国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

運(yùn)動(dòng)訓(xùn)練與補(bǔ)充ω-3PUFA對(duì)人體健康的影響研究進(jìn)展

2010-08-15 00:51:12唐暉雷雨易文波湖南科技大學(xué)體育學(xué)院湘潭40湘潭大學(xué)
關(guān)鍵詞:磷脂脂肪酸飲食

唐暉 雷雨 易文波湖南科技大學(xué)體育學(xué)院(湘潭 40) 湘潭大學(xué)

人類健康是由遺傳和環(huán)境相互作用決定的[1],其中飲食和運(yùn)動(dòng)是兩個(gè)起主要作用的環(huán)境因素。人類學(xué)、營(yíng)養(yǎng)學(xué)和基因?qū)W研究表明,人類飲食,包括能量攝入和能量消耗,主要的變化發(fā)生于近150年,具體表現(xiàn)為攝入脂肪種類和數(shù)量[2,3]。ω-3多不飽和脂肪酸(Omega-3 polyunsaturated fatty acids,ω-3PUFA)和運(yùn)動(dòng)都影響基因表達(dá),遺傳變異反過來也影響人體對(duì)飲食和運(yùn)動(dòng)的反應(yīng)。目前,隨著生活方式的改變,代謝綜合癥在各年齡段流行,其主要特點(diǎn)是增加了飽和脂肪酸、ω-6多不飽和脂肪酸(Omega-6 polyunsaturated fatty acids,ω-6PUFA)以及反式脂肪酸的攝入,減少了 ω-3PUFA攝入[4,5]。目前西方飲食結(jié)構(gòu)缺乏ω-3PUFA,ω-6PUFA與ω-3PUFA的比例是 10 1到20 1,而非 1 1(對(duì)野生動(dòng)物[6]和人類有益的可能比例)。由于ω-6PUFA和ω-3PUFA影響細(xì)胞的新陳代謝和基因表達(dá),形成和保持ω-6PUFA和ω-3PUFA的平衡攝入對(duì)人體健康更有利。本文就運(yùn)動(dòng)訓(xùn)練與補(bǔ)充ω-3PUFA對(duì)人體健康的影響相關(guān)報(bào)道進(jìn)行綜述。

1 ω-3PUFA的生物學(xué)作用

在二十世紀(jì)末二十一世紀(jì)初,人們針對(duì)ω-6PUFA與ω-3PUFA開展了許多研究和實(shí)踐調(diào)查。現(xiàn)在知道ω-3PUFA是人體生長(zhǎng)發(fā)育的基礎(chǔ),對(duì)冠心病形成與發(fā)展起著重要的預(yù)防作用[7-9],并有助于控制高血壓、糖尿病、關(guān)節(jié)炎和其他自主免疫系統(tǒng)障礙以及防治癌癥的作用[10,11]。

多不飽和脂肪酸又叫多烯酸,是指分子結(jié)構(gòu)中含有二個(gè)或二個(gè)以上不飽和雙鍵的脂肪酸。ω-3PUFA是指第一個(gè)雙鍵出現(xiàn)在碳鏈三位的多不飽和脂肪酸;同樣,第一個(gè)雙鍵出現(xiàn)在六位的多不飽和脂肪酸叫ω-6PUFA。多不飽和脂肪酸對(duì)人體機(jī)能有廣泛的生物學(xué)功能,如ω-3PUFA攝入可影響膽固醇的吸收、血漿甘油三酯濃度、全血粘度、心肌免疫力、抗腫瘤和神經(jīng)系統(tǒng)的發(fā)育,還具有抗炎癥反應(yīng)、抗氧化、增加瘦素表達(dá)、抑制肥胖發(fā)生[12]等生物效應(yīng)。

亞油酸(linoleic acid,LA,屬于 ω-6PUFA)和 α-亞麻酸(α-linolenic acid,ALA,屬于 ω-3PUFA)和它們的長(zhǎng)鏈衍生物是動(dòng)植物細(xì)胞膜的重要組成成分。當(dāng)人類攝取富含ω-3PUFA的食物(如魚肉和魚油)時(shí),二十碳五烯酸(eicosapentaenoic acid,EPA,屬于 ω-3PUFA)和二十二碳六烯酸(docosahexaenoic acid,DHA,屬于ω-3PUFA)取代了細(xì)胞膜中的部分ω-6PUFA,如花生四烯酸(arachidonic acid,AA,ω-6PUFA),尤其在血小板、紅細(xì)胞、嗜中性粒細(xì)胞、單核細(xì)胞和肺細(xì)胞的細(xì)胞膜。因此,攝取多不飽和脂肪酸EPA和DHA會(huì)導(dǎo)致:(1)減少前列腺素 E2代謝物的產(chǎn)生量;(2)降低血栓素A2(一種強(qiáng)效血小板黏合和血管收縮劑)濃度;(3)減少白細(xì)胞三烯B4的形成,它是一種誘導(dǎo)炎癥以及白細(xì)胞強(qiáng)效趨向劑和黏合劑;(4)增加血栓素A3濃度,它是一種弱的血小板黏合劑和血管收縮劑;(5)增加環(huán)前列腺素PGI3和不降低PGI2(PGI3和PGI2對(duì)血管擴(kuò)張和抑制血小板黏合具有積極作用),從而導(dǎo)致環(huán)前列腺素總量增加;(6)增加白細(xì)胞三烯 B5,它是一種弱誘導(dǎo)炎癥和趨化劑的物質(zhì)[13,14]。

