張淑妍,杜雅蘭,2,汪洋,劉平生
1.中國科學(xué)院生物物理研究所,北京100101;
2.貴州大學(xué)生命科學(xué)學(xué)院,貴陽550025
脂滴
——細(xì)胞脂類代謝的細(xì)胞器
張淑妍1,杜雅蘭1,2,汪洋1,劉平生1
1.中國科學(xué)院生物物理研究所,北京100101;
2.貴州大學(xué)生命科學(xué)學(xué)院,貴陽550025
脂滴是細(xì)胞內(nèi)中性脂貯存的主要場所,由極性單磷脂層包裹疏水核心組成。近年來的蛋白質(zhì)組學(xué)研究表明,脂滴表面還存在著許多功能蛋白,進(jìn)一步揭示了脂滴可能參與細(xì)胞內(nèi)物質(zhì)的代謝和轉(zhuǎn)運(yùn),以及細(xì)胞信號傳導(dǎo)等過程,是一個(gè)活動旺盛的多功能細(xì)胞器。實(shí)驗(yàn)結(jié)果還證明,脂滴不但是甘油三酯貯存和分解、花生四烯酸代謝和前列腺素合成的主要場所,脂滴還具有合成甘油三酯和磷酯的功能。由此可見,脂滴可能是細(xì)胞內(nèi)參與脂類合成代謝的細(xì)胞器。
脂滴;蛋白質(zhì)組學(xué);酶;脂類代謝;細(xì)胞器
脂滴是細(xì)胞內(nèi)中性脂(neutral lipids)的主要貯存場所,廣泛存在于細(xì)菌、酵母、植物、昆蟲以及動物細(xì)胞中[1,2]。脂滴的大小差別很大,直徑從40 nm至100 μm不等[3]。脂滴由磷脂單分子層及中性脂構(gòu)成的疏水核心構(gòu)成,并且表面分布有很多蛋白。最早關(guān)于脂滴的描述出現(xiàn)在1674年,van Leeuwenhoeck在牛奶中發(fā)現(xiàn)了脂肪滴。19世紀(jì)末,Altmann[4]和Wilson[5]也觀察到了脂滴,并命名為脂質(zhì)體(liposome)。在對脂滴的不斷研究中,又陸續(xù)出現(xiàn)了很多名字,如lipid droplet、lipid body、fat body、fat droplet,以及最近的adiposome[6]。目前來看,大部分科研工作者仍習(xí)慣稱之為lipid droplet[7]。
長期以來,脂滴一直被認(rèn)為是一種類似于糖原的顆粒,只是用來貯存能量,當(dāng)細(xì)胞需要能量時(shí),用來供給能量,是一個(gè)“惰性”的細(xì)胞內(nèi)含物,因而脂滴在很長一段時(shí)間內(nèi)并未受到人們的重視。1991年,Greenberg等人[8]發(fā)現(xiàn)了第一個(gè)與脂肪細(xì)胞脂滴相關(guān)的蛋白perilipin。隨后,Jiang等人[9]于1992年克隆了脂滴的主要蛋白ADRP。加上后來在脂滴上發(fā)現(xiàn)的Tip47[10],Miura等人[11]于2002年定義了PAT(Perilipin,ADRP,Tip47)家族蛋白。近來PAT家族又增加了S3-12[12]和OXPAT/PAT1[13]兩個(gè)蛋白。2004年,Liu[6]建立了脂滴的純化方法,并與同事用蛋白質(zhì)組學(xué)方法發(fā)現(xiàn)動物細(xì)胞脂滴不但含有PAT家族蛋白,還帶有甘油三酯水解酶(adipose triglyceride lipase,ATGL)和與脂肪合成及膽固醇合成相關(guān)的許多酶類,以及與膜轉(zhuǎn)運(yùn)相關(guān)的蛋白,如小G蛋白Rabs。2007年,Bartz等人[14]首次完成了脂滴的脂質(zhì)組學(xué)分析并發(fā)現(xiàn)脂滴中存在另一種中性脂:醚脂。在這些工作,以及近年來越來越多的脂滴蛋白質(zhì)組學(xué)研究的推動下,有關(guān)脂滴的研究得到迅速發(fā)展。研究表明,脂滴并非細(xì)胞內(nèi)一個(gè)簡單的能量貯存器,而是一個(gè)復(fù)雜、活動旺盛、動態(tài)變化的多功能細(xì)胞器。脂滴能夠沿著細(xì)胞骨架運(yùn)動,并與其它細(xì)胞器相互作用,可能在脂類代謝與存儲、膜轉(zhuǎn)運(yùn)、蛋白降解,以及信號傳導(dǎo)過程中起著重要的作用[2,15,16](圖1)。另外,研究還表明,多種代謝性疾病,如肥胖、脂肪肝、心血管疾病[17]及糖尿病[18,19]、中性脂貯存性疾病[19]和Niemann Pick C疾病[20],往往都伴隨著脂質(zhì)貯存的異常。因此,關(guān)于脂滴的生物學(xué)研究日益受到人們的重視。雖然脂滴在細(xì)胞中可能行使許多功能,限于篇幅,本文僅著重討論脂滴在脂類代謝中所起的作用。
圖1 脂滴的結(jié)構(gòu)與功能脂滴由極性單分子層(如磷脂和膽固醇)、非極性核心(如膽固醇酯和甘油三酯),以及表面的許多功能蛋白構(gòu)成。脂滴表面蛋白研究表明,脂滴可能參與細(xì)胞的脂質(zhì)合成與代謝、物質(zhì)的運(yùn)輸及貯存,以及細(xì)胞信號傳導(dǎo)過程Fig.1StructureandfunctionsoflipiddropletsAlipiddropletconsistsofaphospholipid monolayer that surrounds a hydrophobic core.Recent study reveals that lipid droplets may be a dynamic organelle in metabolism,transport and signal transduction
近年來,人們已經(jīng)從9種不同的細(xì)胞及組織中分離純化出脂滴,進(jìn)行了15項(xiàng)脂滴蛋白組學(xué)的研究[6,21~34]。到目前為止,已發(fā)現(xiàn)的哺乳動物脂滴蛋白有120多種[33]。分析發(fā)現(xiàn),有很多蛋白是與甘油三酯、磷脂和膽固醇的合成、修飾、降解等脂類代謝有關(guān)的酶。例如,Liu等人[6]對中國倉鼠卵巢細(xì)胞CHO K2的脂滴進(jìn)行質(zhì)譜學(xué)和免疫印跡分析,鑒定出將近40種蛋白,其中約35%是參與脂類代謝的酶。Umlauf等人[23]用MALDI-TOF MS方法在人表皮鱗狀細(xì)胞癌A431細(xì)胞株中鑒定出了33個(gè)脂滴蛋白,其中有7個(gè)是脂代謝相關(guān)的酶。Fujimoto等人[24]用人肝癌細(xì)胞系HuH7,利用nano LC-MS/MS方法,對其脂滴蛋白進(jìn)行分析,鑒定出17個(gè)主要的蛋白,其中5個(gè)是與脂類代謝有關(guān)的酶。這些結(jié)果表明細(xì)胞內(nèi)的脂滴可能是參與脂代謝的細(xì)胞器之一。
