郭 斌 胡曉梅 鐘靜玫 白 潔 (昆明理工大學(xué)醫(yī)學(xué)院,云南 昆明 650500)
情感障礙表現(xiàn)為焦慮,抑郁,雙向情感障礙等。嚴重影響了人們的日常生活和工作〔1〕。情感障礙疾病的發(fā)生與應(yīng)激有著密切的關(guān)系,一般人為過度應(yīng)激后產(chǎn)生焦慮,抑郁等行為,而促腎上腺皮質(zhì)激素釋放因子(CRF)作為應(yīng)激反應(yīng)中的關(guān)鍵調(diào)節(jié)因子,在情感障礙疾病中起到重要作用〔2〕。CRF1受體特異拮抗劑在鼠類和恒河猴模型上表現(xiàn)出抗焦慮、抗抑郁樣行為的作用〔3〕。小鼠腦室內(nèi)注射CRF會使小鼠活動行為下降,產(chǎn)生焦慮,抑郁行為〔4〕。本研究旨在對CRF1受體調(diào)節(jié)及其信號通路與情感障礙的機制做一綜述。
CRF是一種由41個氨基酸組成的神經(jīng)內(nèi)分泌肽,協(xié)調(diào)與應(yīng)激相關(guān)自主神經(jīng)、免疫、生理和行為反應(yīng)。分泌CRF神經(jīng)元主要位于下丘腦室旁核(PVN),以及海馬、杏仁核、紋狀體、藍斑和背縫核等情感相關(guān)腦區(qū)〔5〕。正常應(yīng)激下PVN合成和釋放CRF到垂體門脈,激活垂體上CRF1受體,促進腺垂體細胞合成分泌促腎上腺皮質(zhì)激素(ACTH),ACTH作用于腎上腺皮質(zhì),引起糖皮質(zhì)激素釋放,調(diào)節(jié)機體各系統(tǒng)以應(yīng)答應(yīng)激。但持續(xù)應(yīng)激時,CRF過度分泌,被認為導(dǎo)致情感障礙的發(fā)生〔6〕。
CRF受體家族包括兩個位于細胞膜上的G蛋白耦聯(lián)受體,CRF1受體和CRF2受體。CRF1受體廣泛分布在與應(yīng)激和情感調(diào)節(jié)相關(guān)腦區(qū),如垂體、大腦皮質(zhì)、下丘腦、海馬、杏仁核、小腦、藍斑等,其中以垂體、前額皮質(zhì)含量最高;而CRF2受體主要分布在外周,如心血管和骨骼肌等,中樞神經(jīng)系統(tǒng)有部分表達。從受體的分布可以看出,在協(xié)調(diào)應(yīng)激及情感相關(guān)行為時,CRF1受體發(fā)揮關(guān)鍵作用。而CRF2受體調(diào)節(jié)應(yīng)激相關(guān)行為,目前仍不明確〔4〕。
2.1 CRF1受體調(diào)節(jié) Dautzenberg等〔7〕研究發(fā)現(xiàn)G蛋白耦聯(lián)受體激酶(GRK)及β-arrestin在CRF1的調(diào)節(jié)中起重要作用。在CRF受體表達的前腦以及杏仁核神經(jīng)元中,GRK及β-arrestin家族普遍表達。當(dāng)CRF刺激時,GRK磷酸化CRF1受體IC3環(huán)上301到306位以及C末端絲氨酸,蘇氨酸位點后,隨后調(diào)節(jié)β-arrestin與CRF1受體上磷酸化位點結(jié)合,與CRF1受體結(jié)合的β-arrestin釋放出C末端,通過與胞吞蛋白如:網(wǎng)格蛋白,銜接蛋白等結(jié)合,導(dǎo)致CRF1受體脫敏,內(nèi)吞,下調(diào)細胞膜上CRF1受體的含量〔8,9〕。當(dāng)反義核苷酸干擾Y79細胞中GRK轉(zhuǎn)錄時,CRF1受體的同源脫敏被抑制達65%〔10〕。同時在AtT-20垂體細胞中也發(fā)現(xiàn),CRF刺激30 min,膜上β-arrestin迅速與CRF1受體磷酸化位點結(jié)合,并促使受體內(nèi)化作用發(fā)生〔11〕。而當(dāng)敲除β-arrestin基因時,CRF1受體內(nèi)化,脫敏被抑制〔12〕。
2.2 CRF1受體調(diào)節(jié)與情感障礙關(guān)系 在正常情況下,CRF刺激使得GRK及β-arrestin對CRF1受體作用,促進受體發(fā)生脫敏和內(nèi)吞,下調(diào)細胞膜上受體含量,終止CRF作用。但在情感障礙患者中發(fā)現(xiàn)GRK對CRF1受體的磷酸以及β-arrestin與受體結(jié)合均被抑制,受體的脫敏調(diào)節(jié)被破壞〔13〕。