ω-6PUFA在人類飲食中的量增加,使AA中產(chǎn)生大量的類花生酸代謝物(如前列腺素、血栓素、白細(xì)胞三烯、羥基脂肪酸和脂氧素)比攝入的ω-3PUFA(尤其是EPA)的量要多。從AA中獲得的類花生酸在低劑量時(shí)更具生物活性,而如果大量攝入,就會(huì)導(dǎo)致血栓癥和動(dòng)脈粥樣硬化,以及過敏和炎癥性疾病的產(chǎn)生和發(fā)展。這樣,富含ω-6PUFA的飲食容易導(dǎo)致血栓形成,伴隨血液黏性、血管痙攣和血管收縮增加?;加懈吣懝檀佳Y、高脂蛋白血癥、心急梗死及其他形式的動(dòng)脈粥樣硬化性疾病、II型糖尿病、肥胖和高甘油三酯血癥的患者血流較慢[15,16]。動(dòng)脈粥樣硬化是II型糖尿病主要的并發(fā)癥。血小板中ω-6PUFA與ω-3PUFA比例的升高,在一定程度上導(dǎo)致了心血管疾病高死亡率[17]。由于飲食ω-6PUFA與ω-3PUFA比例的增加,導(dǎo)致了II型糖尿病的流行[18]。

有關(guān)ω-3PUFA降血脂、抗血栓形成和抗炎癥的作用已在動(dòng)物體、組織培養(yǎng)和細(xì)胞實(shí)驗(yàn)中進(jìn)行了廣泛的研究[19]。早期研究集中于類花生酸代謝機(jī)制,最近則集中在對(duì)基因表達(dá)的影響[20]。先前研究表明,無論是通過細(xì)胞磷脂酶從膜磷脂中釋放還是從飲食和其他細(xì)胞外環(huán)境中獲得,脂肪酸都是重要的細(xì)胞信號(hào)分子。它們能充當(dāng)肌醇磷脂和環(huán)腺苷酸信號(hào)轉(zhuǎn)導(dǎo)通路的第二信使或其替代物。它們也能成為分子調(diào)節(jié)器,促使細(xì)胞對(duì)細(xì)胞外信號(hào)做出反應(yīng)[21]。研究表明多不飽和脂肪酸能迅速而直接地改變特異性基因的轉(zhuǎn)錄[22]。

LA及其在飲食中與ALA的比率對(duì)ALA代謝轉(zhuǎn)化成長(zhǎng)鏈ω-3PUFA非常重要。Dwarkanath[23]的研究表明,若保持飲食AL恒量,3.7gALA可產(chǎn)生0.3g長(zhǎng)鏈ω-3PUFA與11gALA轉(zhuǎn)化為1g長(zhǎng)鏈ω-3PUFA(EPA)的生物效應(yīng)相似。因此,比率約為4(15g LA:3.7g ALA)的濃度適合轉(zhuǎn)化。Emken等人的研究顯示,飲食攝入的能源物AL從4.7%增加到9.3%,將導(dǎo)致ω-6PUFA和ω-3PUFA發(fā)生飽和競(jìng)爭(zhēng),結(jié)果使含重氫的長(zhǎng)鏈代謝物ALA減少約50%[24]。Mantzioris發(fā)現(xiàn),增加飲食中ALA和EPA的量進(jìn)行3~6周干預(yù)后,血漿膜磷脂濃度上升;Dihomo-γ-亞麻酸(ω-6PUFA)濃度降低,但AA沒有變化,在 6周后長(zhǎng)鏈ω-6PUFA與ω-3PUFA比率下降比3周時(shí)更大;減少ω-6PUFA與ω-3PUFA比例與富含ALA的植物油可能影響血栓形成。補(bǔ)充ALA后,血磷脂長(zhǎng)鏈ω-3PUFA含量增加及降低血小板聚合,但這種補(bǔ)充沒有改變甘油三酯濃度。其它研究認(rèn)為,僅只有長(zhǎng)鏈ω-3PUFA(EPA+DHA)具有降低甘油三酯的效應(yīng)[25]。

2 ω-3PUFA補(bǔ)充對(duì)人體運(yùn)動(dòng)能力的影響

2.1 運(yùn)動(dòng)訓(xùn)練對(duì)人體肌細(xì)胞膜磷脂ω-3PUFA脂肪酸構(gòu)成的影響

脂肪酸是人體肌肉細(xì)胞膜的重要組成部分[26]。研究表明,運(yùn)動(dòng)本身能影響細(xì)胞膜磷脂脂肪酸的組成。安德森等研究發(fā)現(xiàn)[27],6周低強(qiáng)度運(yùn)動(dòng)訓(xùn)練導(dǎo)致肌肉膜磷脂脂肪酸顯著變化,AA顯著減少,ω-3PUFA比率增加。Helge等[28]的研究也顯示,有規(guī)律的訓(xùn)練能影響人類骨骼肌磷脂脂肪酸的組成。他們認(rèn)為,有規(guī)律的訓(xùn)練首先對(duì)底物變化和存儲(chǔ)產(chǎn)生影響,從而誘導(dǎo)肌肉膜磷脂脂肪酸組成發(fā)生適應(yīng)性變化。訓(xùn)練能提高胰島素敏感性,反過來影響能量供應(yīng)調(diào)制效能狀況。胰島素反應(yīng)也與骨骼肌肉結(jié)構(gòu)脂的具體模式相關(guān)。

Helge[29]等通過對(duì)4周規(guī)律運(yùn)動(dòng)訓(xùn)練的研究,發(fā)現(xiàn)肌肉膜磷脂脂肪酸構(gòu)成發(fā)生變化;因此,運(yùn)動(dòng)訓(xùn)練有可能是肌肉膜磷脂脂肪酸組成的調(diào)節(jié)器。訓(xùn)練前后ω-9多不飽和脂肪酸(Omega-9 polyunsaturated fatty acids,ω-9PUFA)的比率從18 1到16 0,暗示訓(xùn)練引起△9-脫氫酶活性增強(qiáng)。Helge等的研究未發(fā)現(xiàn)AA降低,但Andersson研究[27]的結(jié)果與之相反,有規(guī)律的運(yùn)動(dòng)訓(xùn)練未改變肌肉甘油三酯脂肪酸組成,表明有規(guī)律的運(yùn)動(dòng)訓(xùn)練對(duì)肌肉磷脂脂肪酸組成的影響與肌肉甘油三酯脂肪酸的組成變化沒有直接聯(lián)系。運(yùn)動(dòng)增加部分油酸在肌肉甘油三酯中的含量很有意義,表明運(yùn)動(dòng)中或運(yùn)動(dòng)后優(yōu)先補(bǔ)充和攝入油酸,可能有利于機(jī)體運(yùn)動(dòng)能力的提高和肌細(xì)胞的修復(fù)。

