劉博+許巖+馬娜+廖文輝+汪勝+林啟康+梁偉健+孟金蘭
[摘要] 目的 探討硫化氫(H2S)是否通過改變葡萄糖調(diào)節(jié)蛋白78(GRP78)的表達(dá)參與其對(duì)抗6-羥基多巴胺(6-OHDA)誘導(dǎo)PC12細(xì)胞損傷的保護(hù)作用。 方法 應(yīng)用具有神經(jīng)毒性的6-OHDA損傷PC12細(xì)胞為帕金森病細(xì)胞模型,以硫氫化鈉(NaHS)作為H2S的供體;應(yīng)用CCK-8比色法檢測(cè)細(xì)胞存活率;DFCH-DA染色檢測(cè)細(xì)胞內(nèi)活性氧(ROS)的水平;Rh123染色檢測(cè)細(xì)胞線粒體膜電位(MMP);Western blot檢測(cè)GRP78的表達(dá)。 結(jié)果 200 μmol/L的6-OHDA引起PC12細(xì)胞的存活率顯著降低,ROS生成增加及MMP降低,且誘導(dǎo)了GRP78的高表達(dá)。應(yīng)用25~400 μmol/L的NaHS預(yù)處理30 min,呈濃度依賴性抑制6-OHDA引起的細(xì)胞存活率降低,其中400 μmol/L的NaHS作用最明顯,此濃度也可以顯著減少6-OHDA引起的ROS增多,提高M(jìn)MP,同時(shí)明顯抑制6-OHDA誘導(dǎo)的GRP78高表達(dá)。 結(jié)論 H2S具有抗6-OHDA氧化應(yīng)激損傷的PC12細(xì)胞保護(hù)作用,抑制內(nèi)質(zhì)網(wǎng)應(yīng)激分子GRP78的表達(dá)可能是其機(jī)制之一。
[關(guān)鍵詞] 硫化氫;帕金森??;內(nèi)質(zhì)網(wǎng)應(yīng)激;GRP78;PC12細(xì)胞
[中圖分類號(hào)] R741 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1674-4721(2014)09(b)-0004-05
Hydrogen sulfide attenuates 6-OHDA-induced injury by inhibition of the GRP78 pathway in PC12 cells
LIU Bo1 XU Yan2 MA Na3 LIAO Wen-hui1 WANG Sheng3 LIN Qi-kang1 LIANG Wei-jian1 MENG Jin-lan3▲
1.Class 1 of Pharmaceutical Preparations 2011,Guangdong Pharmaceutical University,Guangzhou 510080,China;2.Department of the Third Surgery,Cancer Center of Southern Medical University TCM-Integrated Hospital,Guangzhou 510315,China;3.Department of Physiology,School of Basic Courses Guangdong Pharmaceutical University,Guangzhou 510006,China
[Abstract] Objective To investigate whether hydrogen sulfide(H2S)involved in the protection of PC12 cells against 6-hydroxydopamine(6-OHDA)-induced injury by changing the glucose-regulated protein 78(GRP78)expression. Methods 6-OHDA was used to establish the Parkinson disease model in PC12 cells with dopaminergic neurons characteristics.Sodium hydrosulfide(NaHS)was used as a H2S donor.The viability of PC12 cells was measured by CCK-8 assay.The level of reactive oxygen species(ROS)in PC12 cells was measured by DCFH-DA staining.The mitochondrial membrane potential(MMP)was analyzed by rhodamine 123 staining.The expression of GRP78 was evaluated by Western blot. Results 200 μmol/L 6-OHDA induced a decrease in cell viability and overproduction of ROS as well as dissipation of MMP in PC12 cells.6-OHDA induced the upregulation of GRP78 expression.When PC12 cells were treated with NaHS 30 min before 6-OHDA treatment a decrease in viability of PC12 cells induced by 6-OHDA was concentration-dependently blocked by NaHS(25-400 μmol/L).Pretreatment with NaHS at 400 μmol/L obviously inhibited the dissipation of MMP and overproduction of ROS induced by 200 μmol/L 6-OHDA.Furthermore,NaHS preconditioning obviously dicreased the upregulation of GRP78 expression induced by 6-OHDA. Conclusion H2S protected PC12 cells against 6-OHDA-induced oxidative stress injury and inhibiting the expression of GRP78 may be one of the mechanism underlying cytoprotection induced by H2S preconditioning.
