楊傳森
(鹽城紡織職業(yè)技術(shù)學(xué)院,江蘇 鹽城224005)
極限函數(shù)與和函數(shù)的關(guān)系及其連續(xù)性
楊傳森
(鹽城紡織職業(yè)技術(shù)學(xué)院,江蘇 鹽城224005)
給出極限函數(shù)與和函數(shù)的定義.討論了極限函數(shù)與和函數(shù)之間的關(guān)系,利用極限函數(shù)得到函數(shù)項(xiàng)級數(shù)收斂的一個必要條件,研究了極限函數(shù)與和函數(shù)的連續(xù)性,得到部分和函數(shù)列連續(xù)的一個充分條件.
極限函數(shù);和函數(shù);關(guān)系;連續(xù)性
1.1 連續(xù)函數(shù)列與部分和函數(shù)列對函數(shù)列 {fn(x)}:f1(x),f2(x),…,fn(x),…(x∈D)而言,?x0∈D ,數(shù)列{fn(x0)}可能收斂,也可能發(fā)散[1].?dāng)?shù)集D中使得數(shù)列 {fn(x0)}收斂的實(shí)數(shù)x0組成的數(shù)集A稱為函數(shù)列 {fn(x)}的收斂域.
若?x∈D,函數(shù)fi(x)(i=1,2,…)都連續(xù),則稱函數(shù)列{fn(x)}為數(shù)集D上的連續(xù)函數(shù)列.部
分和函數(shù)列 {sn(x)}:
定義1 若函數(shù)列 {fn(x)}的收斂域?yàn)锳,則對 ?x∈A都有l(wèi)imfn(x)=f(x),稱函數(shù)f(x)(x∈
n→∞A)為函數(shù)列{f(x)}的極限函數(shù).
定義2 稱函數(shù)列{sn(x)}的收斂域I為級數(shù)的收斂域.函數(shù)列 {sn(x)}的極限函數(shù)s(x)(x∈I)為級數(shù)
結(jié)論1 若和函數(shù)在數(shù)集I上存在,則極限函數(shù)在數(shù)集I上存在且為零.
證明 若和函數(shù)在數(shù)集I上存在,則函數(shù)列 {sn(x)}在數(shù)集I上收斂于s(x),即有l(wèi)imsn(x)=s(x),
n→∞
結(jié)論2 和函數(shù)的定義域I包含于極限函數(shù)的定義域A,即I?A.
[1] 鄭利凱.連續(xù)函數(shù)列的極限函數(shù)需要滿足的充分條件和必要條件 [J].河北北方學(xué)院學(xué)報(bào):自然科學(xué)版,2011,27(02):1-2
[2] 焦宏偉,尹景本.復(fù)變函數(shù)與積分變換 [M].北京:北京大學(xué)出版社,2007:63
[3] Walter Rudin著,趙慈庚,蔣鐸譯.?dāng)?shù)學(xué)分析原理 [M].北京:機(jī)械工業(yè)出版社,2004:134
[4] 同濟(jì)大學(xué)數(shù)學(xué)系.高等數(shù)學(xué) [M].北京:高等教育出版社,2007:294-295
[5] 常庚哲、史濟(jì)懷.?dāng)?shù)學(xué)分析教程 (上冊)[M].北京:高等教育出版社,2003:407
[6] Н.Н.Лузин著,何旭初等譯.實(shí)變函數(shù)論 [M].北京:高等教育出版社,1954:59
Relation and Continuity of Limit Function and Sum Function
YANG Chuan-sen
(Yancheng College of Textile Technology,Yancheng 224005,Jiangsu,China)
This paper gives the definitions of the limit function and the sum function and discusses the relation between them.And the continuity of the limit function and the sum function are discussed.The necessary condition for convergent series is obtained by using limit function and the continuity of the limit function and the sum function is discussed as well.Finally the sufficient condition for a sequence of the continuous partial sums of the series is got.
limit function;sum function;relation;continuity
O 173.1
A
1673-1492 (2011)06-0005-02
來稿日期:2011-09-10
楊傳森(1964-),男,江蘇興化人,鹽城紡織職業(yè)技術(shù)學(xué)院數(shù)學(xué)教研室講師.
劉守義 英文編輯:劉彥哲]