2.2 運(yùn)動(dòng)中補(bǔ)充ω-3PUFA對(duì)心肌耗氧量及動(dòng)脈血流的影響

ω-3PUFA主要通過與細(xì)胞膜結(jié)合來調(diào)節(jié)細(xì)胞信號(hào)傳遞,這對(duì)心臟特別重要。動(dòng)物實(shí)驗(yàn)研究表明攝入ω-3PUFA有顯著的抗心律失常作用。臨床研究顯示,適量攝入ω-3PUFA能降低突發(fā)性心律失常發(fā)生的死亡率[30,31]。實(shí)驗(yàn)表明,補(bǔ)充魚油能增加心臟自身的運(yùn)氧能力。Peoples等[32]研究食用魚油是否可能改善心肌氧耗和延遲長(zhǎng)時(shí)間運(yùn)動(dòng)疲勞的出現(xiàn)時(shí)間,他們采用雙盲實(shí)驗(yàn)評(píng)價(jià)公路自行車耐力運(yùn)動(dòng)員補(bǔ)充魚油后的作用。受試對(duì)象隨機(jī)食用1g魚油(325mg DHA,65mg EPA)或橄欖油,對(duì)照組服用安慰劑,自行車運(yùn)動(dòng)員每天食用8顆膠囊(3.12mg/d)共 8周。結(jié)果表明ω-3PUFA降低心率,減少心肌氧耗;降低長(zhǎng)時(shí)間運(yùn)動(dòng)的主觀疲勞感。然而,補(bǔ)充ω-3PUFA對(duì)提高運(yùn)動(dòng)能力和延遲運(yùn)動(dòng)疲勞沒有顯著作用。在有規(guī)律的運(yùn)動(dòng)中,每天服用5gω-3PUFA促進(jìn)運(yùn)動(dòng)誘導(dǎo)肱動(dòng)脈舒張和血流量增加,而紅花油沒有這種效果[33]。另有研究顯示,補(bǔ)充ω-3PUFA對(duì)耐力運(yùn)動(dòng)有益,其作用途徑可能是激活了超氧化物歧化酶和過氧化氫酶[34]。

2.3 耐力訓(xùn)練以及補(bǔ)充ω-3PUFA對(duì)骨骼肌和心肌脂肪酸結(jié)合蛋白的影響

耐力訓(xùn)練和補(bǔ)充ω-3PUFA(EPA、DHA)影響大鼠骨骼肌和心肌的細(xì)胞質(zhì)脂肪酸結(jié)合蛋白(FABPC)濃度[35]。食用ω-3PUFA八周后觀察到趾長(zhǎng)伸肌FABPC濃度提高300%,腓腸肌提高250%,比目魚肌提高50%,心肌提高15%;肌內(nèi)沒有積累甘油三酯且檸檬酸合成酶活性未見變化。ω-3PUFA調(diào)節(jié)脂肪酸代謝相關(guān)基因,可能通過氧化酶來增強(qiáng)受體活性而增加FABPC濃度。研究結(jié)果顯示,運(yùn)動(dòng)訓(xùn)練和補(bǔ)充ω-3PUFA均影響肌肉FABPC濃度。在運(yùn)動(dòng)訓(xùn)練中,脂肪和糖原是為肌肉提供能量的兩種能源,能量供給受運(yùn)動(dòng)強(qiáng)度、持續(xù)時(shí)間和訓(xùn)練前飲食的影響。耐力訓(xùn)練時(shí)補(bǔ)充ω-3PUFA可提高肌肉有氧能力和促進(jìn)脂肪氧化[36],從而減少糖原消耗速率,延遲疲勞的出現(xiàn)。

2.4 補(bǔ)充ω-3PUFA預(yù)防或降低優(yōu)秀運(yùn)動(dòng)員運(yùn)動(dòng)誘發(fā)的支氣管收縮(EIB)

免疫系統(tǒng)在長(zhǎng)時(shí)間大強(qiáng)度練習(xí)后產(chǎn)生不利變化,主要發(fā)生在皮膚、上呼吸組織黏膜、肺、血液和肌肉組織。盡管還無確切解釋,大多數(shù)運(yùn)動(dòng)免疫學(xué)者認(rèn)為,由于免疫功能受損(可能持續(xù)3~72小時(shí))的“開窗”,可能使病毒和細(xì)菌獲得存活的機(jī)會(huì)而增加了亞臨床和臨床感染的風(fēng)險(xiǎn)。

在飲食中補(bǔ)充ω-3PUFA對(duì)抑制優(yōu)秀運(yùn)動(dòng)員運(yùn)動(dòng)誘發(fā)的EIB有明顯保護(hù)作用,這極有可能得益于它們的抗炎癥功能。EIB導(dǎo)致運(yùn)動(dòng)后呼吸道暫時(shí)變窄,引起機(jī)體運(yùn)動(dòng)后肺部功能減弱。優(yōu)秀運(yùn)動(dòng)員與非一般運(yùn)動(dòng)員及普通人相比,EIB發(fā)生較多。優(yōu)秀運(yùn)動(dòng)員EIB和哮喘的高患病率,以及喘鳴、胸悶、異常呼吸困難、咳嗽和濃痰等已有研究[37,38]。優(yōu)秀運(yùn)動(dòng)員EIB相對(duì)高發(fā)可能是運(yùn)動(dòng)過度、長(zhǎng)期暴露在過敏原和對(duì)支氣管的過度刺激以及過度吸入干冷空氣而引起的[39]。