Rao等〔14〕在對雙向情感障礙患者尸檢研究發(fā)現(xiàn),患者腦內(nèi)杏仁核和前額皮質(zhì)等處GRK的蛋白及mRNA含量明顯下降,CRF1磷酸化程度下降,GRK導(dǎo)致的CRF1受體脫敏被抑制。同時Golan等〔15〕在臨床研究上也發(fā)現(xiàn)在抑郁患者腦內(nèi)β-arrestin的表達降低,CRF1受體脫敏、內(nèi)化作用被抑制,CRF1受體被過度激活,治療后患者腦內(nèi) β-arrestin的表達有一定的恢復(fù)。在對神經(jīng)膠質(zhì)瘤細胞C6研究發(fā)現(xiàn),抗抑郁藥刺激可以導(dǎo)致細胞內(nèi)β-arrestin蛋白表達增加,促進了 CRF1受體的脫敏〔16〕。此外,過度應(yīng)激還使得GRK的活性下降,改變下游5-羥色胺(5-HT),去甲腎上腺素和多巴胺等神經(jīng)遞質(zhì)傳遞,5-HT,去甲腎上腺素和多巴胺等神經(jīng)遞質(zhì)的低下是導(dǎo)致情感障礙發(fā)生的重要標志。在情感障礙患者中CRF1內(nèi)化,脫敏的抑制,會使得CRF1受體持續(xù)激活,導(dǎo)致下游信號通路傳導(dǎo)異常,這可能是促進情感障礙疾病發(fā)展的重要原因。
大量實驗證明CRF1受體信號通路在情感障礙疾病中起到重要作用,信號通路調(diào)節(jié)的異常使得下游轉(zhuǎn)錄因子轉(zhuǎn)錄及蛋白表達發(fā)生異常,導(dǎo)致疾病的出現(xiàn)。目前報道由CRF1受體所起始并與情感障礙密切相關(guān)的信號通路主要有:①腺苷酸環(huán)化酶-蛋白激酶A通路(AC-PKA);②磷脂酶C-蛋白激酶C通路(PKC-PLC);③細胞外信號調(diào)節(jié)激酶-絲裂原活化蛋白激酶通路(ERK-MAPK)。
3.1 腺苷酸環(huán)化酶-蛋白激酶A通路 焦慮或抑郁等情感障礙疾病常與AC-PKA通路紊亂有關(guān)。小鼠強迫游泳實驗發(fā)現(xiàn)敲除AC5基因的小鼠會表現(xiàn)出抗抑郁作用〔17〕。同時向酒精戒斷所導(dǎo)致的焦慮小鼠杏仁核定向注射PKA抑制劑,小鼠在“十”字迷宮的開放臂的訪問次數(shù)和停留時間明顯增加,說明小鼠焦慮樣行為得到了一定的緩解〔18〕。在許多內(nèi)生細胞中激活CRF1受體,使受體第三細胞內(nèi)環(huán)(IC3)與Gsα耦聯(lián),激活A(yù)C,導(dǎo)致第二信使 cAMP增加〔19〕,促進 PKA磷酸化,激活下游cAMP應(yīng)答元件結(jié)合蛋白(CREB)等轉(zhuǎn)錄因子〔20〕。Sheng等〔21〕研究發(fā)現(xiàn),CRF激活海馬神經(jīng)元上CRF1受體,導(dǎo)致AC-PKA通路放大,隨后上調(diào)血清和糖皮質(zhì)激素調(diào)節(jié)蛋白激酶(SGK-1)的表達,SGK-1是一種在應(yīng)激及糖皮質(zhì)激素的作用時上調(diào),并具有促進神經(jīng)元突觸可塑性調(diào)節(jié)的蛋白激酶,研究證明SGK-1促進了創(chuàng)傷后應(yīng)激障礙的發(fā)展以及由應(yīng)激誘導(dǎo)抑郁的復(fù)發(fā)〔22〕。在高表達CRF的轉(zhuǎn)基因小鼠中也發(fā)現(xiàn)SGK在前腦和邊緣腦區(qū)的表達增加,小鼠表現(xiàn)出焦慮樣行為〔22〕。
小腦顆粒細胞中,CRF1受體激活A(yù)C-PKA通路上調(diào)腦源性神經(jīng)生長因子(BDNF)的表達〔23〕,而CRF1受體的激活A(yù)C,調(diào)節(jié)cAMP以一種不依賴于PKA的方式促進cAMP活化的鳥嘌呤交換因子(Epac)〔24〕,隨后Epac會促進BDNF的受體TrkB轉(zhuǎn)移到細胞膜上,增強BDNF的作用。因此,CRF1受體可以通過AC-PKA信號通路BDNF及TrkB受體轉(zhuǎn)移到膜上增強BDNF對神經(jīng)元的作用,進而調(diào)節(jié)神經(jīng)突觸可塑性和神經(jīng)元的再生,但是這些過程在焦慮和抑郁等疾病中被破壞〔25〕。事實上,尸檢研究報告也發(fā)現(xiàn)精神分裂及抑郁自殺者的前額皮質(zhì)和海馬BDNF和TrkB的mRNA及蛋白表達水平下降〔26〕。
3.2 磷脂酶C-蛋白激酶C通路 研究證實PLC-PKC信號通路的紊亂與焦慮以及自殺行為密切相關(guān),對自殺患者尸檢發(fā)現(xiàn),死者前額皮質(zhì)以及海馬中PKC的蛋白表達異常〔27〕。在外周細胞中激動劑激活CRF1受體可以同時調(diào)節(jié)AC-PKA以及PLC-PKC信號通路,而在另外的一些細胞中CRF1受體唯一的信號是通過耦聯(lián)到Gqα上,隨后促使PLC的形成,調(diào)節(jié)鈣從內(nèi)質(zhì)網(wǎng)釋放,并且使PKC快速轉(zhuǎn)移到膜上〔28〕。在中腦多巴胺能神經(jīng)元中,CRF1受體耦聯(lián)到Gqα上激活PLC,隨后調(diào)節(jié)PKC促進細胞內(nèi)的鈣流動〔29〕。