[Key words] Hydrogen sulfide;Parkinson disease;Endoplasmic reticulum stress;Glucose-regulated protein 78;PC12 cells
帕金森?。≒arkinson disease,PD)是老年人中患病率和致殘率較高的神經(jīng)系統(tǒng)退行性疾病之一。目前PD的病因尚不清楚,但活性氧(reactive oxygen species,ROS)產(chǎn)生過量引起的氧化應(yīng)激參與了PD的發(fā)病機(jī)制[1];研究也表明內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)介導(dǎo)的黑質(zhì)多巴胺能神經(jīng)元凋亡是PD發(fā)生的重要病理生理機(jī)制之一[2-3]。近年來,H2S在中樞神經(jīng)系統(tǒng)中的研究日益深入,生理含量的H2S不僅具有神經(jīng)調(diào)質(zhì)的作用[4],而且被視為一種重要的生理性保護(hù)成分調(diào)節(jié)多種重要的生理功能。研究已闡明H2S參與腦內(nèi)氧化應(yīng)激、神經(jīng)炎癥和細(xì)胞凋亡的調(diào)節(jié)[5],可能與PD等神經(jīng)退行性疾病的病理機(jī)制有關(guān)。已有研究表明,H2S可以通過抑制ERS發(fā)揮抗氧化應(yīng)激損傷的心肌保護(hù)作用,但在中樞神經(jīng)系統(tǒng)中H2S與ERS之間的關(guān)系目前知之甚少。H2S能否通過抑制ERS保護(hù)神經(jīng)細(xì)胞對(duì)抗氧化應(yīng)激損傷尚未明確。本研究應(yīng)用神經(jīng)毒性藥物6-羥基多巴胺(6-hydroxydopamine,6-OHDA)誘導(dǎo)PC12細(xì)胞為PD細(xì)胞模型,觀察H2S預(yù)處理對(duì)抗6-OHDA氧化應(yīng)激損傷的PC12細(xì)胞保護(hù)作用及對(duì)ERS信號(hào)通路的影響。
1 材料與方法
1.1 主要試劑
NaHS、6-OHDA、維生素C購自Sigma公司;CCK-8、DCFH-DA、Rh123購自壁云天生物公司;DMEM培養(yǎng)基、胎牛血清購自Gibico BRL公司(NY USA);GAPDH購自Boster Bio-engineering公司;GRP78抗體購自Cell Signaling公司。
1.2 細(xì)胞培養(yǎng)
PC12細(xì)胞在37℃、5% CO2條件下,培養(yǎng)于含有10%胎牛血清的DMEM培養(yǎng)基中。細(xì)胞經(jīng)0.25%胰蛋白酶消化后每2~3天傳代1次。藥物處理在細(xì)胞對(duì)數(shù)生長(zhǎng)期進(jìn)行。
1.3 實(shí)驗(yàn)分組
1.3.1 探討NaHS預(yù)處理對(duì)抗6-OHDA誘導(dǎo)的細(xì)胞毒性作用 實(shí)驗(yàn)分為9組:空白對(duì)照組;NaHS對(duì)照組(單獨(dú)應(yīng)用400 μmol/L的NaHS預(yù)處理PC12細(xì)胞30 min);根據(jù)NaHS干預(yù)濃度(0,25,50,100,200,400,800 μmol/L)+6-OHDA將PC12細(xì)胞依次分為7組(6-OHDA損傷組及NaHS干預(yù)1、2、3、4、5、6組),每組應(yīng)用不同濃度NaHS干預(yù)30 min,再應(yīng)用200 μmol/L的6-OHDA處理PC12細(xì)胞24 h,觀察NaHS預(yù)處理對(duì)抗6-OHDA細(xì)胞毒性的保護(hù)作用。