研究表明,呼吸道暫時(shí)脫水能釋放組胺、神經(jīng)肽和AA代謝物、白細(xì)胞三烯和前列腺素這樣的炎性介質(zhì),導(dǎo)致支氣管平滑肌收縮。重復(fù)高強(qiáng)度運(yùn)動(dòng)本身可能通過釋放炎性細(xì)胞因子而導(dǎo)致EIB的發(fā)展[40]。有關(guān)越野滑雪運(yùn)動(dòng)員調(diào)整呼吸道的研究和EIB在藥理學(xué)動(dòng)因上無法預(yù)防的事實(shí)證明,EIB 完全不同于哮喘[41,42]。mickleborough等[43]進(jìn)行了隨機(jī)雙盲交叉研究,來證明是否可通過每天飲食中補(bǔ)充3.2g EPA和2.2g DHA降低EIB。研究顯示,飲食ω-3PUFA能改善肺功能;同時(shí),補(bǔ)充ω-3PUFA降低了白細(xì)胞三烯、E4、9α、11β- 前列腺素 F2、LTB4、腫瘤壞死因子α和白細(xì)胞介素-1β濃度。這項(xiàng)對(duì)10名有EIB和10名無EIB的優(yōu)秀運(yùn)動(dòng)員的小范圍研究表明,補(bǔ)充ω-3PUFA對(duì)抑制優(yōu)秀運(yùn)動(dòng)員發(fā)生EIB有明顯保護(hù)作用。

3 ω-3PUFA補(bǔ)充與運(yùn)動(dòng)訓(xùn)練對(duì)人體健康的影響

3.1 運(yùn)動(dòng)和ω-3脂肪酸與胰島素抵抗

研究表明,耐力訓(xùn)練能提高胰島素敏感性[44,45]。長(zhǎng)時(shí)間有規(guī)律的訓(xùn)練將導(dǎo)致人[46]或大鼠[47]肌肉膜磷脂含量增加和磷脂脂肪酸組成的變化。Gudbjarnason[48]研究顯示,多次補(bǔ)充腎上腺素引起兒茶酚胺應(yīng)激,從而導(dǎo)致心肌磷脂脂肪酸組成的變化。在Helge等[29]研究中,兒茶酚氨應(yīng)激是由于AA與DHA含量增加引起的,而并未發(fā)現(xiàn)LA降低。然而,兩個(gè)研究表明增加DHA攝入量和ω-6PUFA/ω-3PUFA比率降低是一致的。單腿亞極量運(yùn)動(dòng)實(shí)驗(yàn)結(jié)果顯示,運(yùn)動(dòng)僅導(dǎo)致循環(huán)血兒茶酚氨濃度適度上升[49]。

胰島素敏感性被證明與肌肉磷脂脂肪酸構(gòu)成相關(guān)[50]。研究顯示,增加ω-3PUFA和降低肌膜內(nèi)ω-6PUFA與ω-3PUFA的比率與細(xì)胞膜流動(dòng)性增加相一致,并與胰島素受體數(shù)目增加和胰島素結(jié)合增強(qiáng)相關(guān)[51]。在Helge等[28]的研究中,運(yùn)動(dòng)訓(xùn)練后,增加ω-3PUFA攝入和降低ω-6PUFA與ω-3PUFA的比率,可提高胰島素敏感性,且胰島素受體數(shù)目增加可能是長(zhǎng)期訓(xùn)練的結(jié)果。運(yùn)動(dòng)和ω-3PUFA都能增加胰島素敏感度和預(yù)防高血糖癥。

3.2 ω-3PUFA與運(yùn)動(dòng)和肥胖

運(yùn)動(dòng)有利于增加脂肪消耗,在保持體重方面有重要作用,肥胖癥的增多與缺乏運(yùn)動(dòng)的關(guān)系甚于過度飲食。2004年Hwalla在雅典召開的第五屆國(guó)際營(yíng)養(yǎng)學(xué)健康大會(huì)上宣讀了《青少年肥胖和體育活動(dòng)》。該文首次以全國(guó)人口為研究對(duì)象,其結(jié)果表明,青少年肥胖主要由缺乏體育活動(dòng)引起,而男性比女性更糟[52]。為了控制肥胖,他推薦包括在衛(wèi)生專業(yè)人士、家庭、學(xué)校、企業(yè)和醫(yī)護(hù)機(jī)構(gòu)中引入多元化干預(yù)策略來增加體育活動(dòng)的機(jī)會(huì)和項(xiàng)目。

ω-3PUFA和運(yùn)動(dòng)都有抵抗肥胖的作用。肥胖通常是脂肪細(xì)胞體積增大和數(shù)目增多引起,脂肪細(xì)胞的形成是關(guān)鍵因素,因?yàn)槌墒斓闹炯?xì)胞在體狀態(tài)下不能分裂或轉(zhuǎn)化成其它細(xì)胞[53]。由于飲食不平衡,必需脂肪酸ω-6PUFA攝入過高而ω-3PUFA攝入則偏低而導(dǎo)致肥胖在各年齡階段常見。

由于人類長(zhǎng)期攝入膳食脂肪酸,使其與脂肪組織生長(zhǎng)的關(guān)系比動(dòng)物更難以評(píng)定。母鼠喂富含LA或飽和高脂肪膳食,哺乳幼仔17天,白色脂肪組織分別呈現(xiàn)增生或肥大[54]。但喂食富含EPA和DHA的魚油可以防止大鼠發(fā)生肥胖[55],大鼠斷奶后,用富含ALA的脂肪酸喂食,同樣可防止脂肪組織過度增長(zhǎng)。AA和飽和脂肪酸能夠促進(jìn)脂肪組織的發(fā)展。近幾十年以來,由于人們飲食中ω-6PUFA與ω-3PUFA比例過高和身體活動(dòng)減少導(dǎo)致肥胖人數(shù)劇增,因此,可通過補(bǔ)充ω-3PUFA起到抑制脂肪細(xì)胞分化,誘導(dǎo)細(xì)胞凋亡,促進(jìn)脂肪細(xì)胞脂解的作用,進(jìn)而預(yù)防肥胖。

