任晉可,李春海,葉 偉
椎間盤退變性疾病,如頸椎病、腰椎間盤突出癥等是骨科的常見(jiàn)病、多發(fā)病。這類疾病的共同病理基礎(chǔ)是椎間盤退變,研究椎間盤退變的發(fā)生發(fā)展過(guò)程,探尋各種因素對(duì)椎間盤退變的作用機(jī)制,對(duì)尋找更好的防治手段、提高椎間盤退變患者的生命質(zhì)量具有重大意義。缺氧誘導(dǎo)因子(hypoxia-inducible factors,HIFs)是誘導(dǎo)低氧基因修復(fù)細(xì)胞有氧內(nèi)環(huán)境的調(diào)節(jié)因子,近年來(lái)其在椎間盤退變過(guò)程中的調(diào)控作用受到關(guān)注。
椎間盤由髓核、纖維環(huán)和軟骨終板3部分組成,是人體中最大的無(wú)血管組織。營(yíng)養(yǎng)通路主要有終板途徑和纖維環(huán)途徑:椎體內(nèi)的血管不斷分支,在軟骨終板下骨質(zhì)形成血管袢,包括氧氣在內(nèi)的絕大部分營(yíng)養(yǎng)物質(zhì)通過(guò)這些血管袢經(jīng)擴(kuò)散作用透過(guò)軟骨終板、椎間盤基質(zhì),最終到達(dá)內(nèi)部的椎間盤細(xì)胞,而乳酸等代謝廢物經(jīng)過(guò)相反途徑排出,此即終板途徑,Du等[1]通過(guò)動(dòng)態(tài)增強(qiáng)MRI清楚觀察到這一現(xiàn)象;小部分營(yíng)養(yǎng)物質(zhì)通過(guò)分布到最外層纖維環(huán)的血管末梢來(lái)提供養(yǎng)分,即纖維環(huán)途徑[2-3]。但隨著機(jī)體的老化,供應(yīng)椎間盤周圍的血管數(shù)量減少,軟骨終板逐漸鈣化,氧氣等營(yíng)養(yǎng)物質(zhì)的供應(yīng)及代謝廢物的排除受到阻滯[2],椎間盤內(nèi)逐漸形成缺氧微環(huán)境。這種微環(huán)境對(duì)椎間盤退變的發(fā)生發(fā)展如何產(chǎn)生影響,椎間盤退變是否與HIFs有關(guān),這些都成為近年來(lái)學(xué)者們研究的重要課題。
HIFs為一類介導(dǎo)哺乳動(dòng)物細(xì)胞內(nèi)低氧反應(yīng)的核轉(zhuǎn)錄復(fù)合體,其表達(dá)增加是缺血、缺氧早期首發(fā)的分子水平的適應(yīng)性反應(yīng)。HIFs能調(diào)控下游多種靶基因的表達(dá),在改善組織缺血、缺氧等方面具有深遠(yuǎn)意義[4-6]。
目前,哺乳動(dòng)物體內(nèi)發(fā)現(xiàn)3種HIFs,即HIF-1、HIF-2和HIF-3。HIF-1和HIF-2以異源二聚體的形式存在,由α和β亞單位組成,廣泛表達(dá)于哺乳動(dòng)物組織結(jié)構(gòu)(如心、腦、骨骼肌、腎等)中,是細(xì)胞在缺氧應(yīng)答反應(yīng)中最重要的調(diào)節(jié)因子。HIF-1、HIF-2的活性主要分別由HIF-1α和HIF-2α決定[7-9],它們可調(diào)控促紅細(xì)胞生成素、酪氨酸羥化酶、葡萄糖轉(zhuǎn)運(yùn)體1、糖酵解酶、血管內(nèi)皮生長(zhǎng)因子等一系列缺氧誘導(dǎo)基因的表達(dá)。但兩者的具體功能有所不同,甚至相反[7-8]。在常氧條件下,HIF-1和HIF-2表達(dá)均較低;但在低氧處理后,HIF-1和HIF-2的表達(dá)均明顯增加。HIF-3于1998年由Gu[10]等首先發(fā)現(xiàn),目前國(guó)內(nèi)外研究較少,其功能尚不明確。
2002年,Rajpurohit等[11]首次報(bào)道在大鼠胸、腰椎間盤髓核中有HIF-1α的表達(dá);髓核、纖維環(huán)和軟骨終板中有HIF-1β表達(dá),且在髓核中表達(dá)較高;而后,Risbud等[12]發(fā)現(xiàn),人、大鼠和綿羊的頸、腰椎間盤髓核細(xì)胞在正常氧濃度(21%)及低氧環(huán)境(2%)下均表達(dá)HIF-1α;Richardson等[13]則發(fā)現(xiàn),HIF-1α在人正常與退變腰椎間盤纖維環(huán)和髓核組織中均有表達(dá)。