細胞內(nèi)鈣流的增加,會導(dǎo)致大量鈣離子沉積于線粒體,影響氧化磷酸化的電子傳遞過程,ATP合成障礙,致使神經(jīng)元的代謝發(fā)生障礙,神經(jīng)元損傷,加重情感障礙疾病的發(fā)展。同時,Luscher等〔30〕在過度應(yīng)激導(dǎo)致的抑郁小鼠中發(fā)現(xiàn)CRF1受體調(diào)節(jié)的PLC-PKC信號可以延長前額皮質(zhì)椎體神經(jīng)元中血清素所調(diào)節(jié)的γ-氨基丁酸(γ-aminobutyric acid,GABA)的釋放,進而調(diào)節(jié)GABA所抑制的神經(jīng)遞質(zhì)的釋放,導(dǎo)致5-HT等單胺類神經(jīng)遞質(zhì)的釋放被抑制(5-HT等神經(jīng)遞質(zhì)低下是抑郁癥的重要標志),促進了抑郁癥的發(fā)展〔30〕。
3.3 細胞外信號調(diào)節(jié)激酶-絲裂原活化蛋白激酶通路 CRF1受體還可以激活多條MAPK通路,但是ERK-MAPK是其中的主要信號通路〔31〕。在前腦定向缺失CRF1受體小鼠中,由腦內(nèi)注射CRF所導(dǎo)致杏仁核和海馬中ERK-MAPK信號激活以及焦慮樣行為被抑制〔31〕。而與正常小鼠相比,高濃度CRF過度激活小鼠的海馬區(qū)CRF1受體,會引起ERK-MAPK通路過度激活,并最終導(dǎo)致在懸尾實驗及強迫游泳實驗中小鼠不動時間明顯增加〔32〕。在對情感障礙患者臨床研究發(fā)現(xiàn),患者腦內(nèi)CRF1受體ERK-MAPK信號可以刺激谷氨酸δ2受體轉(zhuǎn)運到樹突,調(diào)節(jié)杏仁核突觸谷氨酰胺傳遞,進一步調(diào)節(jié)神經(jīng)元突觸可塑性。同時CRF的過度分泌會導(dǎo)致CRF1受體激活ERK-MAPK通路,導(dǎo)致抑制型和興奮型神經(jīng)遞質(zhì)間的失衡,導(dǎo)致神經(jīng)元凋亡〔33〕。
ERK-MAPK通路還與 CRF1受體脫敏有關(guān),CRF刺激CATH細胞激活ERK-MAPK信號調(diào)節(jié)SP-1和AP-2的轉(zhuǎn)錄,上調(diào)GRK的表達,促進了CRF1磷酸化以及受體的脫敏〔34〕。但在雙向情感障礙患者中發(fā)現(xiàn),CRF通過ERK-MAPK上調(diào)GRK的過程被破壞,導(dǎo)致CRF1受體脫敏被抑制,使得CRF1受體被過度激活〔14〕,這可能是使得情感障礙的病情惡化的重要原因。
由此可見,情感障礙條件下CRF1受體激活導(dǎo)致的 ACPKA,PLC-PKC及ERK-MAPK信號通路的紊亂,促進焦慮,抑郁等情感障礙疾病的發(fā)生和發(fā)展。但各通路間并不完全獨立,存在著交聯(lián)和交互作用,例如激活cAMP可以促進Epac調(diào)節(jié)PLC-PKC,在一些B-Raf高表達的細胞中,PKA信號通路促進CRF1受體激活下游的ERK-MAPK通路〔31〕,而在對HEK293細胞的研究中發(fā)現(xiàn),PI3K通路有助于CRF1受體調(diào)節(jié)ERK的激活〔35〕。各條通路間相互作用,相互調(diào)節(jié),共同促進情感障礙的發(fā)生。
1 Samuels BA,Leonardo ED,Gadient R,et al.Modeling treatment-resistant depression〔J〕.Neuropharmacology,2011;61:408-13.
2 Hauger RL,Risbrough V,Oakley RH,et al.Role of CRF receptor signaling in stress vulnerability,anxiety,and depression〔J〕.Ann N Y Acad Sci,2009;1179:120-43.
3 Pryce CR,Siegl S,Mayer R,et al.Endocrine and behavioural responses to acute central CRF challenge are antagonized in the periphery and CNS,respectively,in C57BL/6 mice〔J〕.Neuropharmacology,2011;60:318-27.
4 Holmes A,Heilig M,Rupniak NM,et al.Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders〔J〕.Trends Pharmacol Sci,2003;24:580-8.