細(xì)胞中甘油三酯(triacylglycerol,TAG)的合成大部分從磷酸甘油(glycerolphosphate)開始,然后,脂肪酸單體依次加入到甘油的骨架上。研究表明,脂滴中存在著甘油三酯合成通路中的多種酶,如脂酰CoA合成酶(acyl-CoA synthetase long-chain family,ACSL)和?;D(zhuǎn)移酶,如二酯酰甘油?;D(zhuǎn)移酶(diacylglycerol acyltransferase,DGAT)等。
Kuerschner等人[35]發(fā)現(xiàn),COS7細(xì)胞及3T3-L1脂肪細(xì)胞的脂滴中不僅存在著甘油三酯,還存在著其合成前體甘油二酯(diacylglycerol,DAG),而且脂滴中還存在著催化這一反應(yīng)的酶DGAT2。在分離純化的脂滴中,加入棕櫚酰CoA(palmiltoyl-CoA)和用同位素標(biāo)記的DAG,則體系中將有放射性標(biāo)記的TAG生成[36]。
由蛋白組學(xué)的結(jié)果可以看出,ACSL廣泛存在于不同種類的哺乳動物細(xì)胞脂滴中。ACSL是一個(gè)蛋白家族,該家族以長鏈脂肪酸、ATP和CoA為底物,催化脂酰CoA的生成。脂酰CoA是合成其它脂類(如TAG和膽固醇酯)的重要底物。哺乳動物中有5個(gè)ACSL的同工酶,ACSL1及ACSL3~ACSL6。Fujimoto等在人肝癌細(xì)胞HuH7中鑒定出ACSL3是脂滴相關(guān)蛋白,而且他們發(fā)現(xiàn),將純化的脂滴和14C標(biāo)記的油酸(oleic acid)或者棕櫚酸(palmitic acid)一起孵育,將會有放射性的脂酰CoA生成,表明脂滴具有ACSL活性;脂滴與14C標(biāo)記的油酰-CoA(oleoyl-CoA)一起孵育,同時(shí)加入DAG或膽固醇,將會有放射性的TAG和膽固醇酯生成,表明脂滴能夠部分參與中性脂的合成,并且具有DGAT及脂酰CoA:膽固醇?;D(zhuǎn)移酶(acyl-CoA:cholesterol acyltransferase,ACAT)的活性。而且,在不加入DAG和膽固醇的情況下,脂滴仍然能夠合成TAG和膽固醇酯,表明脂滴自身可能提供脂代謝的部分中間產(chǎn)物[37]。因此,脂滴至少在一定程度上參與了細(xì)胞內(nèi)TAG的合成。
激素敏感性脂肪酶(hormone-sensitive lipase,HSL)是脂滴上首先被發(fā)現(xiàn)的催化中性脂水解的脂肪酶[38]。第二個(gè)被發(fā)現(xiàn)的酶被稱為脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL)、desnutrin或Ca2+依賴的磷脂酶A2(phospholipase A2),這種酶能夠?qū)AG水解為DAG[39]。
HSL在正常情況下主要存在于胞漿中,在刺激脂肪水解的條件下,幾乎完全定位于脂滴上[40,41]。這種定位是由蛋白磷酸激酶A(protein kinase A,PKA)介導(dǎo)的perilipin以及HSL的磷酸化來調(diào)控的。
ATGL是在脂肪細(xì)胞中發(fā)現(xiàn)的[42]。研究表明它也存在于其它組織中,而且定位于脂滴表面[6]。雖然通過磷酸化蛋白質(zhì)組學(xué)研究,已發(fā)現(xiàn)ATGL是一個(gè)磷酸化蛋白[33],但其調(diào)控ATGL活性的分子機(jī)理至今仍不清楚。Lass等人[43]的研究工作發(fā)現(xiàn)定位于脂滴上的一種蛋白——CGI-58[6]可以激活A(yù)TGL的酶活性。CGI-58是α/β-水解酶折疊(α/β-hydrolase fold enzyme)家族蛋白的一員。將CGI-58缺失,能夠引起遺傳性的中性脂貯存紊亂,原因在于大量的甘油三酯累積在細(xì)胞中[44]。表明脂滴上的CGI-58極有可能參與甘油三酯的降解。
酵母脂滴的蛋白質(zhì)組學(xué)研究表明,脂滴上存在麥角固醇(ergosterol)合成過程中所需要的羊毛固醇合酶(lanosterol synthase),如Erg6和Erg7[21]。Won-Ki Huh等人[45]用GFP/RFP雙熒光蛋白將Erg6定位在脂滴上。由蛋白組學(xué)分析的結(jié)果可以看出,該酶在許多哺乳動物細(xì)胞的脂滴中都有分布,表明脂滴可能是合成羊毛固醇的場所。在酵母中,該酶幾乎只存在于脂滴[46]。有意思的現(xiàn)象是,只有幾種膽固醇合成酶定位于脂滴上,而且從膽固醇合成的途徑上看,它們是不連續(xù)的。同樣,脂滴有可能參與膽固醇類的分解代謝。例如,巨噬細(xì)胞以及乳腺上皮細(xì)胞中的脂滴富含膽固醇酯,其脂滴中往往含有膽固醇酯酶(cholesterol esterase)[22,47]。
花生四烯酸(arachidonic acid,AA)是一種重要的多不飽和脂肪酸,是前列腺素類物質(zhì)以及白三烯(leukotriene)類物質(zhì)的前體。研究表明,白細(xì)胞脂滴上含有AA的胞漿磷脂酶A2(cytosolic phospholipase,cPLA2)、合成白三烯的5-脂氧合酶(5-lipoxygenase,5-LO)、生成前列腺素的環(huán)氧化酶(cyclooxygenase,COX)和前列腺素H合成酶(prostaglandin H synthase,PGHS),以及白三烯C4合成酶(leukotriene C4 synthase,LTC4S)[48~51]。電子顯微放射自顯影結(jié)果顯示,外源標(biāo)記的AA將會進(jìn)入嗜酸細(xì)胞、中性細(xì)胞、肥大細(xì)胞、巨噬細(xì)胞和上皮細(xì)胞的脂滴中。