近年來(lái),有關(guān)HIFs對(duì)椎間盤細(xì)胞外基質(zhì)作用的研究較多[12-16]。Agrawal等[14]的研究結(jié)果表明,在大鼠髓核中,HIF-2α通過(guò)一種p300結(jié)合蛋白-cited2來(lái)調(diào)節(jié)血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的表達(dá)及轉(zhuǎn)錄活性;之后,Skubutyte等[15]發(fā)現(xiàn),在大鼠胚胎和成年人腰椎間盤中有ANK(一種能控制無(wú)機(jī)焦磷酸鹽轉(zhuǎn)運(yùn)的多通道跨膜通道)的表達(dá),而HIF-1和HIF-2可調(diào)控ANK的表達(dá),這提示HIF-1和HIF-2可能通過(guò)調(diào)控ANK表達(dá)對(duì)髓核細(xì)胞礦物鹽的沉積造成影響;2011年,Gogate等[16]發(fā)現(xiàn),大鼠腰椎間盤髓核細(xì)胞中調(diào)控葡萄胺聚糖(glycosaminoglycan,GAG)合成的限速酶β-1,3-葡萄糖醛酸轉(zhuǎn)移酶 1(β-1,3-glucuronyltransferase 1,β-1,3-GlcAT-1)的表達(dá)受到 HIF-1α和HIF-2α的調(diào)節(jié),而GAG所參與形成的結(jié)構(gòu)對(duì)脊柱生物力學(xué)有重要影響,這也間接說(shuō)明HIFs可能通過(guò)GAG發(fā)揮對(duì)脊柱生物力學(xué)的調(diào)控作用。
眾所周知,椎間盤的退變不僅涉及基質(zhì)的改變,更表現(xiàn)在細(xì)胞的變化,如死亡等[17]。對(duì)于HIFs功能的研究,也不僅僅局限于對(duì)細(xì)胞外基質(zhì)的影響,與多種細(xì)胞凋亡、自噬的關(guān)系是近年來(lái)研究的另一重要方向。
凋亡是由基因介導(dǎo)的一種程序性細(xì)胞死亡方式,又名Ⅰ型細(xì)胞死亡。細(xì)胞依靠凋亡來(lái)主動(dòng)引起對(duì)自身的破壞。大量研究結(jié)果表明,凋亡過(guò)程的紊亂與許多疾病的發(fā)生有直接或間接的關(guān)系,如腫瘤、自身免疫性疾病等[18-19],近年來(lái)的研究結(jié)果也顯示其與椎間盤退變關(guān)系密切[20]。Zhao等[20]指出,椎間盤細(xì)胞的程序性死亡導(dǎo)致了椎間盤基質(zhì)的退變,兩者之間存在先因后果的關(guān)系。Zeng等[21]發(fā)現(xiàn),HIF-1α可促進(jìn)半乳糖凝集素-3(galectin-3,Gal-3)表達(dá),而Gal-3能夠抑制FasL介導(dǎo)的鼠腰椎間盤髓核細(xì)胞的凋亡進(jìn)程,由此認(rèn)為HIF-1可能具有抑制髓核細(xì)胞凋亡的作用;從這種意義上講,HIFs可能是通過(guò)抑制椎間盤細(xì)胞凋亡過(guò)程而對(duì)椎間盤退變過(guò)程造成影響。但也有學(xué)者持不同觀點(diǎn)并得出不同結(jié)論,Ha等[22]認(rèn)為椎間盤細(xì)胞凋亡對(duì)于維持椎間盤組織的內(nèi)穩(wěn)態(tài)有積極作用,是對(duì)椎間盤的一個(gè)有利因素,他們研究3組(包括非包容型突出組9例、包容型突出組6例、正常對(duì)照組5例)患者腰椎間盤組織中HIF-1的表達(dá)量,結(jié)果顯示,非包容型突出患者椎間盤中HIF-1α的表達(dá)量及細(xì)胞凋亡數(shù)更多,且相關(guān)分析結(jié)果表明HIF-1α的表達(dá)水平與細(xì)胞凋亡程度呈正相關(guān),他們由此認(rèn)為HIF-1可能有助于維持椎間盤的內(nèi)穩(wěn)態(tài)。
自噬又稱“細(xì)胞自食”,是指膜(大部分表現(xiàn)為雙層,有時(shí)也為單層或多層)包裹部分胞質(zhì)和細(xì)胞內(nèi)需降解的細(xì)胞器、蛋白質(zhì)等形成自噬體,并與內(nèi)涵體形成所謂的“自噬內(nèi)涵體”,最后與溶酶體融合形成自噬溶酶體,降解其所包裹的內(nèi)容物,以實(shí)現(xiàn)細(xì)胞穩(wěn)態(tài)和細(xì)胞器的更新。自噬與凋亡有著復(fù)雜的關(guān)系,兩者共用相同的刺激蛋白和調(diào)節(jié)蛋白,但誘發(fā)閾值和條件不同,相互之間如何進(jìn)行轉(zhuǎn)換和協(xié)調(diào)目前尚不十分清楚。在某些情況下,自噬能夠抑制凋亡,使機(jī)體適應(yīng)外界刺激;而在另外一些情況或因素的刺激下,自噬也會(huì)導(dǎo)致細(xì)胞死亡(Ⅱ型細(xì)胞死亡)[23]。目前,許多研究結(jié)果均表明,自噬在腫瘤、神經(jīng)退行性疾病、免疫性疾病等多種疾病的發(fā)病中有著重要作用[24-26]。
