摘要:非酒精性脂肪性肝?。∟AFLD)是以肝脂肪變性為主要特征的一系列疾病譜的概括,是一種代謝相關(guān)性疾病,也是肝纖維化、肝硬化和肝癌的重要風險因子。內(nèi)質(zhì)網(wǎng)是調(diào)節(jié)脂代謝的核心場所,而非折疊蛋白反應(yīng)是內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)的重要過程。基于內(nèi)質(zhì)網(wǎng)在代謝相關(guān)疾病中的重要應(yīng)激作用,本文將從ERS角度,探尋其與NAFLD之間的影響機制,對NAFLD病理發(fā)展過程中脂質(zhì)代謝、炎癥反應(yīng)、細胞死亡、纖維化及ERS靶向治療的相關(guān)研究進展進行綜述。
關(guān)鍵詞:非酒精性脂肪性肝??;內(nèi)質(zhì)網(wǎng)應(yīng)激;非折疊蛋白質(zhì)應(yīng)答;分子靶向治療
基金項目:國家自然科學基金青年項目(82104655);四川省自然科學基金面上項目(2024NSFSC0692)
The role of endoplasmic reticulum stress in non-alcoholic fatty liver disease and related targeted therapies
LI Xiuyan1,LEI Na2,SONG Hongfei1,ZENG Ling1,WANG Dong1,MU Jie1.(1.School of Basic Medical Sciences,Chengdu University of Traditional Chinese Medicine,Chengdu 611137,China;2.Chongqing Traditional Chinese Medicine Hospital,Chongqing 400021,China)
Corresponding author:MU Jie,1041415560@qq.com(ORCID:0000-0003-3466-238X)
Abstract:Non-alcoholic fatty liver disease(NAFLD)is a series of diseases characterized by hepatic steatosis and is also a metabolism-associated disease and an important factor for liver fibrosis,liver cirrhosis,and hepatocellular carcinoma.Endoplasmic reticulum is a core organelle for the regulation of lipid metabolism,and unfolded protein response is an important process of endoplasmic reticulum stress(ERS).Based on the important stress role of endoplasmic reticulum in metabolism-associated diseases,this article explores the influencing mechanism between ERS and NAFLD and reviews the research advances in lipid metabolism,inflammatory response,hepatocyte death,fibrosis,and ERS-targeted therapies in the pathological development of NAFLD.
Key words:Non-alcoholic Fatty Liver Disease;Endoplasmic Reticulum Stress;Unfolded Protein Response;Molecular Targeted Therapy
Research funding:Youth Fund of National Natural Science Foundation of China(82104655);General Project of National Science Foundation of Sichuan Province(2024NSFSC0692)
非酒精性脂肪性肝?。∟AFLD)是除外酒精和其他明確的肝損傷因素(例如病毒性肝炎、自身免疫性疾病等)所致的,以肝脂肪變性為主要特征的臨床病理綜合征。NAFLD是一系列疾病譜的概括,如果未進行很好的控制,可能會從肝臟單純脂肪變性發(fā)展到脂肪性肝炎,甚至肝纖維化、肝硬化或肝癌,是目前肝損傷和肝移植的重要危險因素[1]。過去20年,相較于全球23%~25%的發(fā)病率,中國NAFLD發(fā)病率略高,達到了29.6%,且與肥胖率的增長呈現(xiàn)相同趨勢。其中高達20%的患者可能會受到非酒精性脂肪性肝炎(NASH)的影響[2-3]。隨著病理過程研究的深入,NAFLD被發(fā)現(xiàn)以代謝失衡為主要特點,非酒精性這種排除性的標準不能準確地反映目前相關(guān)脂肪肝病的代謝功能障礙,故近年來有專家提出將其更名為代謝相關(guān)脂肪性肝?。╩etabolic dysfunctionassociated fatty liver disease,MAFLD)。2023年新發(fā)布的共識中更強調(diào)心血管因素在脂肪性肝病中的作用,建議更名為代謝功能障礙相關(guān)性脂肪肝(metabolic dysfunction-associated steatotic liver disease,MASLD)[4]。
