摘要:【目的】探究雙氧化酶1基因(duox1)在克氏原螯蝦抵抗金黃色葡萄球菌(Staphylococcus aureus)侵染先天免疫應(yīng)答中的作用機制,為確??耸显r產(chǎn)業(yè)的持續(xù)健康發(fā)展提供技術(shù)支撐。【方法】采用實時熒光定量PCR檢測金黃色葡萄球菌刺激后,duox1基因在克氏原螯蝦血細胞、肝胰腺、腸道及鰓組織中的表達情況;通過RNA干擾(RNAi)敲低duox1基因表達再進行金黃色葡萄球菌刺激,統(tǒng)計克氏原螯蝦存活率,采用H2O2含量檢測試劑盒檢測肝胰腺H2O2含量,電子顯微鏡下觀察血淋巴黑化現(xiàn)象,并以實時熒光定量PCR檢測肝胰腺中抗菌肽基因(toll1、dorsal、crustin3和crustin4)的表達情況。【結(jié)果】經(jīng)金黃色葡萄球菌刺激后,克氏原螯蝦duox1基因在血細胞、肝胰腺、腸道及鰓組織中的相對表達量較PBS組整體上呈上升趨勢,故推測duox1基因參與克氏原螯蝦的抗菌先天免疫應(yīng)答,具有潛在的抵抗細菌侵染作用。與dsGFP+金黃色葡萄球菌組相比,經(jīng)RNA干擾及金黃色葡萄球菌刺激后,克氏原螯蝦存活率呈明顯下降趨勢,肝胰腺H2O2含量呈先降低后回升的變化趨勢(在刺激后24 h達最低值),且克氏原螯蝦血淋巴黑化反應(yīng)程度明顯減弱。干擾duox1基因表達并感染金黃色葡萄球菌后,克氏原螯蝦肝胰腺Toll信號通路上的抗菌肽基因(toll1、dorsal、crustin3和crustin4)表達被抑制,導(dǎo)致參與抗菌反應(yīng)的先天免疫能力下降,最終引起克氏原螯蝦存活率下降?!窘Y(jié)論】克氏原螯蝦duox1基因通過調(diào)控H2O2產(chǎn)生、影響血淋巴黑化現(xiàn)象及調(diào)控toll1、dorsal、crustin3和crustin4等抗菌肽基因的表達,參與機體的先天免疫應(yīng)答,進而協(xié)助機體抵御金黃色葡萄球菌的侵染。
關(guān)鍵詞:克氏原螯蝦;雙氧化酶1基因(duox1);金黃色葡萄球菌;RNA干擾;抗菌肽基因
中圖分類號:S945.49文獻標志碼:A文章編號:2095-1191(2024)08-2485-10
Innate immune mechanism of duox1 gene in Procambarus clarkii against Staphylococcus aureus infection
LIU Shu-yao LI Qian-qian WEN Jing JIN Bo-yang ZHANG Ming-da TAN Ming-yue SHEN Xiu-li DU Zhi-qiang1*
(1School of Life Science and Technology,Inner Mongolia University of Science and Technology,Baotou,InnerMongolia 014010,China;2Library of Inner Mongolia University of Science and Technology,Baotou,Inner Mongolia 014010,China)
Abstract:【Objective】The study aimed to elucidate the role and mechanism of double oxidase 1 gene(duox1)in the innate immune response of Procambarus clarkii against Staphylococcus aureus infection,providing technical support for the sustainable and healthy development of P.clarkii industry.【Method】The real-time fluorescence quantitative PCR was used to detect the relative expression of duox 1 gene in hemocytes,hepatopancreas,intestine and gill tissues of P.clarkii after stimulation of S.aureus.By using RNA interference(RNAi)to down-regulate the expression of the duox1 gene and subsequently stimulating with S.aureus,the survival rate of the P.clarkii was determined.The contents of H2O2 in the he-patopancreas were measured with an H2O2 detection kit.Melanization in the hemolymph was observed under an electronmicroscope.The expression of antimicrobial peptide genes(toll dorsal,crustin3 and crustin4)in the hepatopancreas was assessed using real-time fluorescence quantitative PCR.【Result】After stimulation by S.aureus,the relative expres-sion of the duox1 gene in hemocytes,hepatopancreas,intestine and gill tissues of P.clarkii showed an overall upwaHpfc30FFHSigBKZjUR0tzw==rd trend compared to the PBS group.This suggested that the duox1 gene may be involved in the innate immune response of P.clarkii against bacterial infection,with a potential role in combating bacterial invasion.Compared to the dsGFP+S.au-reus group,after RNA interference and S.aureus stimulation,the survival rate of P.clarkii greatly decreased.The H2 O2 content in the hepatopancreas showed a trend of initial reduction followed by recovery(reaching its lowest point 24 h after stimulation),and the degree of hemolymph melanization was markedly weakened.After duox1 gene expression was inter-fered and S.aureus infection,the expression of antimicrobial peptide genes(toll dorsal,crustin3 and crustin4)in the Toll signaling pathway of the hepatopancreas was suppressed,leading to a reduction in innate immune capacity against bacterial infection,ultimately resulting in a decreased survival rate of P.clarkii.【Conclusion】The duox1 gene ofP.clarkii participates in the innate immune response of the body by regulating H2O2 production,affecting themelanization of hemo-lymph,and regulating the expression of antimicrobial peptide genes such as toll dorsal,crustin3 and crustin4,thereby assisting the body in resisting infection by S.aureus.