將脂滴純化出來之后,可以發(fā)現(xiàn)脂滴是AA的貯存場所[52,53]。白細(xì)胞中脂滴增多,往往伴隨著前列腺素E2(prostaglandin E2,PGE2)和類二十烷酸(eicosanoid)的增加[49]。另外,免疫定位表明脂滴是從頭合成LTC4和PGE2的場所[48]。即使不是在白細(xì)胞中,脂滴在類二十烷酸合成中可能也起作用。例如,在胎兒上皮細(xì)胞和成纖維細(xì)胞的脂滴中,同樣存在著cPLA2和PGHS[54]。用油酸或AA等不飽和脂肪酸誘導(dǎo)大鼠腸上皮細(xì)胞,能夠使脂滴迅速聚集,并且新合成的脂滴中含有cPLA2α[55]。在體外,將14C標(biāo)記的1-palmitoyl-2-arachidonyl phosphatidylcholine與純化的脂滴孵育,可以檢測到放射性AA的生成,表明脂滴具有cPLA2酶活性[56]。由此可見,脂滴中存在類二十烷酸合成所需的底物及全部的酶,脂滴是類二十烷酸合成的場所[49,53]。
我們將上面介紹的脂滴中含有的與脂類代謝相關(guān)的酶總結(jié)于表1中。
表1 脂滴中參與脂質(zhì)代謝的酶Table 1Lipid droplet-associated lipid metabolic enzymes
脂滴表面存在著合成磷脂的關(guān)鍵酶CCT(三磷酸胞苷:磷酸膽堿胞苷酰基轉(zhuǎn)移酶,CTP:phosphocholine cytidylyltransferase)[57]。2000年,Wu等人[58]在小鼠乳腺上皮細(xì)胞的脂滴鑒定出了丙酮酸羧化酶,該酶在Ca2+濃度升高時(shí),催化合成草酰乙酸,該產(chǎn)物將進(jìn)入生脂途徑。
此外,除存在于脂滴上的與脂質(zhì)代謝相關(guān)的酶外,在脂滴上還存在著脂質(zhì)代謝過程中所需要的其它因子。如在AA代謝過程中的蛋白S100A9,負(fù)責(zé)將不飽和脂肪酸轉(zhuǎn)運(yùn)到膜上[59]。在肝細(xì)胞Hep39的脂滴中,發(fā)現(xiàn)了固醇攜帶蛋白(sterol carrier protein)和脂肪酸結(jié)合蛋白,這些蛋白在脂代謝過程中起著重要的作用[31]。另外,在脂滴上還發(fā)現(xiàn)有能夠結(jié)合膽固醇和長鏈脂肪酸的caveolin-1和caveolin-2[6,60~62]。Caveolin是caveolae的主要結(jié)構(gòu)蛋白,同時(shí)具有與脂質(zhì)和其它蛋白相互作用的功能[63]。這意味著這兩種細(xì)胞器之間有著某種相互作用。
從脂滴中所含的蛋白特性來看,脂滴包含了合成、貯存、利用和降解多種脂類的酶,并且在脂類代謝(包括甘油三酯合成及降解、固醇類物質(zhì)的代謝)中起著重要的作用,是脂類代謝活躍的細(xì)胞器。而且脂滴可能在脂類和能量代謝中處于核心地位,是調(diào)控細(xì)胞內(nèi)脂類平衡的核心點(diǎn)[64,65]。
但是,不難看出,脂滴中僅僅包含著脂類代謝中的一部分酶,每一條代謝通路在脂滴中僅僅存在著幾個(gè)酶,而且它們催化的往往是不連續(xù)的幾步反應(yīng)。因此,脂滴中脂類代謝的途徑并不完整。例如,對酵母中帶有GFP標(biāo)簽的蛋白進(jìn)行分析,僅在脂滴中發(fā)現(xiàn)了麥角固醇代謝途徑中的蛋白Erg1、Erg6和Erg7[33]。很有可能,只有在特定條件下,代謝過程中所需要的其它酶才會聚集到脂滴表面[33]。
正如其它生物學(xué)事件一樣,例如代謝、大分子的生物合成、能量轉(zhuǎn)化、蛋白運(yùn)動、信號傳遞等,都需要細(xì)胞器之間的相互作用。脂滴中脂類代謝需要與其它細(xì)胞器相互作用。電鏡結(jié)果表明,脂滴與線粒體、內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER),以及過氧化物酶體(peroxisome),在空間上很接近[66~68]。脂滴是脂肪酸豐富的來源,而脂肪酸作為線粒體和過氧化物酶體的氧化底物,脂滴與其相互作用就會使這一過程的效率增加。Athenstaedt等人[21]發(fā)現(xiàn),在特定條件下,Erg1會從脂滴轉(zhuǎn)移到ER上。事實(shí)上,部分線粒體蛋白在脂滴的蛋白質(zhì)組中也會出現(xiàn)[25,28]。
可見,脂滴能夠與其它細(xì)胞器很活躍地交換產(chǎn)物,因此,脂滴可能扮演著雙重角色,代謝活躍的場所或者是細(xì)胞內(nèi)物質(zhì)運(yùn)輸時(shí)??康拇a頭[27]。
在過去的幾年中,關(guān)于脂滴的細(xì)胞生物學(xué)研究取得了很大的進(jìn)展,脂滴作為一個(gè)重要的、活躍的細(xì)胞器,其重要的生物學(xué)功能正為人們所逐漸認(rèn)識。但是,涉及到脂滴的很多關(guān)鍵內(nèi)容還不清楚。比如,脂滴到底是如何形成的?蛋白是如何定位于脂滴上的?脂滴的融合和裂解是如何實(shí)現(xiàn)的?脂滴與其它細(xì)胞器之間的相互作用是如何調(diào)控的?對于這些問題的回答,可能會揭示出關(guān)于脂滴、細(xì)胞能量代謝等重大生物學(xué)問題的答案[65]。
1.Murphy DJ.The biogenesis and functions of lipid bodies in animals,plants and microorganisms.Prog Lipid Res,2001, 40(5):325~438
2.Zehmer JK,Huang Y,Peng G,Pu J,Anderson RG,Liu P.A role for lipid droplets in inter-membrane lipid traffic. Proteomics,2009,9(4):914~921
3.Stobart AK,Stymne S,Hglund S.Safflower microsomes catalyse oil accumulationin vitro:a model system.Planta, 1986,169:33~37
4.Altmann R.Die Elementarorganisem und ihre Beziehungen zu den Zellen.Leipzig:Veit,1890