1 NAFLD的發(fā)病機制
NAFLD的主要驅(qū)動因素是營養(yǎng)過剩,即多種代謝因素所致的脂質(zhì)穩(wěn)態(tài)失衡,造成肝臟脂肪積累乃至脂肪變性[1]。高熱量飲食、久坐不動及遺傳等因素所致的肝脂質(zhì)積累和胰島素抵抗(IR)是初次打擊的中心環(huán)節(jié),其機制是脂質(zhì)獲取和脂質(zhì)處理之間的失衡,導致肝臟從頭脂肪生成增加和脂肪組織功能受損,進而增加機體對外周脂質(zhì)的轉(zhuǎn)化利用,促進脂肪酸在肝臟的合成與儲存。隨后二次打擊發(fā)生,包括內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)、氧化應(yīng)激(oxidative stress,OS)、線粒體功能紊亂、血清內(nèi)毒素和炎癥因子的增加等,導致肝臟對炎癥、壞死和纖維化的易感性增加,而這些刺激因素又會反過來加劇脂質(zhì)積累和IR。二次打擊學說中簡單的線性關(guān)系已經(jīng)無法全面地解釋NASH的發(fā)病機制,故多重打擊隨之被提出,包括遺傳和多種環(huán)境因素之間的相互作用,以及不同器官組織之間相互串擾的結(jié)果[5]。內(nèi)質(zhì)網(wǎng)在蛋白質(zhì)和脂質(zhì)的合成加工方面至關(guān)重要,能通過多種途徑調(diào)節(jié)肝臟代謝,而脂代謝紊亂會激活多種應(yīng)激通路。鑒于內(nèi)質(zhì)網(wǎng)作為NAFLD一個重要的應(yīng)激位點,本文旨在從ERS角度,對NAFLD發(fā)展過程中脂質(zhì)代謝、炎癥反應(yīng)、細胞死亡、纖維化及ERS靶向治療的相關(guān)研究進展進行綜述。
2內(nèi)質(zhì)網(wǎng)的生理功能
2.1內(nèi)質(zhì)網(wǎng)是調(diào)節(jié)脂代謝的核心場所多種內(nèi)外部刺激可能會擾亂內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài),使其在蛋白質(zhì)和脂質(zhì)的合成加工方面出錯,形成未折疊蛋白或者錯誤折疊蛋白,導致大量異常代謝產(chǎn)物持續(xù)積累。這時內(nèi)質(zhì)網(wǎng)會參與一種調(diào)節(jié)蛋白質(zhì)和脂質(zhì)穩(wěn)態(tài)的過程來應(yīng)對這些刺激,以恢復內(nèi)質(zhì)網(wǎng)代謝平衡,即未折疊蛋白反應(yīng)(unfolded protein response,UPR)[6]。UPR通過促進內(nèi)質(zhì)網(wǎng)相關(guān)降解(ER-associated degradation,ERAD)和自噬來降低蛋白分泌載量,促進內(nèi)質(zhì)網(wǎng)蛋白折疊并提高其清除能力[7],以減輕內(nèi)質(zhì)網(wǎng)負荷。UPR通過監(jiān)測內(nèi)質(zhì)網(wǎng)腔中的錯誤折疊蛋白,減少蛋白質(zhì)翻譯、增加蛋白質(zhì)折疊,激活下游三條信號通路,生成各種轉(zhuǎn)錄因子,調(diào)控泛素-蛋白酶體系統(tǒng)相關(guān)基因和自噬相關(guān)基因的表達以緩解ERS[8]。
2.2 UPR是ERS的重要主題UPR激活三種經(jīng)典的下游信號通路,分別由蛋白激酶樣內(nèi)質(zhì)網(wǎng)激酶(PKR-likeER kinase,PERK)、肌醇需求酶1α(inositol-requiring enzyme 1,IRE1α)、活化轉(zhuǎn)錄因子6(activating transcription factor,ATF6)介導。在無應(yīng)激的條件下,IRE1α、PERK和ATF6在與葡萄糖調(diào)節(jié)蛋白78/結(jié)合免疫球蛋白(glucose-regulated protein 78,GRP78/binding immunoglobulin protein,BiP)結(jié)合后保持沉默。一旦錯誤折疊蛋白質(zhì)的積累超過閾值,內(nèi)質(zhì)網(wǎng)負荷增加觸發(fā)ERS,GRP78/BiP與三種跨膜蛋白分離,導致三條信號通路被激活以調(diào)節(jié)下游信號,減少蛋白質(zhì)及脂質(zhì)的積累,減輕內(nèi)質(zhì)網(wǎng)負荷[8]。