3.3 降低心血管疾病

富含LA的飲食降低了膽固醇。飲食LA可促進(jìn)LDL膽固醇氧化[56]、增加血小板凝集反應(yīng)[57]、抑制免疫系統(tǒng)[58]。與此相反,ALA攝入量與抑制凝血及血小板活性、凝血酶的反應(yīng)[59]和控制AA代謝相關(guān)[60]。在臨床研究中,ALA有助于降低血壓[61]。Ascherio等人的研究顯示,ALA與人類患冠心病的風(fēng)險(xiǎn)成負(fù)相關(guān)[62]。

研究顯示,增加ω-3PUFA攝取量可以通過以下途徑降低心血管疾病發(fā)生率:①阻止心率不齊的發(fā)生,心率不齊可能導(dǎo)致心臟突死;②降低血栓的發(fā)生概率,血栓導(dǎo)致血管阻力增大、心臟受損;③降低血清甘油三酯水平;④減少動(dòng)脈粥樣硬化斑塊形成;⑤增強(qiáng)血管內(nèi)皮細(xì)胞功能;⑥降低血壓;⑦降低炎癥發(fā)生[63,64]。

3.4 對(duì)II型糖尿病的作用

心血管疾病是導(dǎo)致糖尿病患者死亡的主要原因,II型糖尿病患者常常血脂過高(200mg/dl以上),而研究認(rèn)為補(bǔ)充ω-3PUFA可以顯著降低糖尿病患者血清低密度脂蛋白膽固醇和甘油三酯水平[65]。盡管高血脂患者補(bǔ)充大量ω-3PUFA后LDL-C水平降低,但禁食后患者血糖和血色素水平并未升高。在對(duì)5103名女性II型糖尿病患者的研究中,患者在實(shí)驗(yàn)開始階段并未同時(shí)患心血管疾病或者癌癥,結(jié)果發(fā)現(xiàn),在16年實(shí)驗(yàn)期間補(bǔ)充高劑量魚油后,患者患冠心病的概率顯著下降。迄今為止,沒有證據(jù)顯示長(zhǎng)期服用EPA和DHA會(huì)對(duì)高血糖患者產(chǎn)生副作用。

3.5 對(duì)癌癥的影響

和普通細(xì)胞不一樣,腫瘤細(xì)胞增殖和擴(kuò)散非常迅速,并對(duì)細(xì)胞正常凋亡有抵抗力。研究發(fā)現(xiàn),從海洋生物中提取的多不飽和脂肪酸可抑制體外培養(yǎng)的乳腺、前列腺和結(jié)腸癌細(xì)胞增生,促進(jìn)細(xì)胞凋亡,抑制體內(nèi)結(jié)腸和直腸粘膜培養(yǎng)的癌細(xì)胞增殖。動(dòng)物模型研究表明,增加EPA和DHA攝入可抑制乳腺、前列腺和腸癌細(xì)胞增殖。在眾多臨床試驗(yàn)研究中,僅有少數(shù)發(fā)現(xiàn)攝食ω-3PUFA與人體乳腺癌、前列腺癌以及腸癌的發(fā)生率之間存在負(fù)相關(guān)[66]。但也有調(diào)查顯示魚類攝取和癌癥發(fā)病率之間存在較強(qiáng)的負(fù)相關(guān)。可以肯定補(bǔ)充ω-3PUFA有抗癌作用,但對(duì)補(bǔ)充ω-3PUFA的推薦攝入量有待進(jìn)一步研究。

3.6 ω-3PUFA和心理健康

研究顯示,補(bǔ)充ω-3PUFA對(duì)中樞神經(jīng)系統(tǒng)和心理健康,特別是抑郁癥具有積極作用,也能在預(yù)防阿爾茨海默氏癥,注意力缺陷障礙,情感障礙,躁郁癥和精神分裂癥,對(duì)人體產(chǎn)生有利影響[67-72]。

目前,研究證明,補(bǔ)充ω-3PUFA對(duì)心理障礙(如情感障礙和抑郁癥)非常有用。流行病學(xué)數(shù)據(jù)證明,低ω-3PUFA攝入和高比率的抑郁緊密相關(guān);此外,ω-3PUFA對(duì)未受控制的單相抑郁癥的臨床作用研究顯示,增加脂肪酸 EPA和 DHA攝入可降低抑郁癥發(fā)生比率[73];ω-3PUFA也是抑郁病人最有效果的抗抑郁癥劑[68]。除了抑郁癥,其他腦部疾病如精神分裂癥、老年癡呆癥、注意力缺失癥、酗酒、遲發(fā)性運(yùn)動(dòng)障礙和暴力都與ω-3PU FA攝入過低相關(guān)[74,75]。而且,低ω-3PUFA與抑郁癥和心血管病相關(guān)[76];實(shí)際上,抑郁癥先于心血管疾病,抑郁患者更有可能因心血管疾病而導(dǎo)致死亡。

4 運(yùn)動(dòng)員補(bǔ)充ω-3PUFA的合適劑量及可能的副作用

由于攝入大量ω-6PUFA,導(dǎo)致大強(qiáng)度運(yùn)動(dòng)引起自由基過多和損傷性炎癥加劇,富含EPA和DHA的魚油被用來消除由于運(yùn)動(dòng)而產(chǎn)生的炎癥狀態(tài)[77],對(duì)于大部分運(yùn)動(dòng)員(特別是休閑水平)建議每天補(bǔ)充EPA和DHA(1~2)g,攝入 EPA與 DHA比例為 2∶1[78]。每天攝入 1~2g EPA和DHA能防止肌肉和關(guān)節(jié)炎癥[79]。Tartibian等的研究證明,攝入ω-3PUFA能夠有效減輕離心運(yùn)動(dòng)所致的延遲性肌肉酸痛[80]。因此,運(yùn)動(dòng)員補(bǔ)充ω-3PUFA更重要。推薦ω-3PUFA攝入量如下:一般水平鍛煉者(EPA和DHA)補(bǔ)充1~2g/d,規(guī)律運(yùn)動(dòng)訓(xùn)練和集體項(xiàng)目運(yùn)動(dòng)員補(bǔ)充(EPA和 DHA)2~4g/d,高水平耐力運(yùn)動(dòng)員補(bǔ)充(EPA和 DHA)6~8g/d,且 EPA 與 DHA 比例均為 2∶1[78]。個(gè)體補(bǔ)充ω-3PUFA的基本方法是依據(jù)其運(yùn)動(dòng)強(qiáng)度和飲食習(xí)慣確定EPA和DHA攝入量。

