qiáng)度的減弱而減少。
3 問題與展望
在過去的幾年里,人們對(duì)番茄紅素合成途徑及其在各個(gè)器官中的代謝和調(diào)控的影響因素都做了大量的研究,也取得了很大的進(jìn)展。目前已經(jīng)從多種植物中克隆了番茄紅素合成途徑關(guān)鍵酶基因的片段或全長(zhǎng)序列。這為以后培育高番茄紅素的植物新品種提供了前提。但也存在著一些問題,如目前對(duì)番茄紅素生物合成途徑基因的調(diào)控以及表達(dá)調(diào)控機(jī)制了解有限;大部分關(guān)于番茄紅素的研究都集中在番茄等模式植物中,其他植物中的研究相對(duì)較少,而且提高番茄紅素含量的研究大多集中在其自身合成途徑的基因調(diào)控上,而通過施加外部因素來影響其含量的研究還不深入。
在今后的研究中,我們要借鑒番茄中番茄紅素的前沿研究在多種植物中進(jìn)行深入研究。另外除了要先弄清楚植物體內(nèi)番茄紅素積累的特點(diǎn)、代謝的生理機(jī)制、基因的分子調(diào)控機(jī)制以及內(nèi)外部環(huán)境對(duì)其合成的影響外,還要利用超量表達(dá)、基因沉默等手段來分析不同基因的特殊功能,為轉(zhuǎn)基因的研究提供理論基礎(chǔ)。進(jìn)一步研究導(dǎo)入的外源基因?qū)χ参矬w內(nèi)番茄紅素合成基因表達(dá)的影響,為進(jìn)一步開展番茄紅素的研究奠定一個(gè)堅(jiān)實(shí)的基礎(chǔ)。
參考文獻(xiàn) References:
[1] MILLAYDET, BULL. Processing of tomatoes and solanombin extraction [J].Soc Naney, 1875, 2 (1): 21-23.
[2] FORD N A, ERDMAN J W. Are lycopene metabolites metabolically active[J]. Acta Biochimica Polonica, 2012, 59 (1): 1-4.
[3] GIOVANUCCI E, ASCHERIO A, RIMM E B. Intake of carotenoids and retinol in relationship to risk of prostate cancer[J]. Journal of the National Cancer Institute, 1995 (87): 1767-1776.
[4] ILAHY R, HDIDER C, LENUCCI M S, TLILI I, DALESSANDRO G. Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy[J]. Scientia Horticulturae, 2011, 127: 255-261.
[5] BLUM A, MONIR M, WIRSANSKY I, BEN-ARZI S. The beneficial effects of tomatoes[J]. European Journal of Internal Medicine, 2005, 16 (6): 402-404.
[6] WATZL B, BUB A, BRIVIBA K, RECHKEMMER G. Supplementation of a low-carotenoid diet with tomato or carrotjuice modulates immune functions in healthy men[J]. Annals Nutrition Metabolism, 2003, 47 (6): 255-261.
[7] NGUYEN M L. Lycopene: Chemical and biological properties[J]. Food Technology, 1999, 53(2): 38-45.
[8] MINLEE J, JOUNG J G, MCQUINN R, CHUNG M Y, ZHANG J F, DENISE T, GIOVANNONI J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation[J]. The Plant Journal, 2012 , 70: 191-204.
[9] GALPAZ N, WANG Q, MENDA M, ZAMIR D, HIRSCHBERG J. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content[J]. The Plant Journal , 2008, 53: 717-730.
[10] SUN Ming-qi, PAN Si-yi,HU Jian-zhong, FU Hong-fei, XU Xiao-yun. Study on effect of environment on stability of Citrus peel carotenoid[J]. Food Science, 2008, 29 (6): 127-129.
孫明奇,潘思軼,胡建中,傅虹飛,徐曉云. 環(huán)境條件對(duì)柑橘果皮類胡蘿卜素穩(wěn)定性影響研究[J]. 食品科學(xué),2008, 29(6): 127-129.
[11] HIRSEHBERG J. Carotenoid biosynthesis in flowering plants[J]. Current Opinion in Plant Biology, 2001,4: 210-218.
[12] ISAACSON T, RONEN G, ZAMIR D, HIRSCHBERG J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants[J]. The Plant Cell, 2002, 14: 333-342.
[13] NAQVI S, ZHU C F, FARRE G, SANDMANN G, CHIRSTO P. Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin[J]. Plant Biotechnology Journal , 2011, 9: 384-393.