IRE1α具有激酶和核糖核酸內(nèi)切酶(kinase and endoribonuclease,RNase)活性,可以通過寡聚化和自磷酸化激活RNase并剪切X-box結(jié)合蛋白1(X-box-binding protein 1,XBP1)mRNA,而XBP1蛋白參與UPR和ERAD基因啟動子的結(jié)合,恢復蛋白質(zhì)穩(wěn)態(tài)以保護細胞功能[7]。PERK具有應(yīng)激感應(yīng)和胞質(zhì)激酶活性,通過磷酸化的真核細胞翻譯起始因子2α(eukaryotic translation-initiation factor 2α,eIF2α)減弱整體mRNA翻譯,同時導致ATF4的激活及C/EBP同源蛋白(C/EBP homologous protein,CHOP)的過度表達,ATF4反式激活參與調(diào)節(jié)蛋白質(zhì)折疊、自噬、氧化還原穩(wěn)態(tài)、氨基酸代謝和細胞凋亡相關(guān)的UPR靶基因,PERK磷酸化對核因子E2相關(guān)因子2(nuclear factor-E2-related factor 2,NRF2)的調(diào)控也參與氧化還原穩(wěn)態(tài)的維持[7,9]。ATF6具有胞質(zhì)bZip轉(zhuǎn)錄因子結(jié)構(gòu)域,被激活后轉(zhuǎn)移至高爾基體,進而被特異性識別位點的蛋白酶所切割并活化,繼而激活XBP1的轉(zhuǎn)錄,參與調(diào)節(jié)與蛋白質(zhì)折疊和ERAD相關(guān)基因的表達[10](圖1)。
3 ERS在NAFLD中的關(guān)鍵作用
3.1脂質(zhì)代謝脂肪變性是NAFLD的最初階段,以甘油三酯(TG)的積累為特征,主要通過四種途徑調(diào)節(jié):循環(huán)脂質(zhì)的攝取、新脂質(zhì)的生成、脂肪酸氧化及極低密度脂蛋白的轉(zhuǎn)運[7]。肝細胞中單純的TG積累并不會引起脂毒性反應(yīng),因為其惰性性質(zhì)可以保護機體免于向NASH發(fā)展,而過量的脂代謝產(chǎn)物如游離脂肪酸的酯化或β氧化才對肝細胞有損傷作用[11]。脂肪變性的關(guān)鍵在于內(nèi)質(zhì)網(wǎng)蛋白折疊負荷的增加,誘導ERS,激活UPR以調(diào)節(jié)肝臟脂質(zhì)穩(wěn)態(tài)。
研究[12]表明IRE1α-XBP1分支通過調(diào)節(jié)下游碳水化合物反應(yīng)元件結(jié)合蛋白(carbohydrate response element-binding protein,ChREBP)、過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptorγ,PPARγ),以調(diào)控載脂蛋白的組裝分泌,而XBP1敲除則導致脂肪生成基因表達被抑制,肝臟脂質(zhì)合成減少。一項研究[13]發(fā)現(xiàn)XBP1-FOXA3-PER1轉(zhuǎn)錄軸在高脂飲食(HFD)誘導ERS中的作用,可以促進成脂基因甾醇調(diào)節(jié)元件結(jié)合蛋白1c(sterol regulatory element-binding protein-1c,SREBP-1c)等的表達,而FOXA3缺乏則抑制其表達。在ATF4敲除的小鼠中發(fā)現(xiàn),PPARγ表達的降低進而減少SREBP-1c、乙酰輔酶A羧化酶和脂肪酸合酶的表達,從而改善HFD誘導的肝脂肪積累[14]。PERK與線粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜(mitochondria-associated ER membranes,MAM)的功能和結(jié)構(gòu)密切相關(guān)。HFD小鼠PERK磷酸化增加,內(nèi)質(zhì)網(wǎng)線粒體關(guān)聯(lián)被破壞,導致線粒體功能障礙,脂聯(lián)素受體激動劑可抑制PERK磷酸化,恢復內(nèi)質(zhì)網(wǎng)線粒體關(guān)聯(lián)進而緩解NAFLD發(fā)展[15]。在飲食誘導的IR小鼠中,ATF6的過表達促進肝脂肪酸氧化,并防止肝脂肪變性,是通過控制PPARα和肝線粒體脂肪酸氧化活性實現(xiàn)的[16]。
因此發(fā)生ERS時,UPR下游的三條信號通路是脂質(zhì)代謝的關(guān)鍵調(diào)控環(huán)節(jié),可以從抑制成脂基因、脂質(zhì)合成酶的表達,增加脂肪酸氧化,促進脂質(zhì)的轉(zhuǎn)運消耗,抑制內(nèi)質(zhì)網(wǎng)線粒體關(guān)聯(lián)功能等多方面減少有害脂質(zhì)積累,緩解ERS。
3.2炎癥反應(yīng)盡管UPR在初期階段是通過調(diào)節(jié)蛋白質(zhì)和脂質(zhì)代謝適應(yīng)性地保護了應(yīng)激的內(nèi)質(zhì)網(wǎng),但這種刺激的持續(xù)存在,反過來會加重內(nèi)質(zhì)網(wǎng)負荷,惡化脂肪變性,甚至導致后續(xù)肝臟炎癥等一系列后果。正常情況下,急性炎癥可以作為一種保護性反應(yīng)來應(yīng)對刺激,然而肝臟中持續(xù)過量的脂質(zhì)會誘導炎癥因子的大量釋放,例如腫瘤壞死因子-α(TNF-α)、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)、白細胞介素6(IL-6)、核轉(zhuǎn)錄因子κB(NF-κB)等,導致肝臟慢性炎癥的持續(xù)存在。