對(duì)ω-3PUFA的副作用還存在爭(zhēng)議,如病人在服用阿司匹林或華法林的同時(shí)過度使用ω-3PUFA(一般超過3g/d)可引起出血可能增加[81]。當(dāng)攝入ω-3PUFA量非常大時(shí)可能引起體內(nèi)岀血。此外,ω-3PUFA氧化后形成的氧化物可能降低糖尿病患者對(duì)血糖的控制,抑制免疫和新陳代謝,降低抗感染能力,增加細(xì)菌感染可能性,增加某些個(gè)體LDL的聚集。因此,在某些特殊情況下,應(yīng)謹(jǐn)慎補(bǔ)充ω-3PUFA,以避免產(chǎn)生不良效應(yīng)。

[1]Simopoulos AP.Genetics.Implications for nutrition.Forum Nutr,2003,56:226-229.

[2]Simopoulos AP.Genetic variation and nutrition.Nutr Rev,1999,5(Pt2):S10-S19.

[3] Simopoulos AP.Overview of evolutionary aspects of omega 3 fatty acids in the diet.World Rev Nutr Diet,1998,83:1-11

[4]Vasquez A,Manso G,Cannell J.The clinical importance of vitamin D (cholecalciferol):a paradigm shift w ith implications for all healthcare providers.A ltern Ther Health Med,2004,10(5):28-36.

[5]Heaney RP,Davies KM,Chen TC,et al.Human serum 25-hydroxych-holecalciferol response to extended oral dosing w ith cholecalciferol.Am J Clin Nutr,2003,77(1):204-210.

[6]Sinclair AJ,Slattery WJ.Identification of meat according to species by isoelectric focusing.Aust Vet J,1982,58(2):79-80.

[7]De Lorgeril M,Salen P.Modified cretan mediterranean diet in the prevention of coronary heart disease and cancer:An update.World Rev Nutr Diet,2007,97:1-32.

[8]Marchioli R,Barzi F,Bomba E,et al.Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction:Time-course analysis of the results of the Gruppo Italiano per lo Studio della Soprav vivenza nell’Infarto miocardico(GISSI)-Prevenzione.Circulation,2002,105(16):1897-1903.

[9]Iso H,Kobayashi M,Ishihara J,et al.Intake of fish and n-3 fatty acids and risk of coronary heart disease among Japanese.The Japan Public Health Center-Based(JPHC)Study Cohort I.Circulation,2006,113(2):195-202.

[10] Simopoulos AP.Omega-3 fatty acids in inflammation and autoimmune diseases.J Am Coll Nutr,2002,21(6):495-505.

[11]Hibbeln JR,Davis JM,Steer C,et al.Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood(ALSPAC Stud y):an observational cohort study.Lancet,2007,369(9561):578-585.

[12]羅緒剛(譯著).分子營(yíng)養(yǎng)學(xué).北京:科學(xué)出版社.2008.

[13] Weber PC.Omega-3-fatty acids in fish:cell functions,health.W ien Med Wochenschr,1986,136(4):96-97.

[14] Lew is RA,Lee TH,Austen KF.Effects of ω-3 fatty acids on the generation of products of the 5-lipoxygenase pathway:Health Effects of Polyunsaturated Fatty Acids in Seafoods.Orlando Academic Press,1986,38(9):227-238.

[15]Brox JH,Nordoy A.Fish and fish oils in the diet.Can increase use minimize the occurrence of coronary heart disease?Tidsskr Nor Laegeforen,1988,108(7):550-552.

[16]A lbert SG,Hasnain BI,Ritter DG,et al.Aspirin sensitivity of platelet aggregation in diabetes mellitys.Diabetes Res Clin Pract,2005,70(2):195-199.

[17]Sellmayer A,Schrepf R,Theisen K,et al.Role of omega-3-faaty acids in cardiovascular prevention.Dtsch Med Wochenschr,2004,129(38):1993-1996.

[18]Raheja BS,Sadikot SM,Phatak RB,et al.Significance of the n-6/n-3 ratio for insulin action in diabetes.Ann NY Acad Sci,1993,683:258-271.

[19]Weber PC,Leaf A.Cardiovascular effects ofω-3 fatty acids:Atherosclerotic risk factor modifica tion by ω-3 fatty acids.World Rev Nutr Diet,1991,66:218-232.

[20]Dwyer JH,A llayee H,Dwyer KM,et al.Arachidonate 5-lipoxygenase promoter genotype,dietary arachidonic acid,and atherosclerosis.N Engl J Med,2004,50(1):29-37.

[21]Graber R,Sumida C,Nunez EA.Fatty acids and cell signal transduction.J Lipid Mediat Cell Signal,1994,9(2):91-116.

[22]Suchankova G,Tekle M,Saha AK,et al.Dietary polyunsaturated fatty acids enhance hepatic AMP-activated protein kinase activity in rats.Biochem Biophys Res Commun,2005,326(4):851-858.

[23]Dwarkanath P,Muthayya S,Thomas T,et al.Polyunsaturated fatty acid consumption and concentration among South Indian women during pregnancy.Asia Pac J Clin Nutr,2009,18(3):389-394.

[24]Emken EA,Adlof RO,Gulley RM.Dietary linoleic and linolenic acids in young adult males.Biochim Biophys Acta,1994,1213(3):277-288.

[25]Mantzioris E,James MJ,Gibson RA,et al.Dietary substitution w ith anα-linolenic acidrich vegetable oil increases eicosapentaenoic acid concentrations in tissues.Am J Clin Nutr,1994,59(6):1304-1309.

[26]Leifert WR,Jahangiri A,Saint DA,et al.Effects of dietary n-3 fatty acids on contractility,Na+and K+currents in a rat cardiomyocyte model of arrhythmia.J Nutr Biochem,2000,11(7-8):382-392.