5.Wilson E.The cell in development and inheritance.New York:Macmillan,1896
6.Liu P,Ying Y,Zhao Y,Mundy DI,Zhu M,Anderson RG. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic.J Biol Chem,2004,279(5):3787~3792
7.Farese RV Jr,Walther TC.Lipid droplets finally get a little R-E-S-P-E-C-T.Cell,2009,139(5):855~860
8.Greenberg AS,Egan JJ,Wek SA,Garty NB,Blanchette-MackieEJ,LondosC.Perilipin,amajorhormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets.J Biol Chem,1991, 266(17):11341~11346
9.Jiang HP,Serrero G.Isolation and characterization of a full-lengthcDNAcodingforanadipose differentiation-related protein.Proc Natl Acad Sci USA, 1992,89(17):7856~7860
10.Wolins NE,Rubin B,Brasaemle DL.TIP47 associates with lipid droplets.J Biol Chem,2001,276(7):5101~5108
11.Miura S,Gan JW,Brzostowski J,Parisi MJ,Schultz CJ, Londos C,Oliver B,Kimmel AR.Functional conservation for lipid storage droplet association among perilipin,ADRP, and TIP47(PAT)-related proteins in mammals,Drosophila, andDictyostelium.JBiolChem,2002,277(35): 32253~32257
12.Wolins NE,Skinner JR,Schoenfish MJ,Tzekov A,Bensch KG,Bickel PE.Adipocyte protein S3-12 coats nascent lipid droplets.J Biol Chem,2003,278(39):37713~37721
13.Wolins NE,Quaynor BK,Skinner JR,Tzekov A,Croce MA,Gropler MC,Varma V,Yao-Borengasser A,Rasouli N, KernPA,FinckBN,BickelPE.OXPAT/PAT-1isa PPAR-induced lipid droplet protein that promotes fatty acid utilization.Diabetes,2006,55(12):3418~3428
14.Bartz R,Li WH,Venables B,Zehmer JK,Roth MR,Welti R,Anderson RG,Liu P,Chapman KD.Lipidomics reveals thatadiposomesstoreetherlipidsandmediate phospholipid traffic.J Lipid Res,2007,48(4):837~847
15.Goodman JM.The gregarious lipid droplet.J Biol Chem, 2008,283(42):28005~28009
16.Bartz R,Zehmer JK,Liu PS.The new face of lipid droplets.Progress in Biochemistry and Biophysics,2005, 32(5):387~392
17.Mori M,Itabe H,Higashi Y,Fujimoto Y,Shiomi M, Yoshizumi M,Ouchi Y,Takano T.Foam cell formation containing lipid droplets enriched with free cholesterol by hyperlipidemicserum.JLipidRes,2001,42(11): 1771~1781
18.Londos C,Brasaemle DL,Schultz CJ,Adler-Wailes DC, Levin DM,Kimmel AR,Rondinone CM.On the control of lipolysis in adipocytes.Ann N Y Acad Sci,1999,892: 155~168
19.Igal RA,Coleman RA.Neutral lipid storage disease:a geneticdisorderwithabnormalitiesintheregulationof phospholipid metabolism.J Lipid Res,1998,39(1):31~43
20.PattersonMC.Ariddlewrappedinamystery: understanding Niemann-Pick disease,type C.Neurologist, 2003,9(6):301~310
21.Athenstaedt K,Zweytick D,Jandrositz A,Kohlwein SD, Daum G.Identification and characterization of major lipid particle proteins of the yeastSaccharomyces cerevisiae.J Bacteriol,1999,181(20):6441~6448