選擇性誘導GRP78/BiP降解會激活UPR,進而通過ATF6通路磷酸化AKT,導致其下游因子NF-κB的激活[17]。有研究[18]發(fā)現(xiàn),脂多糖誘導的IL-6、單核細胞趨化蛋白1、GRP78和CHOP的過度產(chǎn)生,會被ERS抑制劑所降低,該過程中IRE1α/NF-κB途徑被顯著激活,通過產(chǎn)生炎性細胞因子來促進脂多糖誘導的損傷進展。研究[19]發(fā)現(xiàn),通過HFD喂養(yǎng)4、8和12周以誘導進行性NASH的大鼠模型,出現(xiàn)持續(xù)的脂質(zhì)積累,導致內(nèi)質(zhì)網(wǎng)結(jié)構(gòu)破壞及肝細胞脂質(zhì)堆積,是通過IRE1α/TRAF2復合物介導ERS和炎癥持續(xù)惡化而形成的,其下游IKK/IκB/NF-κB信號通路和ASK1/JNK1信號通路表達明顯增加。
ERS會激活NOD樣受體家族3(NOD-like receptor family,NLRP3)炎性小體,從而導致嚴重的肝臟炎癥乃至肝細胞焦亡。CHOP是連接ERS誘導肝細胞炎性體激活和細胞死亡的關(guān)鍵信號節(jié)點。用脂多糖或衣霉素處理肥胖小鼠的肝臟,激活I(lǐng)RE1α和PERK通路導致CHOP的過度表達,這反過來激活NLRP3炎性小體,啟動肝細胞焦亡和細胞凋亡因子表達,而這一系列過程可以被ERS抑制劑牛黃脫氧膽酸(tauroursodeoxycholicacid,TUDCA)阻斷,導致CHOP下調(diào),半胱天冬酶-1(Caspase-1)、Caspase-11、Caspase-3活性降低,IL-1β分泌減少,并抑制肝細胞死亡[20]。高脂西方飲食增加活化T淋巴細胞核因子c1的表達并明確其核定位,然后激活PERK-CHOP驅(qū)動肝臟炎癥與肝細胞損傷,活化NLRP3炎性小體,而使用TUDCA可以阻斷ERS,減少NLRP3炎性小體的活化,減緩NASH炎癥狀態(tài)的進一步發(fā)展[21]。
3.3肝細胞死亡如果UPR等適應(yīng)性反應(yīng)不足以緩解ERS帶來的刺激性反應(yīng),則轉(zhuǎn)為“終末UPR”階段,驅(qū)動細胞死亡機制。肝細胞死亡與炎癥之間存在相互正反饋調(diào)節(jié),并通過持續(xù)的內(nèi)質(zhì)網(wǎng)鈣釋放、凋亡調(diào)節(jié)相關(guān)因子表達上調(diào)、ROS產(chǎn)生等機制誘導細胞死亡。NAFLD病程進展中多種細胞死亡模式(如細胞凋亡、壞死性凋亡、細胞焦亡等)相互影響,無法確定其主要死亡模式[22]。
自噬是一種由溶酶體介導的細胞分解代謝過程,可以幫助細胞適應(yīng)環(huán)境并促進生存,但超過一定閾值會導致細胞死亡,而細胞死亡的程度會隨著自噬的阻斷而增加[23]。ERS相關(guān)信號傳導與自噬通量的阻斷是平行的,自噬可以通過抑制Caspase的活化來阻斷凋亡,凋亡相關(guān)蛋白還可以降解自噬相關(guān)蛋白(如mTOR、Beclin-1、Atg蛋白)而阻斷自噬[24]。硬脂酰輔酶A去飽和酶1的過表達導致AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)活性降低和脂肪自噬減少,肝細胞中的脂質(zhì)沉積增加,而用硬脂酰輔酶A去飽和酶1抑制劑處理的小鼠則恰好相反,可以表現(xiàn)出肝脂滴積累和肝脂肪變性的顯著降低,以及AMPK活性增強和脂肪吞噬的增加[25]。
細胞凋亡是Caspase依賴性細胞主動死亡的程序性過程,由UPR過度激活自噬或溶酶體功能異常所導致。凋亡細胞啟動分裂形成凋亡小體,繼而被巨噬細胞降解,這種非裂解途徑對周圍細胞的影響最?。?6]。ERS引起的肝細胞凋亡主要與JNK和CHOP途徑相關(guān)[27]。CHOP作為一種促凋亡轉(zhuǎn)錄因子,可以參與由ERS調(diào)節(jié)的細胞凋亡,誘導促凋亡相關(guān)Bcl-2源拮抗殺傷蛋白(Bcl-2 homologous antagonist killer,Bak)和Bcl-2關(guān)聯(lián)X蛋白(Bcl-2 associated X protein,Bax)的表達[28]。實驗[29]發(fā)現(xiàn)與HFD組相比,運動治療組大鼠的血脂水平有所改善,Caspase-3和JNK水平也顯著降低,而中等強度運動組IRE1α、ATF4、eIF2α表達減少,抑制肝細胞凋亡的作用更明顯,這可能與ERS信號通路中IRE1α/JNK和eIF2α/CHOP的調(diào)節(jié)有關(guān)。ERS相關(guān)JNK激活,除了通過調(diào)控Bcl-2家族外,還能調(diào)控p53上調(diào)細胞凋亡調(diào)節(jié)劑以促進Bax的激活,導致促凋亡介質(zhì)的活化[30]。內(nèi)質(zhì)網(wǎng)中Ca2+含量是細胞對凋亡應(yīng)激敏感性的關(guān)鍵因素,脂質(zhì)持續(xù)性積累使Ca2+從內(nèi)質(zhì)網(wǎng)向線粒體流出增加,導致線粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜等結(jié)構(gòu)域表達水平的變化,使線粒體腫脹及外膜通透,激活組織蛋白酶,進一步增加細胞對死亡敏感性,影響細胞色素C釋放和與細胞凋亡相關(guān)下游通路的激活[7,31]。