[27]Andersson A,Sj觟din A,Olsson R,et al.Effects of physical exercise on phospholipid fatty acid composition in skeletal muscle.Am J Physiol,1998,274(3):E432-E438.

[28]Helge JW,Wu BJ,W iller M,et al.Training affects muscle phospholipid fatty acid composition in humans.J Appl Physiol,2001,90(2):670-677.

[29]Ginsberg BH,Brown TJ,Simon I,et al.Effect of the membrane lipid environment on the properties of insulin receptors.Diabetes,1981,30(9):73-780.

[30]Leaf A,A lbert CM,Josephson M,et al.Fatty acid antiarrhymnia trial investigators:Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake.Circulation,2005,112(18):2762-2768.

[31]Leaf A,Kang JX,Xiao YF.Omega-3 fatty acids and ventricular arrhythmias.World Rev Nutr Diet,2005,94:129-138.

[32]Peoples GE,McLennan PL,Howe PR,et al.Fish oil reduces heart rate and oxygen consumption during exercise.J Cardiovasc Pharmacol,2008,52(6):540-7.

[33]Walser B,Giordano RM,Stebbins CL.Supplementation w ithω-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction.Eur J Appl Physiol,2006,97(3):347-354.

[34]Poprzecki S,Zajac A,Chalimoniuk M,et al.Modification of blood antioxidant status and lipid profile in response to high-intensity endurance exercise after low doses of omega-3 polyunsaturated fatty acids supplementation in healthy volunteers.Int J Food Sci Nutr,2009,60(S2):67-79.

[35]Clavel S,Farout L,Briand M,et al.Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart.Eur J Appl Physiol,2002,87(3):193-201.

[36]Romijn JA,Coyle EF,Sidossis LS,et al.Regulation of endogenous fat and carbohydrate metabolismin relation to exercise intensity and duration.Am J Physiol,1993,265(3 Pt1):380-391.

[37]Helenius IJ,Tikkanen HO,Haahtela T.Occurrence of exercise-induced bronchospasm in elite runners:dependence on atopy and exposure to cold air and pollen.Br J Sports Med,1998,32(2):125-129.

[38]Schoene RB,Giboney K,Schimmel C,et al.Spirometry and airway reactivity in elite track and field athletes.Clin J Sport Med,1997,7(4)257-261.

[39]Helenius IJ,Rytila P,Metso T,et al.Respiratory symptoms,bronchial responsiveness,and cellular characteristics of induced sputumin elite sw immers.A llergy,1998,53(4):346-352.

[40]Davis MS,Freed AN.Repetitive hyperpnoea causes peripheral airway obstruction and eosinophilia.Eur Respir J,1999,14(1):57-62.

[41]Sue-Chu M,Karjalainen EM,Laitinen A,et al.Placebo-controlled study of inhaled budesonide on indices of airway inflammation in bronchoalveolar lavage fluid and bronchial biopsies in cross-country skiers.Respiration,2000,67(4):417-425.

[42]Karjalainen EM,Laitinen A,Sue-Chu M,et al.Evidence of airwayinflammation and remodeling in ski athletes w ith and w ithout bronchial hyperresponsiveness to methacholine.Am J Respir Crit Care Med,2000,161(6):2086-2091.

[43]mickleborough TD,Murray RL,Ionescu AA,et al.Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes.Am J Respir Crit Care Med,2003,168(10):1181-1189.

[44]Dela F,mikines KJ,Sonne B,et al.Effect of training on interaction between insulin and exercise in human muscle.J Appl Physiol,1994,76(6):2386-2393.

[45]mikines K,Sonne B,Farrell P,et al.Effect of physical exercise on sensitivity and responsiveness to insulin in humans.Am J Physiol,1988,254(3 Pt1):E248-E259.

[46]Morgan TE,Short FA,Cobb LA.Effect of long-term exercise on skeletal muscle lipid composition.Am J Physiol,1969,216(1):82-88.

[47]Gorski J,Zendzian-Piotrowska M,de Jong YF,et al.Effect of endurance training on the phospholipid content of skeletal muscle in the rat.Eur J Appl Physiol,1999,79(5):421-425.

[48]Gudbjarnason S.Dynamics of n-3 and n-6 fatty acids in phospholipids of heart muscle.J Int Med,1989,225(S 1):117-128.

[49]Kiens B,Essen-Gustavsson B,Christensen NJ,et al.Skeletal muscle substrate utilization during submaximal exercise in man:effect of endurance training.J Physiol,1993,469:459-478.

[50]Storlien LH,Baur LA,Kriketos AD,et al.Dietary fats and insulin action.Diabetologia,1996,39(6):621-631.

[51]Ginsberg BH,Jabour J,Spector AA.Effects of alterations in membrane lipid unsaturation on the properties of the insulin receptor of Ehrlich ascites cells.Biochem Biophys Acta,1982,690(2):157-164.

[52]Hwalla N,Sibai MA,Adra N.Adolescent obesity and physical activity.World Rev Nutr Diet,2005,94:42-50.

[53]Massiera F,Saint-Marc P,Seydoux J,et al.Arachidonic acid and prostacyclin signaling promote adipose tissue development:a human health concern? J Lipid Res,2003,44(2):271-279.

[54]Clearly MP,Philips FC,Morton AA.Genotype and diet effects in lean and obese Zucker rats fed either safflower or coconut oil diets.Proc Soc Exp Biol Med,1999,2220(1):153-161.

[55] Raclot T,Groscolas R,Langin D,et al.Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues.J Lipid Res,1997,38(10):1963-1972.

[56]Abbey M,Belling GB,Noakes M,et al.Oxidation of low-density lipoproteins:intraindividual variability and the effect of dietary linoleate supplementation.Am J Clin Nutr,1993,57(3):391-398.

[57]Renaud S.Linoleic acid,platelet aggregation and myocardial infarction.Atherosclerosis,1990,80(3):255-256.

[58]Endres S,Ghorbani R,Kelley VE,et al.The effect of dietary supplementation w ith n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.N Engl J Med,1989,320(5):265-271.