1.3.2 探討NaHS預(yù)處理對(duì)抗6-OHDA誘導(dǎo)ROS生成、線粒體膜電位降低及對(duì)GRP78表達(dá)的影響 實(shí)驗(yàn)分4組:空白對(duì)照組;6-OHDA損傷組(200 μmol/L的6-OHDA處理PC12細(xì)胞4 h或24 h);NaHS預(yù)處理組:400 μmol/L的NaHS預(yù)處理30 min后再應(yīng)用200 μmol/L的6-OHDA處理PC12細(xì)胞相應(yīng)時(shí)間;NaHS對(duì)照組:?jiǎn)为?dú)應(yīng)用400 μmol/L的NaHS預(yù)處理30 min。
1.4 CCK-8法檢測(cè)細(xì)胞存活率
以1×104/孔的密度將細(xì)胞接種于96孔培養(yǎng)板,每組包括4個(gè)復(fù)孔。顯微鏡下觀察細(xì)胞生長(zhǎng)至70%~80%融合時(shí),給予不同因素處理,每孔加入CCK-8工作液150 μl(無血清培養(yǎng)基稀釋),并設(shè)定空白對(duì)照組。37°C孵育3 h,每孔吸光度值用酶標(biāo)儀在450 nm波長(zhǎng)處測(cè)得。按細(xì)胞存活率(%)=(OD處理組-OD空白組)/(OD對(duì)照組-OD空白組)×100來計(jì)算4孔光密度的平均值,即為每組細(xì)胞的存活率。
1.5 ROS含量的檢測(cè)
PC12細(xì)胞接種于24孔板內(nèi),給予不同因素處理后用DMEM培養(yǎng)液(不加血清)洗滌2次,加入終濃度為1 μmol/L的2′,7′-二氯熒光黃雙乙酸鹽(DFCH-DA),37℃避光孵育30 min,熒光顯微鏡下攝片。用ImageJ 1.41分析軟件選取5個(gè)不同的視野進(jìn)行平均熒光強(qiáng)度統(tǒng)計(jì)分析。
1.6 細(xì)胞內(nèi)線粒體膜電位(mitochondria membrane potential,MMP)的檢測(cè)
PC12細(xì)胞接種于24孔板內(nèi),給予不同因素處理后用PBS洗滌2次,加入100 μg/L的Rh123,37℃避光孵育45 min,熒光顯微鏡下攝片。用ImageJ 1.41分析軟件選取5個(gè)不同的視野進(jìn)行平均熒光強(qiáng)度統(tǒng)計(jì)分析。
1.7 Western blot檢測(cè)蛋白的表達(dá)
細(xì)胞接種于直徑為35 mm的培養(yǎng)皿內(nèi),各處理因素結(jié)束后,收集細(xì)胞并用細(xì)胞裂解液50 μl在冰上裂解。4℃ 12 000×g離心細(xì)胞裂解物5 min,上清-80℃保存。用BCA蛋白定量試劑盒將提取的蛋白樣品進(jìn)行蛋白定量。將相同蛋白量的各組樣品進(jìn)行十二烷基硫酸鈉-聚丙烯酰胺凝膠(SDS-PAGE)電泳。待蛋白質(zhì)分離后,100 V真空電轉(zhuǎn)移1 h轉(zhuǎn)移到PVDF膜上。室溫下PVDF膜用含5% PBST溶解的脫脂奶粉封閉1 h。4℃孵育一抗GRP78(1∶1000)過夜,室溫PBS洗脫3次,室溫繼續(xù)孵育相應(yīng)二抗1 h,PBST洗脫1 h,中間換液3次。免疫信號(hào)用增強(qiáng)型化學(xué)發(fā)光法顯色,以曝光到X線膠片上。將X線膠片掃描后,用ImageJ 1.41分析軟件進(jìn)行灰度分析。
1.8 統(tǒng)計(jì)學(xué)處理
采用SPSS 11.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行分析和處理,計(jì)量資料以x±s表示,采用單因素方差分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 NaHS保護(hù)PC12細(xì)胞對(duì)抗6-OHDA細(xì)胞毒性的作用
NaHS在一定濃度范圍內(nèi)(25~400 μmol/L)可呈劑量依賴性抑制200 μmol/L的6-OHDA誘導(dǎo)的細(xì)胞毒性,其中400 μmol/L的NaHS保護(hù)作用最佳,但其本身不影響PC12細(xì)胞的存活率,隨著NaHS濃度的增加,NaHS保護(hù)作用減弱(圖1)。