鐵死亡作為一種新發(fā)現(xiàn)的細胞死亡方式,與細胞凋亡及自噬不同,是鐵依賴性的,其特征是鐵誘導的脂質(zhì)過氧化產(chǎn)物積累,使細胞內(nèi)谷胱甘肽耗竭和谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4)活性降低,并最終導致細胞死亡[32]。砷可以介導ERS誘導鐵死亡,并引發(fā)NASH,是通過上調(diào)?;o酶A合成酶長鏈家族成員4和5-羥基二十碳四烯酸實現(xiàn)的,進而導致GPX4的下調(diào),這一過程依賴于絲裂蛋白2和IRE1α的協(xié)同作用[33]。研究[34]發(fā)現(xiàn)ERS信號可能是鐵死亡的上游信號,對于油酸和脂多糖處理的HepG2細胞,ERS抑制劑GSK處理后ERS相關(guān)信號(ATF6、CHOP、ACSL4)和鐵蛋白重鏈1(ferritin heavy chain 1,F(xiàn)TH1)都明顯下調(diào)。相反,用鐵死亡抑制劑FER-1處理后,并沒有下調(diào)ERS相關(guān)信號表達。越來越多的研究發(fā)現(xiàn)ERS相關(guān)信號可能參與調(diào)節(jié)細胞鐵代謝。
3.4纖維化慢性肝病以持續(xù)性的炎癥及肝損傷為特點,導致細胞外基質(zhì)的異常沉積,肝小葉永久性取代肝實質(zhì),通過使肝星狀細胞(HSC)與其他細胞的活化,以及細胞之間的相互作用而導致肌成纖維細胞增多和纖維組織增生[35],病理表現(xiàn)為肝組織的再生性結(jié)節(jié)。肝纖維化會嚴重影響肝功能,導致肝硬化、肝癌的發(fā)病率及后期病死率的升高。
研究[36]發(fā)現(xiàn)HSC纖維化反應(yīng)中的ERS與OS相關(guān)聯(lián),用H2O2處理HSC細胞誘導OS會激活ERS及NRF2介導的抗氧化反應(yīng),阻斷HSC中IRE1通路會以p38/MAPK依賴的方式顯著減少HSC活化和自噬活性,從而減少纖維化反應(yīng)。小鼠NAFLD能被去亞甲基四氫小檗堿明顯緩解,通過下調(diào)CYP2E1和ATF4的表達,減輕了OS和ERS,并且還能改善膽堿缺乏飲食誘導的NAFLD小鼠肝纖維化,抑制相關(guān)指標TGF-β1、α-SMA和COL1A1的表達[37]。研究經(jīng)過患者疾病特異性表達定量性狀位點篩選,確定了在基因型基礎(chǔ)上對NAFLD進展起特異作用的丙氨酸-乙醛酸氨基轉(zhuǎn)移酶2(alanine-glyoxylate aminotransferase 2,AGXT2),而動物實驗敲除AGXT2會通過增加ERS誘導棕櫚酸酯過載的肝細胞死亡,并加劇NAFLD小鼠的肝纖維化,過表達AGXT2則會減輕肝纖維化和脂肪變性[38]。
4 NAFLD的靶向治療
NAFLD的治療方法主要包括生活飲食干預(yù)、胰島素增敏劑、降脂藥、抗氧化藥、減肥藥及手術(shù)治療等,其臨床效果都不盡確切且有多種副作用,隨著NAFLD發(fā)病率的逐年升高,安全有效的NAFLD治療藥物需求增加。由于ERS通過UPR對NAFLD的發(fā)病機制產(chǎn)生多方面的影響,靶向ERS可能會為NAFLD的治療提供新視角。
由于肥胖、2型糖尿病與NAFLD的代謝特點,越來越多的研究發(fā)現(xiàn)治療糖尿病的藥物也會對NAFLD產(chǎn)生積極的治療影響。研究發(fā)現(xiàn)恩格列凈——一種鈉-葡萄糖共轉(zhuǎn)運蛋白2抑制劑,能顯著減少ERS相關(guān)基因(GRP78、IRE1α、XBP1、CHOP、ATF4)及脂肪生成基因(脂肪酸合成酶、SREBP1、PPAR)等表達,通過增強自噬減少細胞凋亡,緩解NAFLD的病程進展[39-40]。胰高血糖素樣肽-1類似物——利拉魯肽,能增加胰島素敏感性,降低ERS相關(guān)mRNA及蛋白表達(GRP78、IRE1α、PERK和ATF6),透射電鏡下觀察到脂滴的積累及粗面內(nèi)質(zhì)網(wǎng)的擴張減弱[41]。另一項臨床研究[42]也發(fā)現(xiàn)NASH患者以利拉魯肽治療26周后檢查肝脂肪含量及血清肝酶顯著降低,肝纖維化程度無進展。
4-苯基丁酸與TUDCA,作為UPR抑制劑,能保護肝臟免受ERS損傷,減輕UPR中IRE1α及PERK兩種途徑介導的炎癥、細胞凋亡與線粒體功能障礙[43-44]。塞隆塞替布,一種凋亡信號調(diào)節(jié)激酶1的選擇性抑制劑,可以促進肝細胞凋亡、炎癥和纖維化,是連接IRE1α與p38及JNK下游磷酸化的信號因子。一項多中心Ⅱ期試驗[45]評估了塞隆塞替布24周的治療效果,約有37%的NASH和中重度肝纖維化患者的肝纖維化程度減輕,其肝硬度、膠原含量、肝小葉炎癥緩解,細胞凋亡和壞死生物標志物改善。
5小結(jié)與展望
目前NAFLD已經(jīng)成為全球范圍內(nèi)的高發(fā)慢性肝病,其后續(xù)的病理階段面臨著嚴峻的臨床挑戰(zhàn),雖然已經(jīng)有廣泛的研究基礎(chǔ),但因其發(fā)病機制錯綜復雜,安全有效的治療方法仍需探索。內(nèi)質(zhì)網(wǎng)不僅是平衡代謝、應(yīng)對刺激的重要細胞器,多項研究也發(fā)現(xiàn)ERS及其下游通路在NAFLD發(fā)生發(fā)展過程中的重要作用,不僅是前期肝脂肪變性、IR以及炎癥反應(yīng)恢復的關(guān)鍵,更是終末階段驅(qū)動肝細胞死亡及肝纖維化的重要靶點。因此,從恢復內(nèi)質(zhì)網(wǎng)負荷及UPR功能著手治療NAFLD依然具有重要的意義,可以為臨床治療提供更佳的思路,需要更進一步地研究。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:李岫滟負責查閱文獻,撰寫論文;曾玲負