Key words:Procambarus clarkii;double oxidase 1 gene(duox1);Staphylococcus aureus;RNA interference;anti-bacterial peptide genes
Foundation items:National Natural Science Foundation of China(32060834);Inner Mongolia Natural Science Foundation(2024MS03051);Basic Research Fund of Inner Mongolia University of Science and Technology(〔2022〕028)
0引言
【研究意義】克氏原螯蝦(Procambarus clarkii)又稱紅沼澤小龍蝦,隸屬于節(jié)肢動物門(Arthropoda)十足目(Decapoda)擬螯蝦科(Parastacidae),原產(chǎn)于墨西哥北部和美國南部,現(xiàn)已發(fā)展成為我國淡水養(yǎng)殖的主要經(jīng)濟動物(陳衛(wèi)軍,2019)。近年來受病害頻發(fā)等因素的影響,克氏原螯蝦死亡率呈逐年上升趨勢,已影響到我國淡水養(yǎng)殖市場的健康發(fā)展(孟思妤等,2017)。金黃色葡萄球菌(Staphylococ-cus aureus)作為常見的致病菌,可誘發(fā)蝦蟹等甲殼類生物發(fā)生多種細菌性疾?。╒asta and Wang,2020;Cheung et al.,2021),但目前尚缺乏有效的防治手段,給水產(chǎn)養(yǎng)殖市場帶來巨大經(jīng)濟損失??耸显r感染細菌后不僅導(dǎo)致其養(yǎng)殖減產(chǎn),在食品安全方面還會威脅人類健康(蘭培利等,2024)。因此,亟待明確克氏原螯蝦的先天免疫應(yīng)答機制,為制定其病害防控策略提供參考依據(jù)。【前人研究進展】克氏原螯蝦缺乏特異性免疫,只能通過先天免疫應(yīng)答而發(fā)揮免疫抵抗作用,主要包括體液免疫和細胞免疫2種形式(Li etal.,2020)。血淋巴作為克氏原螯蝦的主要免疫組織之一,同時在體液免疫和細胞免疫中發(fā)揮作用(Qin et al.,2019)。其中,血淋巴氧化性殺滅機制會產(chǎn)生大量活性氧(Reactive oxygen spe-cies,ROS)(張利慶,2007),而ROS作為一種重要免疫效應(yīng)物,在無脊椎動物抵抗病原菌侵染時發(fā)揮免疫作用或作為第二信使激活下游相關(guān)信號通路(Zhang et al.,2022)。煙酰胺腺嘌呤二核苷酸磷酸氧化酶(Nicotinamide adenine dinucleotide phosphate oxidase,NOX)家族包括7種異構(gòu)體(NOX1、NOX2、NOX3、NOX4、NOX5、DUOX1和DUOX2)(Nocella et al.,2023),其主要生理功能包括宿主防御、蛋白翻譯后處理、細胞信號傳導(dǎo)、基因表達調(diào)控及細胞分化等(Bedard and Krause,2007)。雙氧化酶(Dual oxi-dase,DUOX)是NOX家族的重要成員之一(García et al.,2023),主要介導(dǎo)H2O2產(chǎn)生,在機體抗菌的先天免疫反應(yīng)中發(fā)揮重要作用(Giusti etal.,2020;Gu et al.,2021)。DUOX首次在人類甲狀腺細胞中鑒定獲得(Caillou et al.,2001),隨后陸續(xù)在果蠅(Dro-sophila)(Kim and Lee,2014)、斑馬魚(Danio rerio)(Chopra et al.,2019)、凡納濱對蝦(Litopenaeus van-namei)(Zhang et al.,2019)等生物體中發(fā)現(xiàn)DUOX。