Bohensky等[27]發(fā)現(xiàn),HIF-1同時(shí)調(diào)控軟骨細(xì)胞的凋亡與自噬,并通過(guò)調(diào)節(jié)自噬相關(guān)蛋白如Beclin-1、LC3的表達(dá)來(lái)抑制凋亡;但持續(xù)的自噬又將促進(jìn)細(xì)胞死亡。Carames等[28]的研究結(jié)果表明,自噬在骨性關(guān)節(jié)炎等疾病中對(duì)軟骨起到保護(hù)作用。Srinivas等[29]發(fā)現(xiàn),腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)、哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)參與軟骨細(xì)胞自噬進(jìn)程,而后的研究進(jìn)一步證實(shí)該自噬進(jìn)程是HIF-1α依賴性的,即HIF-1α通過(guò)AMPK、mTOR對(duì)軟骨細(xì)胞自噬進(jìn)行調(diào)控[30]。Bohensky等[31]的研究結(jié)果還顯示,HIF-2α的表達(dá)受到抑制后,絲氨酸/蘇氨酸蛋白激酶(serine-threonine protein kinase,Akt)、mTOR活性降低,BCL-xL表達(dá)降低,HIF-1α表達(dá)升高,軟骨細(xì)胞自噬增加。
髓核細(xì)胞與軟骨細(xì)胞形態(tài)相似,同時(shí)還能表達(dá)軟骨細(xì)胞的兩種主要標(biāo)志物——Ⅱ型膠原和蛋白聚糖,因此髓核細(xì)胞又被稱為類軟骨細(xì)胞[32]。Ye等[33]利用電子顯微鏡首次發(fā)現(xiàn)不同年齡SD大鼠腰椎間盤髓核細(xì)胞中均有自噬體的表達(dá),且隨年齡增加而呈增加趨勢(shì);Western blotting檢測(cè)結(jié)果則顯示,SD大鼠腰椎間盤組織中的自噬蛋白LC3-Ⅱ/LC3-Ⅰ比值隨年齡增加而上升,表明椎間盤細(xì)胞自噬是在不斷增加的[34-35]。朱偉榮等[36]用EBSS液饑餓誘導(dǎo)處于對(duì)數(shù)生長(zhǎng)期的腰椎間盤纖維環(huán)細(xì)胞,結(jié)果顯示,隨著饑餓時(shí)間的延長(zhǎng),單丹磺酰戊二胺(monodansylcadaverine,MDC)陽(yáng)性細(xì)胞數(shù)及自噬泡數(shù)量增多,LC3-ⅡmRNA表達(dá)增加,LC3-Ⅰ向LC3-Ⅱ轉(zhuǎn)化增多,Beclin-1 mRNA及蛋白表達(dá)增高。隨后,Ye等[37]發(fā)現(xiàn),內(nèi)質(zhì)網(wǎng)應(yīng)激可能是椎間盤細(xì)胞自噬的重要誘發(fā)因素。Shen等[38]的研究結(jié)果證實(shí),白細(xì)胞介素-1β(interleukin-1β,IL-1β)能以劑量依賴的方式上調(diào)血清剝奪誘導(dǎo)的SD大鼠腰椎間盤纖維環(huán)細(xì)胞自噬,并認(rèn)為自噬可能在纖維環(huán)細(xì)胞和椎間盤退變進(jìn)程中以抗凋亡的方式起保護(hù)作用。這些證據(jù)提示自噬很可能參與椎間盤退變進(jìn)程,但它是否受HIF調(diào)控尚未可知。
綜上所述,缺氧可誘導(dǎo)椎間盤組織中HIFs表達(dá),HIFs與椎間盤中VEGF的表達(dá)和轉(zhuǎn)錄活性、礦物鹽的沉積以及椎間盤細(xì)胞的凋亡等有關(guān);HIFs還具有調(diào)控軟骨細(xì)胞自噬的功能,椎間盤細(xì)胞中亦存在自噬現(xiàn)象,但椎間盤細(xì)胞的自噬是否受HIFs的調(diào)控,以及其可能的調(diào)控機(jī)制,其在椎間盤退變進(jìn)程中是否起到關(guān)鍵作用,都需要進(jìn)一步深入的研究,以便為椎間盤退變的治療開辟新思路和新途徑。
[1]Du H,Ma SH,Guan M,et al.Dynamic contrast enhancedmagnetic resonance imaging study of the nutrition pathway for lumbar intervertebral disk cartilage of normal goats[J].Orthop Surg,2011,3(2):106-112.
[2]Grunhagen T,Shirazi-Adl A,Fairbank JC,et al.Intervertebral disk nutrition:a review of factors influencing concentrations of nutrients and metabolites[J].Orthop Clin North Am,2011,42(4):465-477.
[3]Urban JP,Smith S,Fairbank JC.Nutrition of the intervertebral disc[J].Spine,2004,29(23):2700-2709.
[4]Bekeredjian R,Walton CB,MacCannell KA,et al.Conditional HIF-1alpha expression produces a reversible cardiomyopathy[J].PLoS One,2010,5(7):e11693.