圖1 NaHS保護(hù)PC12細(xì)胞對(duì)抗6-OHDA細(xì)胞毒性的作用
與空白對(duì)照組比較,*P<0.01;與6-OHDA損傷組比較,#P<0.05,##P<0.01
2.2 NaHS保護(hù)PC12細(xì)胞拮抗6-OHDA誘導(dǎo)的ROS生成增多
細(xì)胞內(nèi)ROS變化可通過DCF的熒光強(qiáng)度來反映,當(dāng)細(xì)胞經(jīng)6-OHDA處理4 h后,與空白對(duì)照組相比,6-OHDA損傷組細(xì)胞內(nèi)ROS的生成明顯增加;經(jīng)NaHS預(yù)處理后,PC12細(xì)胞內(nèi)ROS的生成明顯受到抑制,提示NaHS能保護(hù)PC12細(xì)胞拮抗6-OHDA誘導(dǎo)的ROS生成增多;NaHS本身不影響細(xì)胞內(nèi)ROS的生成(圖2)。
圖2 NaHS保護(hù)PC12細(xì)胞拮抗6-OHDA誘導(dǎo)的ROS生成增多
與空白對(duì)照組比較,*P<0.01;與6-OHDA損傷組比較,#P<0.01
2.3 NaHS保護(hù)PC12細(xì)胞拮抗6-OHDA誘導(dǎo)的MMP降低
細(xì)胞內(nèi)MMP變化可以通過Rh123的熒光強(qiáng)度來判斷,當(dāng)細(xì)胞經(jīng)6-OHDA處理24 h后,與空白對(duì)照組相比,6-OHDA損傷組細(xì)胞內(nèi)MMP明顯受到抑制;經(jīng)NaHS預(yù)處理后,PC12細(xì)胞內(nèi)Rh123的熒光強(qiáng)度明顯增加,提示NaHS能保護(hù)PC12細(xì)胞拮抗6-OHDA誘導(dǎo)的MMP降低;NaHS本身不影響細(xì)胞內(nèi)MMP的水平(圖3)。
圖3 NaHS保護(hù)PC12細(xì)胞拮抗6-OHDA誘導(dǎo)的MMP降低
與空白對(duì)照組比較,*P<0.01;與6-OHDA損傷組比較,#P<0.01
2.4 NaHS預(yù)處理對(duì)6-OHDA誘導(dǎo)GRP78蛋白表達(dá)的影響
Western blot顯示,6-OHDA處理PC12細(xì)胞24 h后GRP78蛋白表達(dá)明顯升高(P<0.01),在6-OHDA干預(yù)前30 min加入400 μmol/L的NaHS預(yù)處理,結(jié)果顯示NaHS顯著降低6-OHDA引起的GRP78高表達(dá)(P<0.01),而NaHS本身不影響GRP78的表達(dá),提示NaHS可通過抑制6-OHDA誘導(dǎo)的ERS發(fā)揮細(xì)胞保護(hù)作用(圖4)。
圖4 NaHS預(yù)處理抑制6-OHDA誘導(dǎo)的GRP78高表達(dá)
與空白對(duì)照組比較,*P<0.01;與6-OHDA損傷組比較,#P<0.01
3 討論
近年研究發(fā)現(xiàn),H2S作為一種新穎的神經(jīng)調(diào)質(zhì)參與調(diào)制中樞神經(jīng)系統(tǒng)的生理及病理功能[4-7],具有神經(jīng)保護(hù)作用,能保護(hù)星形膠質(zhì)細(xì)胞對(duì)抗氧化應(yīng)激引起的損傷[8],能抗脂多糖誘導(dǎo)的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的炎癥反應(yīng)[9],能保護(hù)人神經(jīng)母細(xì)胞瘤細(xì)胞SH-SY5Y對(duì)抗魚藤酮誘導(dǎo)的凋亡等[10]。