責歸納文獻,分析資料;雷娜、宋虹霏負責擬定思路,修改論文;王東、穆杰負責指導撰寫并最后定稿。
參考文獻:
[1]POWELL EE,WONG VWS,RINELLA M.Non-alcoholic fatty liver dis?ease[J].Lancet,2021,397(10290):2212-2224.DOI:10.1016/S0140-6736(20)32511-3.
[2]LAZARUS JV,MARK HE,ANSTEE QM,et al.Advancing the global public health agenda for NAFLD:A consensus statement[J].Nat Rev Gastroenterol Hepatol,2022,19(1):60-78.DOI:10.1038/s41575-021-00523-4.
[3]ZHOU JH,ZHOU F,WANG WX,et al.Epidemiological features of NAFLD from 1999 to 2018 in China[J].Hepatology,2020,71(5):1851-1864.DOI:10.1002/hep.31150.
[4]YANG RX,F(xiàn)AN JG.A new understanding of nonalcoholic fatty liver disease and its rename[J].J Clin Hepatol,2023,39(8):1775-1779.DOI:10.3969/j.issn.1001-5256.2023.08.002.
楊蕊旭,范建高.非酒精性脂肪性肝病新認識與再更名[J].臨床肝膽病雜志,2023,39(8):1775-1779.DOI:10.3969/j.issn.1001-5256.2023.08.002.
[5]FANG YL,CHEN H,WANG CL,et al.Pathogenesis of non-alcoholic fatty liver disease in children and adolescence:From“two hit theory”to“multiple hit model”[J].World J Gastroenterol,2018,24(27):2974-2983.DOI:10.3748/wjg.v24.i27.2974.
[6]FLESSA CM,KYROU I,NASIRI-ANSARI N,et al.Endoplasmic reticu?lum stress and autophagy in the pathogenesis of non-alcoholic fatty liver disease(NAFLD):Current evidence and perspectives[J].Curr Obes Rep,2021,10(2):134-161.DOI:10.1007/s13679-021-00431-3.
[7]LEBEAUPIN C,VALLéE D,HAZARI Y,et al.Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease[J].J Hepatol,2018,69(4):927-947.DOI:10.1016/j.jhep.2018.06.008.
[8]XIA SW,WANG ZM,SUN SM,et al.Endoplasmic reticulum stress and protein degradation in chronic liver disease[J].Pharmacol Res,2020,161:105218.DOI:10.1016/j.phrs.2020.105218.
[9]CULLINAN SB,ZHANG D,HANNINK M,et al.Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival[J].Mol Cell Biol,2003,23(20):7198-7209.DOI:10.1128/MCB.23.20.7198-7209.2003.
[10]SHEN JS,CHEN X,HENDERSHOT L,et al.ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmask?ing of Golgi localization signals[J].Dev Cell,2002,3(1):99-111.DOI:10.1016/s1534-5807(02)00203-4.
[11]MARRA F,SVEGLIATI-BARONI G.Lipotoxicity and the gut-liver axis in NASH pathogenesis[J].J Hepatol,2018,68(2):280-295.DOI:10.1016/j.jhep.2017.11.014.
[12]ZHANG KZ,WANG SY,MALHOTRA J,et al.The unfolded protein re?sponse transducer IRE1αprevents ER stress-induced hepatic ste?atosis[J].EMBO J,2011,30(7):1357-1375.DOI:10.1038/emboj.2011.52.