[14] ZHU Chang-fu,CHEN Xing,WANG Ying-dian. Carotenoid biosynthesis in plants and application of its relative genes in gene engineering[J]. Journal of Plant Physiology and Molecular Biology,2004, 30 (6): 609-615.
朱長(zhǎng)甫, 陳星,王英典. 植物類胡蘿卜素生物合成及其相關(guān)基因在基因工程中的應(yīng)用[J]. 植物生理與分子生物學(xué)學(xué)報(bào), 2004, 30 (6): 609-615.
[15] WANG Yu-ping, LIU Qing-chang, ZHAI Hong. Expression and regulation of genes related to plant carotenoid biosynthesis and their application in plant gene engineering[J]. Molecular Plant Breeding, 2006, 4(1): 103-110.
王玉萍,劉慶昌,翟紅. 植物類胡蘿卜素生物合成相關(guān)基因的表達(dá)調(diào)控及其在植物基因工程中的應(yīng)用[J]. 分子植物育種,2006, 4(1): 103-110.
[16] DUCREUX L J, MORRIS W L, HEDLEY P E, SHEPHERD T, DAVIES H V, MILLAM S, TAYLOR M A. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein[J ]. Jounal of Experimental Botany,2005,56 (409): 81-89.
[17] THORUP T A, TANYOLAC B, LIVINGSTONE K D, POPOVSKY S, PARAN I, JAN M. Candidate gene analysis of organ pigmentation loci in the Solanaceae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11192-11197.
[18] ZHU Hai-sheng, LI Yong-ping, WEN Qing-fang. Cloning and expression analysis of phytoene synthase gene in fragaria ananassa duch.[J]. Scientia Agricultura Sinica, 2011, 44 (2): 349-357.
朱海生,李永平,溫慶放.草莓八氫番茄紅素合成酶基因的克隆及其表達(dá)特性[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011, 44(2): 349-357.
[19] TAO Neng-guo. Cloning and characterization of carotenoid biosynthetic genes from sweet orange (Citrus Sinesis Osbeck) red-fleshed mutants[D]. Wuhan: Huazhong Agricultural University, 2006.
陶能國(guó).甜橙紅肉突變體類胡蘿卜素合成相關(guān)基因的克隆與相關(guān)性分析[D]. 武漢: 華中農(nóng)業(yè)大學(xué),2006.
[20] ZHAO Wen-en, KANG Bao-shan, HU Guo-qin. Advances in research on carotenoids in watermelon flesh[J]. Journal of Fruit Science, 2008, 25 (6): 908-915.
趙文恩,康保姍,胡國(guó)勤. 西瓜瓤類胡蘿卜素研究進(jìn)展[J]. 果樹學(xué)報(bào),2008, 25(6): 908-915.
[21] KANG B,ZHAO W,HOU Y B,TIAN P. Expression of carotenogenic genes during the development and ripening of watermelon fruit[J]. Scientia Horticulturae, 2010, 124: 368-375.
[22] BANG H,KIM S,LESKOVAR D. Differential expression of carotenoid biosynthesis genes among different colored flesh in watermelons [Citrullus lanatus (Thunb)][J]. Hort Science, 2004, 39: 869-870.
[23] OKADA K,SAITO T,NAKAGAWA T, KAWAMUKAI M, KAMIYA Y. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis[J]. Plant Physiology, 2000, 122(4): 1045-1056.
[24] AMENT K, VAN SCHIE C C, BOUWMEESTER H J, HARING M A, SCHUURINK R C. Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways[J]. Planta, 2006, 224 (5): 1197-1208.
[25] ZHU C, YAMAMURA S, KOIWA H, NISHIHARA M, SANDMANN G. cDNA cloning and expression of carotenogenic genes during flower develo Pmnt in Gentiana lutea[J]. Plant Molecular Biology, 2002, 8(3): 277-285.
[26] WELSCH R, WUST F, BAR C, AL-BABILI S, BEYER P. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiology, 2008, 147(1): 367-380.
[27] CHARLES A D, SUPINYA D, LEWIS D, PAUL S, ALLAN A C. Metabolic and gene expression analysis of apple (Malus ×domestica) carotenogenesis[J]. Journal of Experimental Botany, 2012, 63 (12):4497-4511.