為了探討H2S對(duì)抗6-OHDA誘導(dǎo)神經(jīng)元損傷的保護(hù)作用,本文觀察了6-OHDA對(duì)PC12細(xì)胞的作用,發(fā)現(xiàn)200 μmol/L的6-OHDA作用24 h可顯著降低PC12細(xì)胞的存活率,明顯增加ROS生成及降低細(xì)胞的MMP,提示6-OHDA可通過增加ROS及降低MMP損傷多巴胺能神經(jīng)細(xì)胞。Kwon等[11]報(bào)道,6-OHDA能引起ROS生成增加及降低MMP誘導(dǎo)SH-SY5Y細(xì)胞凋亡,支持本實(shí)驗(yàn)結(jié)果。研究已證實(shí)過多的ROS可損傷核酸、蛋白質(zhì)和膜磷脂等重要細(xì)胞成分,也可降低MMP,從而導(dǎo)致細(xì)胞損傷,支持本實(shí)驗(yàn)結(jié)果。本文進(jìn)一步觀察發(fā)現(xiàn)NaHS能通過提高PC12細(xì)胞的MMP及抑制ROS生成,增加細(xì)胞存活率發(fā)揮對(duì)抗6-OHDA引起的細(xì)胞毒性作用,結(jié)果提示外源性H2S能對(duì)抗6-OHDA引起的PC12細(xì)胞氧化應(yīng)激損傷,具有神經(jīng)細(xì)胞保護(hù)作用,可能與其抑制ROS生成增多和改善MMP有關(guān)。
多種原因如缺氧、饑餓、鈣離子平衡失調(diào)、自由基侵襲及藥物等可誘導(dǎo)蛋白質(zhì)錯(cuò)誤折疊或未折疊,這些蛋白在內(nèi)質(zhì)網(wǎng)內(nèi)積累引起ERS[12-14]。GRP78是ERS的標(biāo)志性分子,其表達(dá)變化與神經(jīng)系統(tǒng)疾病的發(fā)生、發(fā)展關(guān)系密切[15-16]。本實(shí)驗(yàn)觀察發(fā)現(xiàn),6-OHDA處理PC12細(xì)胞24 h誘導(dǎo)了GRP78高表達(dá),提示6-OHDA造成的PC12細(xì)胞損傷作用與其誘導(dǎo)ERS有密切關(guān)系。Omura等[2]研究表明,ERS介導(dǎo)了神經(jīng)退行性疾病如PD的神經(jīng)元凋亡,支持本實(shí)驗(yàn)結(jié)果。
相關(guān)研究指出,外源性H2S可抑制同型半胱氨酸在體內(nèi)、體外誘導(dǎo)的ERS分子GRP78的表達(dá),顯著減輕脂質(zhì)過氧化反應(yīng),加速過氧化氫的清除而保護(hù)心肌[17],提示H2S的器官或細(xì)胞保護(hù)作用與抑制GRP78信號(hào)途徑有關(guān),但在中樞神經(jīng)系統(tǒng)中對(duì)H2S與GRP78關(guān)系的研究目前知之甚少。H2S預(yù)處理抗6-OHDA損傷的PC12細(xì)胞保護(hù)作用是否與抑制GRP78信號(hào)通路有關(guān)未見報(bào)道。本實(shí)驗(yàn)觀察顯示,應(yīng)用400 μmol/L的NaHS預(yù)處理30 min明顯抑制6-OHDA誘導(dǎo)的GRP78高表達(dá),提示H2S預(yù)處理可通過下調(diào)GRP78的表達(dá)發(fā)揮對(duì)抗6-OHDA損傷的PC12細(xì)胞保護(hù)作用。關(guān)于兩者關(guān)系還需進(jìn)一步深入研究。
綜上所述,6-OHDA通過增加ROS、降低MMP引起PC12細(xì)胞氧化應(yīng)激損傷,引起ERS標(biāo)志性分子GRP78的高表達(dá);H2S具有對(duì)抗6-OHDA氧化應(yīng)激損傷的神經(jīng)細(xì)胞保護(hù)作用,抑制GRP78表達(dá)上調(diào)可能是其機(jī)制之一。
[參考文獻(xiàn)]
[1] Khan MM,Ahmad A,Ishrat T,et al.Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dop-amine depletion in rat model of Parkinson′s disease[J].Brain Res,2010,1328:139-151.