[13]LIU CZ,ZHOU B,MENG MY,et al.FOXA3 induction under endo?plasmic reticulum stress contributes to non-alcoholic fatty liver dis?ease[J].J Hepatol,2021,75(1):150-162.DOI:10.1016/j.jhep.2021.01.042.
[14]XIAO GZ,ZHANG T,YU SB,et al.ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice[J].J Biol Chem,2013,288(35):25350-25361.DOI:10.1074/jbc.M113.470526.
[15]MAO H,CHEN W,CHEN LX,et al.Potential role of mitochondria-as?sociated endoplasmic reticulum membrane proteins in diseases[J].Biochem Pharmacol,2022,199:115011.DOI:10.1016/j.bcp.2022.115011.
[16]CHEN XQ,ZHANG FF,GONG Q,et al.Hepatic ATF6 increases fatty acid oxidation to attenuate hepatic steatosis in mice through peroxi?some proliferator-activated receptorΑ[J].Diabetes,2016,65(7):1904-1915.DOI:10.2337/db15-1637.
[17]YAMAZAKI H,HIRAMATSU N,HAYAKAWA K,et al.Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response[J].J Immunol,2009,183(2):1480-1487.DOI:10.4049/jimmunol.0900017.
[18]CHEN J,ZHANG MH,ZHU MM,et al.Paeoniflorin prevents endoplas?mic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1α/NF-κB signaling pathway[J].Food Funct,2018,9(4):2386-2397.DOI:10.1039/c7fo01406f.
[19]LEI N,SONG HF,ZENG L,et al.Persistent lipid accumulation leads to persistent exacerbation of endoplasmic reticulum stress and in?flammation in progressive NASH via the IRE1α/TRAF2 complex[J].Molecules,2023,28(7):3185.DOI:10.3390/molecules28073185.
[20]LEBEAUPIN C,PROICS E,de BIEVILLE CH,et al.ER stress induces NLRP3 inflammasome activation and hepatocyte death[J].Cell Death Dis,2015,6(9):e1879.DOI:10.1038/cddis.2015.248.
[21]LATIF MU,SCHMIDT GE,MERCAN S,et al.NFATc1 signaling drives chronic ER stress responses to promote NAFLD progression[J].Gut,2022,71(12):2561-2573.DOI:10.1136/gutjnl-2021-325013.
[22]GENG YN,F(xiàn)ABER KN,de MEIJER VE,et al.How does hepatic lipid ac?cumulation lead to lipotoxicity in non-alcoholic fatty liver disease?[J].Hepatol Int,2021,15(1):21-35.DOI:10.1007/s12072-020-10121-2.
[23]SENFT D,RONAI ZA.UPR,autophagy,and mitochondria crosstalkunderlies the ER stress response[J].Trends Biochem Sci,2015,40(3):141-148.DOI:10.1016/j.tibs.2015.01.002.
[24]GONZáLEZ-RODRíGUEZ A,MAYORAL R,AGRA N,et al.Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD[J].Cell Death Dis,2014,5(4):e1179.DOI:10.1038/cddis.2014.162.
[25]ZHOU YP,ZHONG L,YU SJ,et al.Inhibition of stearoyl-coenzyme A desaturase 1 ameliorates hepatic steatosis by inducing AMPK-mediated lipophagy[J].Aging,2020,12(8):7350-7362.DOI:10.18632/aging.103082.
[26]BEIER JI,BANALES JM.Pyroptosis:An inflammatory link between NAFLD and NASH with potential therapeutic implications[J].J Hepa?tol,2018,68(4):643-645.DOI:10.1016/j.jhep.2018.01.017.
[27]JIA Q,WANG J,LI W.Relationship between endoplasmic reticulum stress signaling pathway PERK and atherosclerotic plaque stability[J].Clin Misdiagnosis Mistherapy,2023,36(12):56-61.DOI:10.3969/j.issn.1002-3429.2023.12.012.
賈乾,王潔,李雯.內(nèi)質(zhì)網(wǎng)應(yīng)激信號通路PERK與動脈粥樣硬化斑塊穩(wěn)定性的關(guān)系[J].臨床誤診誤治,2023,36(12):56-61.DOI:10.3969/j.issn.1002-3429.2023.12.012.
[28]DEMIREL-YALCINER T,SOZEN E,OZALTIN E,et al.Alpha-Tocopherol supplementation reduces inflammation and apoptosis in high cho?lesterol mediated nonalcoholic steatohepatitis[J].Biofactors,2021,47(3):403-413.DOI:10.1002/biof.1700.
[29]RUAN L,LI FH,LI SB,et al.Effect of different exercise intensities on hepatocyte apoptosis in HFD-induced NAFLD in rats:The possible role of endoplasmic reticulum stress through the regulation of the IRE1/JNK and eIF2α/CHOP signal pathways[J].Oxid Med Cell Lon?gev,2021,2021:6378568.DOI:10.1155/2021/6378568.
[30]KANDA T,MATSUOKA S,YAMAZAKI M,et al.Apoptosis and non-alcoholic fatty liver diseases[J].World J Gastroenterol,2018,24(25):2661-2672.DOI:10.3748/wjg.v24.i25.2661.