22.WuCC,HowellKE,NevilleMC,YatesJR3rd, McManaman JL.Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells.Electrophoresis,2000,21(16): 3470~3482
23.Umlauf E,Csaszar E,Moertelmaier M,Schuetz GJ,Parton RG,Prohaska R.Association of stomatin with lipid bodies. J Biol Chem,2004,279(22):23699~23709
24.Fujimoto Y,Itabe H,Sakai J,Makita M,Noda J,Mori M, Higashi Y,Kojima S,Takano T.Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7.Biochim Biophys Acta,2004,1644(1):47~59
25.Brasaemle DL,Dolios G,Shapiro L,Wang R.Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes.J Biol Chem, 2004,279(45):46835~46842
26.Kim SC,Chen Y,Mirza S,Xu Y,Lee J,Liu P,Zhao Y.A clean,more efficient method for in-solution digestion of protein mixtures without detergent or urea.J Proteome Res,2006,5(12):3446~3452
27.Binns D,Januszewski T,Chen Y,Hill J,Markin VS,Zhao Y,Gilpin C,Chapman KD,Anderson RG,Goodman JM. An intimate collaboration between peroxisomes and lipid bodies.J Cell Biol,2006,173(5):719~731
28.Beller M,Riedel D,Jansch L,Dieterich G,Wehland J, Jackle H,Kuhnlein RP.Characterization of theDrosophila lipid droplet subproteome.Mol Cell Proteomics,2006,5(6): 1082~1094
29.TurroS,Ingelmo-TorresM,EstanyolJM,TebarF, Fernandez MA,Albor CV,Gaus K,Grewal T,Enrich C, Pol A.Identification and characterization of associated with lipiddropletprotein1:anovelmembrane-associated protein that resides on hepatic lipid droplets.Traffic,2006, 7(9):1254~1269
30.Katavic V,Agrawal GK,Hajduch M,Harris SL,Thelen JJ.Protein and lipid composition analysis of oil bodies from twoBrassica napuscultivars.Proteomics,2006,6(16): 4586~4598
31.Sato S,Fukasawa M,Yamakawa Y,Natsume T,Suzuki T, Shoji I,Aizaki H,Miyamura T,Nishijima M.Proteomic profiling oflipid dropletproteinsinhepatomacelllines expressing hepatitis C virus core protein.J Biochem,2006, 139(5):921~930
32.Cermelli S,Guo Y,Gross SP,Welte MA.The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol,2006,16(18):1783~1795
33.Bartz R,Zehmer JK,Zhu M,Chen Y,Serrero G,Zhao Y, LiuP.Dynamicactivityoflipiddroplets:protein phosphorylation and GTP-mediated protein translocation.J Proteome Res,2007,6(8):3256~3265
34.Wan HC,Melo RC,Jin Z,Dvorak AM,Weller PF.Roles andoriginsofleukocytelipidbodies:proteomicand ultrastructural studies.Faseb J,2007,21(1):167~178
35.Kuerschner L,Moessinger C,Thiele C.Imaging of lipid biosynthesis:howaneutrallipidenterslipiddroplets. Traffic,2008,9(3):338~352
36.Sorger D,Daum G.Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeastSaccharomyces cerevisiae.J Bacteriol,2002,184(2):519~524