[28] GIULIANO G,BARTLEY G E,SCOLNIK P A. Regulation of carotenoid biosynthesis during tomato development[J]. The Plant cell,1993, 5(4): 379 -387.
[29] RONEN G, COHEN M, ZAMIR D, HIRSCHBERG J. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta[J]. The Plant Journal, 1999, 17(4): 341-351.
[30] KATO M, IKOMA Y, MATSUMOTO H, SUGIURA M, HIROSHIHYODO, YANO M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit[J]. Plant Physiology, 2004, 134: 824-837.
[31] BASSENE J B,F(xiàn)ROELICHER Y, DUBOIS C, FERRER R M, NAVARRO L, OLLITRAULT P, ANCILLO G. Non-additive phenotypic and transcriptomic inheritance in a citrus allotetraploid somatic hybrid between C. reticulate and C. limon: the case of pulp carotenoid biosynthesis pathway[J]. Plant Cell Reports,2009,28: 1689 1697.
[32] CLOTAULT J, PELTIER D, BERRUYER R, THOMAS M, BRIARD M, GEOFFRIAU E. Expression of carotenoid biosynthesis genes during carrot root development[J]. Journal of Experimental Botany,2008, 59(13): 3563-3573.
[33] PECKER I,GABBAY R,F(xiàn)RANCIS X, CUNNINGHAM J, JOSEPH H. Cloning and characterization of the cDNA for lycopeneβ-cyclase from tomato reveals decrease in its expression during fruit ripening[J]. Plant Molecular Biology, 1996, 30(4): 807-819.
[34] YUAN Ping-li. The study of lycopene and key gene expression during fruit development with different ploidy watermelon[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
袁平麗.多倍體西瓜發(fā)育過程中番茄紅素變化及關(guān)鍵酶基因表達(dá)[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院,2012.
[35] WAN Xue-shan, LIU Wen-ge,YAN Zhi-hong, ZHAO Sheng-jie, HE Nan, LIU Peng. Changes of the contents of functional substances including lycopene, citrulline and ascorbic acid during watermelon fruits development[J]. Scientia Agricultura Sinica,2011,44(13): 2738 -2747.
萬學(xué)閃,劉文革,閻志紅,趙勝杰,何楠,劉鵬. 西瓜果實(shí)發(fā)育過程中番茄紅素、瓜氨酸和VC等功能物質(zhì)含量的變化[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011, 44(13): 2738-2747.
[36] YUAN Ping-li, LIU Wen-ge, ZHAO Sheng-jie, LU Xu-qiang, YAN Zhi-hong, HE Nan, ZHU Hong-ju. Lycopene content and expression of phytoene synthase and lycopene β-cyclase genes in tetraploid watermelon[C]. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. 2012: 316-324.
[37] LIU W,ZHAO S,CHENG Z,WAN X,YAN Z,KING S R. Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development[J]. Acta Horticulturae, 2009, 871: 543-549.
[38] YUAN Ping-li, LIU Wen-ge, LU Xu-qiang, ZHAO Sheng-jie, LU Jin-sheng, YAN Zhi-hong, HE Nan, ZHU Hong-ju . Change of lycopene contents during fruit development of different ploidy watermelon[J]. Journal of Fruit Science, 2012, 29 (5): 890-894.
袁平麗,劉文革,路緒強(qiáng),趙勝杰,蘆金生,閻志紅,何楠,朱紅菊.不同倍性西瓜果實(shí)發(fā)育過程中番茄紅素含量動(dòng)態(tài)[J]. 果樹學(xué)報(bào),2012, 29(5): 890-894.
[39] ZHANG J, TAO N , XU Q, ZHOU W, CAO H, XU J, DENG X. Functional characterization of citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle)[J]. Plant Cell Reports, 2009,28 (11): 1737-1746.
[40] DHARMAPURI S, ROSATI C, PALLARA P, AQUILANI R, BOUVIER F, GIULIANO G. Metabolic engineering of xanthophyll content in tomato fruits[J]. Febs Letters, 2002, 519 (1-3): 30-34.
[41] ZHOU Wen-jing. Functional verification of the lycopene beta-cyclase gene (Lcyb) from Cara Cara navel orange (Citrus Sinensis [L.] Osbeck)[D]. Wuhan: Huazhong Agricultural University, 2008.
周文靜. 紅肉臍橙番茄紅素β-環(huán)化酶基因(Lcyb)功能的初步驗(yàn)證和分析[D]. 武漢: 華中農(nóng)業(yè)大學(xué),2008.