[31]MARCHI S,PATERGNANI S,MISSIROLI S,et al.Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death[J].CellCalcium,2018,69:62-72.DOI:10.1016/j.ceca.2017.05.003.
[32]YE L,LI XQ,WANG JQ.Association between endoplasmic reticu?lum stress and ferroptosis in liver diseases[J].J Clin Hepatol,2023,39(4):980-985.DOI:10.3969/j.issn.1001-5256.2023.04.036.
葉露,李秀芹,王建青.肝臟疾病中內(nèi)質(zhì)網(wǎng)應(yīng)激與鐵死亡的關(guān)系[J].臨床肝膽病雜志,2023,39(4):980-985.DOI:10.3969/j.issn.1001-5256.2023.04.036.
[33]WEI S,QIU TM,WANG NN,et al.Ferroptosis mediated by the inter?action between Mfn2 and IREαpromotes arsenic-induced nonalco?holic steatohepatitis[J].Environ Res,2020,188:109824.DOI:10.1016/j.envres.2020.109824.
[34]JIANG Z,SUN H,MIAO JE,et al.The natural flavone acacetin pro?tects against high-fat diet-induced lipid accumulation in the liver via the endoplasmic reticulum stress/ferroptosis pathway[J].Biochem Biophys Res Commun,2023,640:183-191.DOI:10.1016/j.bbrc.2022.12.014.
[35]KISSELEVA T,BRENNER D.Molecular and cellular mechanisms of liver fibrosis and its regression[J].Nat Rev Gastroenterol Hepatol,2021,18(3):151-166.DOI:10.1038/s41575-020-00372-7.
[36]HERNáNDEZ-GEA V,HILSCHER M,ROZENFELD R,et al.Endo?plasmic reticulum stress induces fibrogenic activity in hepatic stel?late cells through autophagy[J].J Hepatol,2013,59(1):98-104.DOI:10.1016/j.jhep.2013.02.016.
[37]ZHANG YQ,WEN J,LIU DQ,et al.Demethylenetetrahydroberberine alleviates nonalcoholic fatty liver disease by inhibiting the NLRP3 in?flammasome and oxidative stress in mice[J].Life Sci,2021,281:119778.DOI:10.1016/j.lfs.2021.119778.
[38]YOO T,JOO SK,KIM HJ,et al.Disease-specific eQTL screening re?veals an anti-fibrotic effect of AGXT2 in non-alcoholic fatty liver dis?ease[J].J Hepatol,2021,75(3):514-523.DOI:10.1016/j.jhep.2021.04.011.
[39]PETITO-DA-SILVA TI,SOUZA-MELLO V,BARBOSA-DA-SILVA S.Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating in?sulin resistance,lipogenesis and ER stress[J].Mol Cell Endocrinol,2019,498:110539.DOI:10.1016/j.mce.2019.110539.
[40]NASIRI-ANSARI N,NIKOLOPOULOU C,PAPOUTSI K,et al.Empa?gliflozin attenuates non-alcoholic fatty liver disease(NAFLD)in high fat diet fed ApoE(-/-)mice by activating autophagy and reduc?ing ER stress and apoptosis[J].Int J Mol Sci,2021,22(2):818.DOI:10.3390/ijms22020818.
[41]YANG J,AO N,DU J,et al.Protective effect of liraglutide against ER stress in the liver of high-fat diet-induced insulin-resistant rats[J].Endocrine,2015,49(1):106-118.DOI:10.1007/s12020-014-0480-y.
[42]MANTOVANI A,PETRACCA G,BEATRICE G,et al.Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis:An updated meta-analysisof randomized controlled trials[J].Metabolites,2021,11(2):73.DOI:10.3390/metabo11020073.
[43]BEN MOSBAH I,ALFANY-FERNáNDEZ I,MARTEL C,et al.Endo?plasmic reticulum stress inhibition protects steatotic and non-stea?totic livers in partial hepatectomy under ischemia-reperfusion[J].Cell Death Dis,2010,1(7):e52.DOI:10.1038/cddis.2010.29.
[44]OZCAN U,YILMAZ E,OZCAN L,et al.Chemical chaperones re?duce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes[J].Science,2006,313(5790):1137-1140.DOI:10.1126/science.1128294.
[45]LOOMBA R,LAWITZ E,MANTRY PS,et al.The ASK1 inhibitor selon?sertib in patients with nonalcoholic steatohepatitis:A randomized,phase 2 trial[J].Hepatology,2018,67(2):549-559.DOI:10.1002/hep.29514.
收稿日期:2024-01-26;錄用日期:2024-04-08
本文編輯:王瑩
引 證 本 文 : LI XY, LEI N, SONG HF, et al. The role of endoplasmic reticulum stress in non-alcoholic fatty liver disease and related targeted therapies[J]. J Clin Hepatol, 2024, 40(11): 2300-2305.
李岫滟, 雷娜, 宋虹霏, 等 . 內(nèi)質(zhì)網(wǎng)應(yīng)激在非酒精性脂肪性肝病中 的作用及相關(guān)靶向治療[J]. 臨床肝膽病雜志, 2024, 40(11): 2300-2305.