37.Fujimoto Y,Itabe H,Kinoshita T,Homma KJ,Onoduka J, Mori M,Yamaguchi S,Makita M,Higashi Y,Yamashita A, TakanoT.InvolvementofACSLinlocalsynthesisof neutrallipidsincytoplasmiclipiddropletsinhuman hepatocyte HuH7.J Lipid Res,2007,48(6):1280~1292
38.Haemmerle G,Zimmermann R,Hayn M,Theussl C,Waeg G,Wagner E,Sattler W,Magin TM,Wagner EF,Zechner R.Hormone-sensitivelipasedeficiencyinmicecauses diglyceride accumulation in adipose tissue,muscle,and testis.J Biol Chem,2002,277(7):4806~4815
39.Jenkins CM,Mancuso DJ,Yan W,Sims HF,Gibson B, GrossRW.Identification,cloning,expression,and purificationofthreenovelhumancalcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities.J Biol Chem, 2004,279(47):48968~48975
40.Brasaemle DL,Levin DM,Adler-Wailes DC,Londos C.The lipolyticstimulationof3T3-L1adipocytespromotesthe translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets.Biochim Biophys Acta,2000,1483(2): 251~262
41.Clifford GM,Londos C,Kraemer FB,Vernon RG,Yeaman SJ.Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes.J Biol Chem, 2000,275(7):5011~5015
42.Zimmermann R,Strauss JG,Haemmerle G,Schoiswohl G, Birner-Gruenberger R,Riederer M,Lass A,Neuberger G, Eisenhaber F,Hermetter A,Zechner R.Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science,2004,306(5700):1383~1386
43.Lass A,Zimmermann R,Haemmerle G,Riederer M, Schoiswohl G,Schweiger M,Kienesberger P,Strauss JG, GorkiewiczG,ZechnerR.Adiposetriglyceridelipasemediatedlipolysisofcellularfatstoresisactivatedby CGI-58 and defective in Chanarin-Dorfman syndrome.Cell Metab,2006,3(5):309~319
44.Lefevre C,Jobard F,Caux F,Bouadjar B,Karaduman A, HeiligR,LakhdarH,WollenbergA,VerretJL, Weissenbach J,Ozguc M,Lathrop M,Prud'homme JF, Fischer J.Mutations in CGI-58,the gene encoding a new proteinoftheesterase/lipase/thioesterasesubfamily,in Chanarin-Dorfman syndrome.Am J Hum Genet,2001, 69(5):1002~1012
45.Huh WK,Falvo JV,Gerke LC,Carroll AS,Howson RW, WeissmanJS,O'SheaEK.Globalanalysisofprotein localization in budding yeast.Nature,2003,425(6959): 686~691
46.Milla P,Athenstaedt K,Viola F,Oliaro-Bosso S,Kohlwein SD,Daum G,Balliano G.Yeast oxidosqualene cyclase (Erg7p)isamajorcomponentoflipidparticles.The Journal of biological chemistry,2002,277(4):2406~2412
47.McGookey DJ,Anderson RG.Morphological characterization ofthecholesterylestercycleinculturedmouse macrophagefoamcells.JCellBiol,1983,97(4): 1156~1168
48.D'Avila H,Melo RC,Parreira GG,Werneck-Barroso E, Castro-Faria-NetoHC,BozzaPT.Mycobacteriumbovis bacillus Calmette-Guerin induces TLR2-mediated formation oflipidbodies:intracellulardomainsforeicosanoid synthesisin vivo.J Immunol,2006,176(5):3087~3097
49.Bozza PT,Yu W,Penrose JF,Morgan ES,Dvorak AM, WellerPF.Eosinophillipidbodies:specific,inducible intracellular sites for enhanced eicosanoid formation.J Exp Med,1997,186(6):909~920