[5]Xue W,Cai L,Tan Y,et al.Cardiac-specific overexpression of HIF-1 alpha prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice[J].Am J Pathol,2010,177(1):97-105.
[6]Arany Z,Foo SY,Ma Y,et al.HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha[J].Nature,2008,451(7181):1008-1012.
[7]Eubank TD,Roda JM,Liu H,et al.Opposing roles for HIF-1alpha and HIF-2alpha in the regulation of angiogenesis by mononuclear phagocytes[J].Blood,2011,117(1):323-332.
[8]Zhu GQ,Tang YL,Li L,et al.Hypoxia inducible factor 1alpha and hypoxia inducible factor 2alpha play distinct and functionally overlapping roles in oral squamous cell carcinoma[J].Clin Cancer Res,2010,16(19):4732-4741.
[9]Carmeliet P,Dor Y,Herbert JM,et al.Role of HIF-1alpha in hypoxia-mediated apoptosis,cell proliferation and tumour angiogenesis[J].Nature,1998,394(6692):485-490.
[10]Gu YZ,MoranSM,HogeneschJB,etal.Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit,HIF3alpha[J].Gene Expr,1998,1(3):205-213.
[11]Rajpurohit R,Risbud MV,Ducheyne P,et al.Phenotypic characteristics of the nucleus pulposus:expression of hypoxia inducing factor-1,glucose transporter-1 and MMP-2[J].Cell Tissue Res,2002,308(3):401-407.
[12]Risbud MV,Guttapalli A,Stokes DG,et al.Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions:a metabolic adaptation to the intervertebral disc microenvironment[J].J Cell Biochem,2006,98(1):152-159.
[13]Richardson SM,Knowles R,Tyler J,et al.Expression of glucose transporters GLUT-1,GLUT-3,GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc[J].Histochem Cell Biol,2008,129(4):503-511.
[14]Agrawal A,Gajghate S,Smith H,et al.Cited2 modulates hypoxia-inducible factor-dependentexpression ofvascular endothelial growth factor in nucleus pulposus cells of the rat intervertebral disc[J].Arthritis Rheum,2008,58(12):3798-3808.
[15]Skubutyte R,Markova D,Freeman TA,et al.Hypoxiainducible factor regulation of ANK expression in nucleus pulposus cells:possible implications in controlling dystrophic mineralization in the intervertebral disc[J].Arthritis Rheum,2010,62(9):2707-2715.