[2] Omura T,Kaneko M,Okuma Y,et al.Endoplasmic reticulum stress and Parkinson′s disease:the role of HRD1 in averting apoptosis in neurodegenerative disease[J].Oxid Med Cell Longev,2013,2013: 239854.
[3] Zeng XS,Jia JJ,Kwon Y,et al.The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease[J].Free Radic Biol Med,2014,67:10-18.
[4] Kimura H.Hydrogen sulfide as a neuromodulator[J].Mol Neurobiol,2002,26(1):13-19.
[5] Donatti AF,Soriano RN,Sabino JP,et al.Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Botzinger complex downregulates ventilatory responses to hypoxia[J].Respir Physiol Neurobiol,2014,200:97-104.
[6] Wei HJ,Li X,Tang XQ.Therapeutic benefits of HS in Alzheimer′s disease[J].J Clin Neurosci,2014.[Epub ahead of print]
[7] Yin J,Tu C,Zhao J,et al.Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative,anti-inflammatory and anti-apoptotic effects in rats[J].Brain Res,2013,1491:188-196.
[8] Lu M,Hu LF,Hu G,et al.Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake[J].Free Radic Biol Med,2008,45(12):1705-1713.
[9] Hu LF,Wong PT,Moore PK,et al.Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia[J].J Neurochem,2007,100(4):1121-1128.
[10] Hu LF,Lu M,Wu ZY,et al.Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function[J].Mol Pharmacol,2009,75(1):27-34.
[11] Kwon SH,Ma SX,Hong SI,et al.Eucommia ulmoides Oliv.bark.attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells[J].J Ethnopharmacol,2014,152(1):173-182.
[12] Ma Y,Hendershot LM.The role of the unfolded protein response in tumour development:friend or foe?[J].Nat Rev Cancer,2004,4(12):966-977.
[13] Ron D,Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J].Nat Rev Mol Cell Biol,2007,8(7):519-529.
[14] Wouters BG,Koritzinsky M.Hypoxia signalling through mTOR and the unfolded protein response in cancer[J].Nat Rev Cancer,2008,8(11):851-864.
[15] Costa RO,F(xiàn)erreiro E,Cardoso S M,et al.ER stress-mediated apoptotic pathway induced by amyloid-beta[J].J Alzheimers Dis,2010,20(2):625-636.
[16] Ilieva EV,Naudi A,Kichev A,et al.Depletion of oxidative and endoplasmic reticulum stress regulators in Pick disease[J].Free Radic Biol Med,2010,48(10):1302-1310.
[17] Chang L,Geng B,Yu F,et al.Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats[J].Amino Acids,2008,34(4):573-585.
(收稿日期:2014-07-14 本文編輯:李亞聰)
[2] Omura T,Kaneko M,Okuma Y,et al.Endoplasmic reticulum stress and Parkinson′s disease:the role of HRD1 in averting apoptosis in neurodegenerative disease[J].Oxid Med Cell Longev,2013,2013: 239854.
[3] Zeng XS,Jia JJ,Kwon Y,et al.The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease[J].Free Radic Biol Med,2014,67:10-18.
[4] Kimura H.Hydrogen sulfide as a neuromodulator[J].Mol Neurobiol,2002,26(1):13-19.
[5] Donatti AF,Soriano RN,Sabino JP,et al.Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Botzinger complex downregulates ventilatory responses to hypoxia[J].Respir Physiol Neurobiol,2014,200:97-104.
[6] Wei HJ,Li X,Tang XQ.Therapeutic benefits of HS in Alzheimer′s disease[J].J Clin Neurosci,2014.[Epub ahead of print]
[7] Yin J,Tu C,Zhao J,et al.Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative,anti-inflammatory and anti-apoptotic effects in rats[J].Brain Res,2013,1491:188-196.
[8] Lu M,Hu LF,Hu G,et al.Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake[J].Free Radic Biol Med,2008,45(12):1705-1713.
