徐 鵑
(浙江師范大學(xué)數(shù)理與信息工程學(xué)院,浙江金華 321004)
變系數(shù)(n + 1)-維KP方程的W ronskian和Grammian解
徐 鵑
(浙江師范大學(xué)數(shù)理與信息工程學(xué)院,浙江金華 321004)
基于Hirota直接方法,將變系數(shù)(n + 1)-維KP方程化成Hirota雙線性形式,再借助W ronskian技巧和Pfaffian性質(zhì),對(duì)該方程進(jìn)行求解,得到了其廣義的W ronskian解和Grammian解.
變系數(shù)(n + 1)-維KP方程;W ronskian解;Gramm ian解
求解非線性孤子方程的精確解一直是孤立子理論中非常重要的問(wèn)題.W ronskian技巧[1,2]是求非線性孤子方程解的有效方法,這種方法的主要思想是將解寫成W ronskian行列式的形式,直接將N-孤子解代入方程進(jìn)行驗(yàn)證.Gramm ian解是孤子解的另一種行列式表示[3-8].變系數(shù)非線性發(fā)展方程在淺水波、等離子體物理等領(lǐng)域中有著廣泛的應(yīng)用,例如,變系數(shù)的KP方程比常系數(shù)的KP方程能更好地描述流體力學(xué)模型.變系數(shù)方程比常系數(shù)方程更復(fù)雜、更難求解.本文主要研究變系數(shù)的(n + 1)-維KP方程:
其中s(t),m(t)和hk(t)(k≥2)xx是關(guān)于t的任意函數(shù).方程(1)是變系數(shù)(3 + 1)-維KP方程的推廣.
作變換u(x,xk,t)=12m(t)s-1(t)(ln f ),將方程(1)化為雙線性形式:
其中Hirota雙線性算子Dx, Dxk,Dt定義如下:
顯然(2)可以寫成非線性偏微分方程進(jìn)而得到:
下面利用W ronskian技巧和Pfaffian性質(zhì)來(lái)求解變系數(shù)(n + 1)-維KP方程的W ronskian和Grammian解.
結(jié)論1 雙線性方程(2)的N孤子解有如下W ronskian行列式表示:
證明:根據(jù)W ronskian行列式的性質(zhì)以及函數(shù)φ滿足的條件(5),容易得到f對(duì)變量的各階導(dǎo)數(shù)為:
將以上這些導(dǎo)數(shù)帶入方程(3)的左邊,經(jīng)過(guò)簡(jiǎn)單計(jì)算可以得到:
接下來(lái)介紹Pfaffian元素,定義如下:
根據(jù)上述定義,Pfaffian元素aij對(duì)變量x,xk,t的導(dǎo)數(shù)分別為:
如果記fN=(1,2,…,N,N*,…,2*,1*)=(·),那么可以得到fN對(duì)變量的各階導(dǎo)數(shù)為:
根據(jù)Pfaff的性質(zhì)和運(yùn)算法則,很容易得到下面恒等式:
將(15)式和恒等式(16)式代入雙線性方程的展開式(3),經(jīng)過(guò)計(jì)算可以得到:
很明顯,(17)式是一個(gè)Jacobi恒等式,它的值為0.于是Gramm ian行列式fN是雙線性方程(2)的一個(gè)解.
在本文中,構(gòu)造了變系數(shù)(n + 1)-維KP方程的W ronskian和Grammian解,結(jié)果表明,方程(1)有豐富的Wronskian行列式解.當(dāng)然方程(1)還存在其它的更廣義的Grammian解,這也是筆者要繼續(xù)研究的內(nèi)容.
[1] Freeman N C, Nimmo J J C. Soliton solutions of the Korteweg-de Vries and Kadom tsev-Petviashvili equations:The Wronskian technique [J]. Phys Lett A, 1983, (95):1-3.
[2] Nimmo J J C, Freeman N C. The use of B?cklund transformations in obtaining N-soliton solutions in Wronskian form [J]. J Phys A:Math Gen, 1983, (17):1415-1424.
[3] Ma W X. Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation [J]. Appl Math Comput, 2011, (217):10016-10023.
[4] Yu G F, Hu X B. Extended Gram-type determinant solutions to the Kadom tsev-Petviashvili equation [J]. Math Comput Simul, 2009, (80):184-191.
[5] Wu J P, Geng X G. Gramm ian determ inant solution and Pfaffianization for a (3+1)-dimensional soliton equation [J]. Commun Theor Phys, 2009, (52):791-794.
[6] Zhang Y, Cheng T F, Ding D J, et al. Wronskian and Gramm ian solutions for (2+1)-dimensional soliton equation [J]. Commun Theor Phys, 2011, (55):20-24.
[7] Zhang Y, Lv Y N. On the nonisospectral modified Kadom tsev-Peviashvili equation [J]. J Math Anal Appl, 2008, (342):534-541.
[8] Ye L Y, Lv Y N, Zhang Y. Gramm ian solutions to a variable-coefficient KP equation [J]. Chin Phys Lett, 2008, (25):357-358.
Wronskian and Gramm ian Solutions to the (n + 1)-dimensional KP Equation w ith Variable Coefficients
XU Juan
(College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, China 321004)
The paper explored the process of the generalized W ronskian and Gramm ian solutions. The steps mainly include:to change the variable-coefficient (n + 1)-dimensional KP equation to bilinear form based on Hirota method, and then to solve the equation w ith the help of Wronskin technique and Pfaffian properties.
Variable-coefficient (n + 1)-dimensional KP Equation;Wronskian Solution;Grammian Solution
O175.12
A
1674-3563(2013)01-0013-05
10.3875/j.issn.1674-3563.2013.01.003 本文的PDF文件可以從xuebao.wzu.edu.cn獲得
(編輯:王一芳)
2012-06-08
徐鵑(1989- ),女,浙江衢州人,碩士研究生,研究方向:系統(tǒng)理論