[16]Gogate SS,Nasser R,Shapiro IM,et al.Hypoxic regulation of beta-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the ratintervertebraldisc:role of hypoxia-inducible factor proteins[J].Arthritis Rheum,2011,63(7):1950-1960.
[17]Urban JP,Roberts S.Degeneration of the intervertebral disc[J].Arthritis Res Ther,2003,5(3):120-130.
[18]Wong RS.Apoptosis in cancer:from pathogenesis to treatment[J].J Exp Clin Cancer Res,2011,(30):87.
[19]Nagata S.Apoptosis and autoimmune diseases[J].Ann N Y Acad Sci,2010,(1209):10-16.
[20]Zhao CQ,Jiang LS,Dai LY.Programmed cell death in intervertebral disc degeneration[J].Apoptosis,2006,11(12):2079-2088.
[21]Zeng Y,Danielson KG,Albert TJ,et al.HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc[J].J Bone Miner Res,2007,22(12):1851-1861.
[22]Ha KY,Koh IJ,Kirpalani PA,et al.The expression of hypoxia inducible factor-1alpha and apoptosis in herniated discs[J].Spine,2006,31(12):1309-1313.
[23]Maiuri MC,Zalckvar E,Kimchi A,et al.Self-eating and self-killing:crosstalk between autophagy and apoptosis[J].Nat Rev Mol Cell Biol,2007,8(9):741-752.
[24]Choi KS.Autophagy and cancer[J].Exp Mol Med,2012,44(2):109-120.
[25]Son JH,Shim JH,Kim KH,et al.Neuronal autophagy and neurodegenerative diseases[J].Exp Mol Med,2012,44(2):89-98.
[26]Pierdominici M,Vomero M,Barbati C,et al.Role of autophagy in immunity and autoimmunity,with a special focus on systemic lupus erythematosus[J].FASEB J,2012,26(4):1400-1412.
[27]Bohensky J,Shapiro IM,Leshinsky S,et al.HIF-1 regulation of chondrocyte apoptosis:induction of the autophagic pathway[J].Autophagy,2007,3(3):207-214.
[28]Carames B,Taniguchi N,Otsuki S,et al.Autophagy is a protective mechanism in normal cartilage,and its agingrelated loss is linked with cell death and osteoarthritis[J].Arthritis Rheum,2010,62(3):791-801.
[29]Srinivas V,Bohensky J,Shapiro IM.Autophagy:a new phase in the maturation of growth plate chondrocytes is regulated by HIF,mTOR and AMP kinase[J].Cells Tissues Organs,2009,189(1-4):88-92.
[30]Bohensky J,Leshinsky S,Srinivas V,et al.Chondrocyte autophagy is stimulated by HIF-1 dependent AMPK activation and mTOR suppression[J].Pediatr Nephrol,2010,25(4):633-642.
[31]Bohensky J,Terkhorn SP,Freeman TA,et al.Regulation of autophagy in human and murine cartilage:hypoxia-inducible factor2 suppresseschondrocyte autophagy [J].Arthritis Rheum,2009,60(5):1406-1415.
[32]Clouet J,Grimandi G,Pot-Vaucel M,et al.Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes[J].Rheumatology,2009,48(11):1447-1450.
[33]Ye W,Xu K,Huang D,et al.Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus[J].Connect Tissue Res,2011,52(6):472-478.
[34]葉偉,梁安靖,彭焰,等.LAMP2A和MEF2D在增齡過(guò)程中大鼠髓核組織的表達(dá)及其意義[J].中華實(shí)驗(yàn)外科雜志,2010,27(11):1615-1617.
[35]葉偉,褚忠華,徐康,等.大鼠增齡過(guò)程中髓核組織Beclin-1和微管相關(guān)蛋白輕鏈3的表達(dá)及其意義[J].中華實(shí)驗(yàn)外科雜志,2010,5(3):643-645.
[36]朱偉榮,葉偉,徐康,等.饑餓誘導(dǎo)對(duì)纖維環(huán)細(xì)胞自噬因子LC3和Beclin-1表達(dá)的影響[J].中華實(shí)驗(yàn)外科雜志,2011,28(6):983-985.
[37]Ye W,Zhu W,Xu K,et al.Increased macroautophagy in the pathological process of intervertebral disc degeneration in rats[J/OL].Connect Tissue Res.[Aug 28].http://informahealthcare.com/doi/abs/10.3109/03008207.2012.715702.[Aug 23]
[38]Shen C,Yan J,Jiang LS,et al.Autophagy in rat annulus fibrosus cells:evidence and possible implications[J].Arthritis Res Ther,2011,13(4):R132.