[9] Hu LF,Wong PT,Moore PK,et al.Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia[J].J Neurochem,2007,100(4):1121-1128.
[10] Hu LF,Lu M,Wu ZY,et al.Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function[J].Mol Pharmacol,2009,75(1):27-34.
[11] Kwon SH,Ma SX,Hong SI,et al.Eucommia ulmoides Oliv.bark.attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells[J].J Ethnopharmacol,2014,152(1):173-182.
[12] Ma Y,Hendershot LM.The role of the unfolded protein response in tumour development:friend or foe?[J].Nat Rev Cancer,2004,4(12):966-977.
[13] Ron D,Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J].Nat Rev Mol Cell Biol,2007,8(7):519-529.
[14] Wouters BG,Koritzinsky M.Hypoxia signalling through mTOR and the unfolded protein response in cancer[J].Nat Rev Cancer,2008,8(11):851-864.
[15] Costa RO,F(xiàn)erreiro E,Cardoso S M,et al.ER stress-mediated apoptotic pathway induced by amyloid-beta[J].J Alzheimers Dis,2010,20(2):625-636.
[16] Ilieva EV,Naudi A,Kichev A,et al.Depletion of oxidative and endoplasmic reticulum stress regulators in Pick disease[J].Free Radic Biol Med,2010,48(10):1302-1310.
[17] Chang L,Geng B,Yu F,et al.Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats[J].Amino Acids,2008,34(4):573-585.
(收稿日期:2014-07-14 本文編輯:李亞聰)
[2] Omura T,Kaneko M,Okuma Y,et al.Endoplasmic reticulum stress and Parkinson′s disease:the role of HRD1 in averting apoptosis in neurodegenerative disease[J].Oxid Med Cell Longev,2013,2013: 239854.
[3] Zeng XS,Jia JJ,Kwon Y,et al.The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease[J].Free Radic Biol Med,2014,67:10-18.
[4] Kimura H.Hydrogen sulfide as a neuromodulator[J].Mol Neurobiol,2002,26(1):13-19.
[5] Donatti AF,Soriano RN,Sabino JP,et al.Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Botzinger complex downregulates ventilatory responses to hypoxia[J].Respir Physiol Neurobiol,2014,200:97-104.
[6] Wei HJ,Li X,Tang XQ.Therapeutic benefits of HS in Alzheimer′s disease[J].J Clin Neurosci,2014.[Epub ahead of print]
[7] Yin J,Tu C,Zhao J,et al.Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative,anti-inflammatory and anti-apoptotic effects in rats[J].Brain Res,2013,1491:188-196.
[8] Lu M,Hu LF,Hu G,et al.Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake[J].Free Radic Biol Med,2008,45(12):1705-1713.
[9] Hu LF,Wong PT,Moore PK,et al.Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia[J].J Neurochem,2007,100(4):1121-1128.
[10] Hu LF,Lu M,Wu ZY,et al.Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function[J].Mol Pharmacol,2009,75(1):27-34.
[11] Kwon SH,Ma SX,Hong SI,et al.Eucommia ulmoides Oliv.bark.attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells[J].J Ethnopharmacol,2014,152(1):173-182.
[12] Ma Y,Hendershot LM.The role of the unfolded protein response in tumour development:friend or foe?[J].Nat Rev Cancer,2004,4(12):966-977.
[13] Ron D,Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J].Nat Rev Mol Cell Biol,2007,8(7):519-529.
[14] Wouters BG,Koritzinsky M.Hypoxia signalling through mTOR and the unfolded protein response in cancer[J].Nat Rev Cancer,2008,8(11):851-864.
[15] Costa RO,F(xiàn)erreiro E,Cardoso S M,et al.ER stress-mediated apoptotic pathway induced by amyloid-beta[J].J Alzheimers Dis,2010,20(2):625-636.
[16] Ilieva EV,Naudi A,Kichev A,et al.Depletion of oxidative and endoplasmic reticulum stress regulators in Pick disease[J].Free Radic Biol Med,2010,48(10):1302-1310.
[17] Chang L,Geng B,Yu F,et al.Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats[J].Amino Acids,2008,34(4):573-585.
(收稿日期:2014-07-14 本文編輯:李亞聰)