[42] KIM S H, KIM Y H, AHN Y O, AHN M J, JEONG J C, LEE H S, KWAK S S. Downregulation of the lycopene ε-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli[J]. Physiologia Plantarum, 2013,147: 432-442.
[43] ROSATI C,AQUILANI R,DHARMAPURI S,GIULIANO G. Metabolic engineering of beta-carotene and lycopene content in tomato fruit[J]. The Plant Journal, 2000, 24(3): 413-420.
[44] WAN Qun, ZHANG Xing-guo, SONG Ming. Fruit-specific RNAi-mediated LCY gene silencing enhances content of lycopene in tomatoes[J]. Chinese Journal of Biotechnology, 2007, 23(3): 429-433.
萬群,張興國(guó),宋明. 果實(shí)特異性RNAi介導(dǎo)的LCY基因沉默來增加番茄中番茄紅素的含量[J]. 生物工程學(xué)報(bào),2007, 23(3): 429-433.
[45] MA Chao,MA Bing-gang,HAO Qing-nan,HE Juan, LU Xiao-yan, WU Zhi-ping. Construction of RNA Interference vector for lycopene cyclase β gene(Lyc-β) and its expression identification in lycopersicun esculentum[J]. Journal of Agricultural Biotechnology, 2010, 18 (1): 10-17.
馬超,馬兵鋼,郝青南,何娟,魯曉燕,吳志蘋.番茄紅素β環(huán)化酶基因(Lyc-β)RNAi載體構(gòu)建及表達(dá)鑒定[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2010, 18(1): 10-17.
[46] NAMBARA E, MARION-POLL A. Abscisic acid biosynthesis and catabolism[J]. Annual Review Plant Biology, 2005(56): 165-185.
[47] YAMAGUCHI S. Gibberellin biosynthesis in Arabidopsis[J]. Phytochemistry Review, 2006(5): 39-47.
[48] SUN L. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and beta-carotene contents in tomato fruit[J]. Journal of Experimental Botany, 2012,63 (8): 3097-3108.
[49] GAO H, ZHU H, SHAO Y,CHEN A, LU C, ZHU B, LUO Y. Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato[J]. Journal of Integrative Plant Biology, 2008, 50(8): 991-996.
[50] WANG Gui-yuan, XIA Ren-xue. Changes in the contents of lycopene, beta-carotene, sugar and endogenous GA and ABA in flesh during the fruit development of ‘Cara Caraorange[J]. Acta Horticulturae Sinica, 2005, 32(3): 482-485.
王貴元,夏仁學(xué). 紅肉臍橙果實(shí)發(fā)育過程中番茄紅素、β-胡蘿卜素、糖、GA、ABA含量的變化[J]. 園藝學(xué)報(bào), 2005, 32(3): 482-485.
[51] SOREFAN K, BOOKER J, HAUROGNE K, GOUSSOT M, BAINBRIDGE K, FOO E, CHATFIELD S, WARD S, BEVERIDGE C, RAMEAU C, LEYSER O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea[J]. Genes & Development, 2003, 17: 1469-1476.
[52] DUN E A, BREWER P B, BEVERIDGE C A. Strigolactones: discovery of the elusive shoot branching hormone[J]. Trends in Plant Science, 2009, 14(7): 364-372.
[53] BEVERIDGE C A, KYOZUKA J. New genes in the strigolactone-related shoot branching pathway[J]. Current Opinion in Plant Biology, 2010, 13: 34-39.
[54] LIU L, WEI J, ZHANG M, ZHANG L, LI C, WANG Q. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates[J]. Journal of Experimental Botany, 2012, 3: 1-12.
[55] SHENG Ji-ping, LUO Yun-bo. The research tomato fat oxygen synthase in ethylene biosynthesis approach[J]. Journal of China Agricultural University, 1999, 4 (5): 50.
生吉萍, 羅云波. 番茄脂氧合酶參與乙烯生物合成途徑研究[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 1999, 4(5): 50.
[56] ZHUANG Xue-ping, ZHANG Wen, ZHNEG Cai-xia, DU Wei-min. Effect of glucose, sodium glutamate and ethephon on synthetic quantity of lycopene in tomato fruits[J]. Journal of Anhui Agricultural Sciences, 2007, 35(19): 5664-5665,5669.