50.Dvorak AM,Morgan E,Schleimer RP,RyeomSW, LichtensteinLM,WellerPF.Ultrastructuralimmunogold localizationofprostaglandinendoperoxidesynthase (cyclooxygenase)to non-membrane-bound cytoplasmic lipid bodies in human lung mast cells,alveolar macrophages, typeIIpneumocytes,andneutrophils.JHistochem Cytochem,1992,40(6):759~769
51.DvorakAM,MorganES,TzizikDM,WellerPF. Prostaglandinendoperoxidesynthase(cyclooxygenase): ultrastructural localization to nonmembrane-bound cytoplasmic lipid bodies in human eosinophils and 3T3 fibroblasts.Int Arch Allergy Immunol,1994,105(3):245~250
52.Weller PF,Monahan-Earley RA,Dvorak HF,Dvorak AM. Cytoplasmic lipid bodies of human eosinophils.Subcellular isolation and analysis of arachidonate incorporation.Am J Pathol,1991,138(1):141~148
53.Bozza PT,Magalhaes KG,Weller PF.Leukocyte lipid bodies——Biogenesisandfunctionsininflammation. Biochim Biophys Acta,2009,1791(6):540~551
54.Meadows JW,Pitzer B,Brockman DE,Myatt L.Expression and localization of adipophilin and perilipin in human fetal membranes:associationwithlipidbodiesandenzymes involvedinprostaglandinsynthesis.JClinEndocrinol Metab,2005,90(4):2344~2350
55.Moreira LS,Piva B,Gentile LB,Mesquita-Santos FP,D'Avila H,Maya-Monteiro CM,Bozza PT,Bandeira-Melo C, DiazBL.CytosolicphospholipaseA(2)-drivenPGE(2) synthesis within unsaturated fatty acids-induced lipid bodies of epithelial cells.Biochim Biophys Acta,2009,1791(3): 156~165
56.Yu W,Bozza PT,Tzizik DM,Gray JP,Cassara J,Dvorak AM,Weller PF.Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonaterich lipid bodies.Am J Pathol,1998,152(3):759~769
57.GuoY,WaltherTC,RaoM,StuurmanN,Goshima G,Terayama K,Wong JS,Vale RD,Walter P,Farese RV.Functional genomic screen reveals genes involved in lipid-droplet formation and utilization.Nature,2008,453 (7195):657~661
58.Kraus-FriedmannN,FengL.Theroleof intracellular Ca2+intheregulationofgluconeogenesis.Metabolism, 1996,45(3):389~403
59.RoulinK,HagensG,HotzR,SauratJH,Veerkamp JH,Siegenthaler G.The fatty acid-binding heterocomplex FA-p34 formed by S100A8 and S100A9 is the major fatty acid carrier in neutrophils and translocates from the cytosol to the membrane upon stimulation.Exp Cell Res,1999, 247(2):410~421
60.van Meer G.Caveolin,cholesterol,andlipid droplets? J Cell Biol,2001,152(5):F29~F34
61.Fujimoto T,Kogo H,Ishiguro K,Tauchi K,Nomura R. Caveolin-2 is targeted to lipid droplets,a new"membrane domain"in the cell.J Cell Biol,2001,152(5):1079~1085
62.OstermeyerAG,Paci JM,ZengY,Lublin DM,Munro S,Brown DA.Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets.J Cell Biol,2001,152(5):1071~1078
63.Liu P,Rudick M,Anderson RG.Multiple functions of caveolin-1.J Biol Chem,2002,277(44):41295~41298