[59] Renaud S,Godsey F,Dumont E,et al.Influence of long-term diet modification on platelet function and composition in Moselle farmers.Am J Clin Nutr,1986,43(1):136-150.

[60]Budowski P,Craw ford MA.Alpha-linolenic acid as a regulator of the metabolism of arachidonic acid:dietary implications of the ratio of n-6:n-3 fatty acids.Proc Nutr Soc,1985,44(2):221-229.

[61]Paschos GK,Magkos F,Panagiotakos DB,et al.Dietary supplementation w ith flaxseed oil lowers blood pressure in dyslipidaemic patients.Eur J Clin Nutr,2007,61(10):1201-1206.

[62]Ascherio A,Rimm EB,Giovannucci EL,et al.Dietary fat and risk of coronary heart disease in men:cohort follow up study in the United States.BMJ,1996,313(7049):84-90.

[63]Hu FB,Bronner L,W illett WC,et al.Fish and omega-3 fatty acid intake and risk of coronary heart disease in women.JAMA,2002,287(14):1815-1821.

[64]Iso H,Rexrode KM,Stampfer MJ,et al.Intake of fish and omega-3 fatty acids and risk of stroke in women.JAMA,2001,285(3):304-312.

[65]戴軍,蘇宜香,凌文華,等.II型糖尿病患者膳食脂肪酸構(gòu)成比推薦值研究.營(yíng)養(yǎng)學(xué)報(bào),2000,22:256-260.

[66]Bartsch H,Nair J,Owen RW.Dietary polyunsaturated fatty acids and cancers of the breast and colorectum:emerging evidence for their role as risk modifiers.Carcinogenesis,1999,20(12):2209-2218.

[67]Puri BK.High-resolution magnetic resonance imaging sincinterpolation-based subvoxel registration and semi-automated quantitative lateral ventricular morphology employing threshold computation and binary image creation in the study of fatty acid interventions in schizophrenia,depression,chronic fatigue syndrome and Huntington’s disease.Int Rev Psychiatry,2006,18(2):149-154.

[68]Marangell LB,Suppes T,Ketter TA,et al.Omega-3 fatty acids in bipolar disorder:clinical and research considerations.Prostaglandins Leukot Essent Fatty Acids,2006,75(4-5):315-321.

[69]Freeman MP,Hibbeln JR,W isner KL,et al.Randomized dose-ranging pilot trial ofω-3 fatty acids for postpartum depression.Acta Psychiatr Scand,2006,113(1):31-35.

[70]Morris MC,Evans DA,Bienias JL,et al.Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease.Arch Neurol,2003,60(7):940-946.

[71]Calon F,Lim GP,Yang F,et al.Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model.Neuron,2004,43(5):633-645.

[72]Tully AM,Roche HM,Doyle R,et al.Low serum cholestery l ester-docosahexaenoic acid levels in A lzheimer’s disease:a case-control study.Br J Nutr,2003,89(4):483-489.

[73]Stoll AL,Damico KE,Daly BP,et al.Methodological considerations in clinical studies of Omega-3 fatty acids in major depression and bipolar disorder.World Rev Nutr Diet,2001,88:58-67.

[74]Lim WS,Gammack JK,Van Niekerk J,et al.Omega-3 fatty acid for the prevention of dementia.Cochrane Database Syst Rev,2006,25(1):34-42.

[75]Lee S,Gura KM,Kim S,et al.Current clinical applications ofω-6 and ω-3 fatty acids.Nutr Clin Pract,2006,21(4):323-341.

[76] Peet M.Essential fatty acids:theoretical aspects and treatment implications for schizophrenia and depression.Adv Psych Treat,2002,8(6):223-229.

[77]Karlsson J.Exercise,muscle metabolism and the antioxidant defense.World Rev Nutr Diet,1997,82:81-100.

[78]Goransson U,Karlson J,Ronneberg R,et al.The‘a(chǎn)re’sport nutratherapy Program:The rationale for food supplements in sports medicine.World Rev Nutr Diet,1997,82:101-121.

[79]Lands WEM.‘Diets could prevent many diseases’.Lipids,2003,38(4):317-321.

[80]Tartibian B,Maleki BH,Abbasi A.The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men.Clin J Sport Med,2009,19(2):115-119.

[81]Frasure-Smith N,Lesperance F.Reflections on depression as a cardiac risk factor.Psychosom Med,2005,67(S1):19-25.

猜你喜歡
磷脂脂肪酸飲食
春節(jié)飲食有“三要”
中老年保健(2021年2期)2021-08-22 07:30:48
揭開反式脂肪酸的真面目
飲食如何搭配才健康
大黃酸磷脂復(fù)合物及其固體分散體的制備和體內(nèi)藥動(dòng)學(xué)研究
中成藥(2019年12期)2020-01-04 02:02:24
揭開反式脂肪酸的真面目
柚皮素磷脂復(fù)合物的制備和表征
中成藥(2018年7期)2018-08-04 06:04:18
何為清淡飲食
特別健康(2018年4期)2018-07-03 00:38:14
辣椒堿磷脂復(fù)合凝膠的制備及其藥動(dòng)學(xué)行為
中成藥(2017年12期)2018-01-19 02:06:31
白楊素磷脂復(fù)合物的制備及其藥動(dòng)學(xué)行為
中成藥(2017年5期)2017-06-13 13:01:12
健康飲食
新平| 惠东县| 色达县| 荆门市| 龙井市| 河北省| 武宣县| 庆云县| 洛南县| 商城县| 策勒县| 巢湖市| 镇平县| 汶川县| 同仁县| 山东| 榆社县| 清水河县| 光山县| 遂溪县| 湘乡市| 昌邑市| 嘉祥县| 芮城县| 拜城县| 射洪县| 商城县| 怀仁县| 卓尼县| 怀远县| 伊通| 阳春市| 扎鲁特旗| 宜州市| 辽源市| 河源市| 长白| 金坛市| 穆棱市| 常山县| 杭锦后旗|