莊學(xué)平, 張?chǎng)?鄭彩霞, 杜為民. 3種物質(zhì)對(duì)番茄果實(shí)中番茄紅素合成量的影響[J]. 安徽農(nóng)業(yè)科學(xué),2007, 35(19): 5664- 5665, 5669.
[57] WENG Qian, ZHOU Bao-li, YU Yang, FU Ya-wen. Effects of exogenous ABA, BR, ETH on changes of lycopenes contents in fruit of tomato[J]. Journal of Shenyang Agricultural University,2007,38(6): 784- 787.
翁倩,周寶利,于洋,付亞文. 外源ABA、BR 和ETH對(duì)番茄果實(shí)番茄紅素含量的影響[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2007,38(6): 784- 787.
[58] WANG Gui-yuan, XIA Ren-xue, ZHOU Kai-bing. Effects on changes of dominating pigment contents in peel of cara cara(Citrus sinensis Osbesk) and fruit colouring after exogenous ABA and GA3 treatments[J]. Journal of Wuhan Botanical Research, 2004, 22 (3):273-276.
王貴元, 夏仁學(xué),周開兵. 外源ABA和GA3對(duì)紅肉臍橙果皮主要色素含量變化和果實(shí)著色的影響[J]. 武漢植物學(xué)研究,2004, 22(3): 273-276.
[59] TAO Jun, ZHANG Shang-long. Metabolism of carotenoid and its regulation in garden crop[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2003, 9 (5): 585-590.
陶俊, 張上隆. 園藝植物類胡蘿卜素的代謝及其調(diào)節(jié)[J]. 浙江大學(xué)學(xué)報(bào): 農(nóng)業(yè)與生命科學(xué)版,2003,9(5): 585 -590.
[60] ALBAR, PRATTM, LEEH. Fruit -localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato[J]. Plant Physiology, 2000, 123: 363-370.
[61] ROBERTSONL G H, MAHONEY N E , GOODMAN N, PAVLATH A E. Regulation of lycopene formation in cell suspension culture of VFNT tomato (Lycopersicon esculentum) by CPTA, growth regulators, sucrose, and temperature[J]. Journal of Experimental Botany, 1995, 46(6): 667-673.
[62] SUN Ming-qi. Study on extraction and identification of carotenoids in citrus peel and transformation regulation during maturation and preservation[D]. Wuhan: Huazhong Agricultural University, 2007.
孫明奇.柑橘皮類胡蘿卜素提取鑒定及其在果皮成熟儲(chǔ)藏中的變化規(guī)律[D]. 武漢: 華中農(nóng)業(yè)大學(xué),2007.
[63] NIU Xiao-li, ZHOU Zhen-jiang, LI Rui, HU Tian-tian. Effects of water and fertilizer supply on lycopene content in tomato fruit[J]. Acta Horticulturae Sinica, 2011, 38(11): 2111-2120.
牛曉麗,周振江,李 瑞,胡田田. 水肥供應(yīng)對(duì)番茄中番茄紅素含量的影響[J]. 園藝學(xué)報(bào),2011, 38(11): 2111-2120.
[64] HE Nan, ZHAO Sheng-jie,LIU Wen-ge,YAN Zhi-hong,WAN Xue-shan. Effect of potassium fertilizer on lycopene of mature watermelon[J]. Journal of Changjiang Vegetables, 2008, 12b: 21-22.
何楠,趙勝杰,劉文革,閻志紅,萬學(xué)閃. 施用鉀肥對(duì)西瓜番茄紅素的影響研究[J]. 長(zhǎng)江蔬菜,2008,12b: 21-22.
[65] HE Chun-mei, LIN Ying, LI Hong-mei. Cultural environment and storage period of tomato fruit in the influence of the content of lycopene[J]. Journal of Henan Agricultural Sciences, 2010(5): 93-96.
何春玫,林瑩,李紅梅. 栽培環(huán)境及貯存期對(duì)番茄果實(shí)內(nèi)番茄紅素含量的影響[J]. 河南農(nóng)業(yè)科學(xué),2010(5): 93-96.
[66] LI Ji-suo. The primary studies of the influence factors and heredity on the lycopene content of tomato (Lycopersicum Esculentum Mill.)[D]. China Agricultural University, 2003.
李紀(jì)鎖. 番茄中番茄紅素含量影響因素及遺傳的初步研究[D]. 中國(guó)農(nóng)業(yè)大學(xué),2003.