64.Martin S,Parton RG.Lipid droplets:a unified view of a dynamic organelle.Nat Rev Mol Cell Biol,2006,7(5): 373~378
65.Guo Y,Cordes KR,Farese RV Jr,Walther TC.Lipid droplets at a glance.J Cell Sci,2009,122(Pt 6): 749~752
66.Blanchette-Mackie EJ,Dwyer NK,Barber T,Coxey RA, Takeda T,Rondinone CM,Theodorakis JL,Greenberg AS, Londos C.Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes.J Lipid Res,1995, 36(6):1211~1226
67.Cohen AW,Razani B,Schubert W,Williams TM,Wang XB,Iyengar P,Brasaemle DL,Scherer PE,Lisanti MP. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation.Diabetes,2004,53(5):1261~1270
68.BascomRA,ChanH,RachubinskiRA.Peroxisome biogenesis occurs in an unsynchronized manner in close association with the endoplasmic reticulumintemperaturesensitiveYarrowia lipolyticaPex3p mutants.Mol Biol Cell, 2003,14(3):939~957
Abstract:Lipid droplet is an intracellular structure that consists of a neutral lipid core surrounded by a monolayer of phospholipids.PAT family proteins have been identified as major structural proteins on the surface of lipid droplets.Recently,more than 100 functional proteins have also been found to be associated with lipid droplets by proteomic studies and immunelocalization.These proteins can be categorized into structural proteins,enzymes for lipolysis and synthesis,membrane traffic proteins,and signal transduction proteins.In addition,the lipidomic analysis of animal cell lipid droplets revealed the dynamic activities of the organelle.Therefore,lipid droplets have recently been proposed to be a functional organelle that mediates lipid metabolism,membrane traffic,protein degradation,and signal transduction.Furthermore,recent works demonstrate that prostaglandins are synthesized on lipid droplets in leukocytes and suggest that lipid droplets are able to produce triglyceride and phospholipids.These findings have led to a possibility that lipid droplets not only store lipids for catabolism but also function as an organelle for cellular lipid anabolism.
Key Words:Lipid droplet;Proteomics;Enzymes;Lipid metabolism;Organelle
Lipid Droplet——A Cellular Organelle for Lipid Metabolism
ZHANG Shuyan1,DU Yalan1,2,WANG Yang1,LIU Pingsheng1
1.Institute of Biophysics,Chinese Academy of Sciences,Beijing 100101,China;
2.College of Life Sciences,Guizhou University,Guiyang 550025,China
Q26,Q257
2010-01-29;接受日期:2010-02-02
國家自然科學(xué)基金面上項(xiàng)目(09JM241001)
劉平生,電話:(010)64888517,E-mail:pliu@sun5.ibp.ac.cn
This work was supported by a grant from The National Natural Science Foundation of China(09JM241001)
Received:Jan 29,2010Accepted:Feb 2,2010
Corresponding author:LIU Pingsheng,Tel:+86(10)64888517,E-mail:pliu@sun5.ibp.ac.cn