5 Jonassen AK,Wergeland A,Helgeland E,et al.Activation of corticotropin releasing factor receptor type 2 in the heart by corticotropin releasing factor offers cytoprotection against ischemic injury via PKA and PKC dependent signaling〔J〕.Regul Pept,2012;174:90-7.
6 Keck ME,Ohl F,Holsboer F,et al.Listening to mutant mice:a spotlight on the role of CRF/CRF receptor systems in affective disorders〔J〕.Neurosci Biobehav Rev,2005;29:867-89.
7 Dautzenberg FM,Wille S,Braun S,et al.GRK3 regulation during CRF-and urocortin-induced CRF1 receptor desensitization〔J〕.Biochem Biophys Res Commun,2002;298:303-8.
8 Mouledous L,F(xiàn)roment C,Dauvillier S,et al.GRK2 protein-mediated transphosphorylation contributes to loss of function of mu-opioid receptors induced by neuropeptide FF(NPFF2)receptors〔J〕.J Biol Chem,2012;287:12736-49.
9 Oakley RH,Olivares-Reyes JA,Hudson CC,et al.Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment:a mechanism regulating stress and anxiety responses〔J〕.Am J Physiol Regul Integr Comp Physiol,2007;293:R209-22.
10 Dautzenberg FM,Braun S,Hauger RL.GRK3 mediates desensitization of
CRF1 receptors:a potential mechanism regulating stress adaptation〔J〕.Am J Physiol Regul Integr Comp Physiol,2001;280:R935-46.11 Holmes KD,Babwah AV,Dale LB,et al.Differential regulation of corticotropin releasing factor 1 L-alpha receptor endocytosis and trafficking by beta arrestins and Rab GTPases〔J〕.J Neuro chem,2006;96:934-49.
12 Hauger RL,Olivares-Reyes JA,Dautzenberg FM,et al.Molecular and cell signaling targets for PTSD pathophysiology and pharmacotherapy〔J〕.Neuropharmacology,2012;62:705-14.
13 Premont RT,Gainetdinov RR.Physiological roles of G protein-coupled receptor kinases and arrestins〔J〕.Annu Rev Physiol,2007;69:511-34.
14 Rao JS,Rapoport SI,Kim HW.Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients〔J〕.Int J Neuropsychopharmacol,2009;12:851-60.
15 Golan M,Schreiber G,Avissar S.Antidepressants elevate GDNF expression and release from C(6)glioma cells in a beta-arrestin1-dependent,CREB interactive pathway〔J〕.Int J Neuropsychopharmacol,2011;14:1289-300.
16 Golan M,Schreiber G,Avissar S.Antidepressants increase beta-arrestin 2 ubiquitinylation and degradation by the proteasomal pathway in C6 rat glioma cells〔J〕.J Pharmacol Exp Ther,2010;332:970-6.
17 Krishnan V,Graham A,Mazei-Robison MS,et al.Calcium-sensitive adenylyl cyclases in depression and anxiety:behavioral and biochemical consequences of isoform targeting〔J〕.Biol Psychiatry,2008;64:336-43.
18 Madsen HB,Navaratnarajah S,F(xiàn)arrugia J,et al.CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants〔J〕.Psychopharmacology(Berl),2012;219:699-713.
19 Punn A,Chen J,Delidaki M,et al.Mapping structural determinants
within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor〔J〕.J Biol Chem,2012;287:8974-85.
20 Hauger RL,Risbrough V,Brauns O,et al.Corticotropin releasing factor(CRF)receptor signaling in the central nervous system:new molecular targets〔J〕.CNS Neurol Disord Drug Targets,2006;5:453-79.
21 Sheng H,Sun T,Cong B,et al.Corticotropin-releasing hormone stimulates SGK-1 kinase expression in cultured hippocampal neurons via CRH-R1〔J〕.Am J Physiol Endocrinol Metab,2008;295:E938-46.
22 Peeters PJ,F(xiàn)ierens FL,van den Wyngaert I,et al.Gene expression profiles highlight adaptive brain mechanisms in corticotropin releasing factor over expressing mice〔J〕.Brain Res Mol Brain Res,2004;129:135-50.
23 Bayatti N,Hermann H,Lutz B,et al.Corticotropin-releasing hormonemediated induction of intracellular signaling pathways and brain-derived neurotrophic factor expression is inhibited by the activation of the endocannabinoid system〔J〕.Endocrinology,2005;146:1205-13.
24 Laurent AC,Breckler M,Berthouze M,et al.Role of Epac in brain and heart〔J〕.Biochem Soc Trans,2012;40:51-7.
25 Krishnan V,Nestler EJ.The molecular neurobiology of depression〔J〕.Nature,2008;455:894-902.
26 Kutiyanawalla A,Terry AV Jr,Pillai A.Cysteamine attenuates the decreases in TrkB protein levels and the anxiety/depression-like behaviors in mice induced by corticosterone treatment〔J〕.PLoS One,2011;6:e26153.
27 Pandey GN,Dwivedi Y,Rizavi HS,et al.Decreased catalytic activity and expression of protein kinase C isozymes in teenage suicide victims:a postmortem brain study〔J〕.Arch Gen Psychiatry,2004;61:685-93.
28 Gutknecht E,van der Linden I,van Kolen K,et al.Molecular mechanisms of corticotropin-releasing factor receptor-induced calcium signaling〔J〕.Mol Pharmacol,2009;75:648-57.
29 Riegel AC,Williams JT.CRF facilitates calcium release from intracellular stores in midbrain dopamine neurons〔J〕.Neuron,2008;57:559-70.
30 Luscher B,Shen Q,Sahir N.The GABAergic deficit hypothesis of major depressive disorder〔J〕.Mol Psychiatry,2011;16:383-406.
31 Arzt E,Holsboer F.CRF signaling:molecular specificity for drug targeting in the CNS〔J〕.Trends Pharmacol Sci,2006;27:531-8.
32 Todorovic C,Sherrin T,Pitts M,et al.Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF2-deficient mice〔J〕.Neuropsychopharmacology,2009;34:1416-26.
33 Gallagher JP,Orozco-Cabal LF,Liu J,et al.Synaptic physiology of central CRH system〔J〕.Eur J Pharmacol,2008;583:215-25.
34 Taneja M,Salim S,Saha K,et al.Differential effects of inescapable stress on locus coeruleus GRK3,alpha2-adrenoceptor and CRF1 receptor levels in learned helpless and non-helpless rats:a potential link to stress resilience〔J〕.Behav Brain Res,2011;221:25-33.
35 Punn A,Levine MA,Grammatopoulos DK.Identification of signaling molecules mediating corticotropin-releasing hormone-R1alpha-mitogenactivated protein kinase(MAPK)interactions:the critical role of phosphatidylinositol 3-kinase in regulating ERK1/2 but not p38 MAPK activation〔J〕.Mol Endocrinol,2006;20:3179-95.