Yang等(2020)研究證實,經(jīng)副溶血性弧菌(Vibrio parahaemolyticus)或白斑綜合征病毒(White spotsyndrome virus,WSSV)感染后,擬穴青蟹(Scylla paramamosain)的duox1基因表達被激活,ROS積累增加,從而抑制擬穴青蟹血淋巴中的病原微生物增殖;Guan等(2021)以斑馬魚為研究對象,發(fā)現(xiàn)RIC體液因子可能是通過調(diào)控duox基因表達,而在氧化應(yīng)激與組織損傷修復(fù)過程中發(fā)揮重要作用;Yu等(2023)在蛤蜊中也發(fā)現(xiàn)DUOX介導(dǎo)的ROS產(chǎn)生可激活Toll信號通路中抗菌肽表達,而參與無脊椎動物的抗菌先天免疫應(yīng)答;Ji等(2024)研究發(fā)現(xiàn),DUOX在甜菜夜蛾(Spodoptera exigua)的先天免疫中發(fā)揮抗菌作用。在無脊椎動物中,血淋巴黑化現(xiàn)象作為體液免疫的關(guān)鍵免疫反應(yīng),由無活性的酶原(prophenoloxidase,proPO)激活級聯(lián)調(diào)節(jié),在抵御病原微生物入侵的過程發(fā)揮重要作用(Tassanakajonet al.,2018)。Wilson等(2001)在非洲黏蟲(Spodop-tera exempta)中發(fā)現(xiàn),黑化現(xiàn)象與血淋巴中的酚氧化酶(PO)活性呈正相關(guān);Huang等(2020)研究表明,黑水虻(Hermetiaillucens)的Duox-TLR3 RNAi滅活NF-κB信號通路并下調(diào)抗菌肽表達,進而減弱機體對病原體的抑制作用。綜上所述,DUOX在無脊椎動物抗菌先天免疫中發(fā)揮重要作用?!颈狙芯壳腥朦c】已有研究證實,duox1基因在果蠅免疫應(yīng)答反應(yīng)中被激活,通過產(chǎn)生H2O2介導(dǎo)Toll信號通路激活,幫助機體抵抗外來病原菌的侵染(Ramond et al.,2021),但關(guān)于克氏原螯蝦duox1基因抵抗金黃色葡萄球菌侵染的免疫應(yīng)答作用機制至今鮮見報道?!緮M解決的關(guān)鍵問題】采用實時熒光定量PCR檢測克氏原螯蝦感染金黃色葡萄球菌后血細胞、肝胰腺、腸道及鰓組織中的duox1基因表達情況,并通過RNA干擾(RNAi)降低duox1基因表達后再以金黃色葡萄球菌進行刺激,統(tǒng)計克氏原螯蝦存活率、檢測H2O2含量及觀察血淋巴黑化現(xiàn)象,并檢測Toll信號通路上經(jīng)典抗菌肽基因的表達變化,探究duox1基因在克氏原螯蝦抗細菌感染先天免疫應(yīng)答中的作用機制,為確保克氏原螯蝦產(chǎn)業(yè)的持續(xù)健康發(fā)展提供技術(shù)支撐。
1材料與方法
1.1試驗材料
克氏原螯蝦購自內(nèi)蒙古包頭市友誼福瑞水產(chǎn)市場,挑選體積較小、活力好的個體。正式試驗前,克氏原螯蝦在恒溫水池中避光暫養(yǎng)2周。金黃色葡萄球菌由內(nèi)蒙古科技大學分子免疫實驗室保存提供,試驗前用LB液體培養(yǎng)基進行活化培養(yǎng)。動物試驗獲得內(nèi)蒙古大學機構(gòu)動物護理與使用委員會許可,許可證號為SCXK(內(nèi)蒙古)2016-0001。
1.2試驗方法
1.2.1金黃色葡萄球菌刺激及表達模式研究試驗分別設(shè)金黃色葡萄球菌刺激組及磷酸鹽緩沖液(PBS)刺激組,每組30只健康的克氏原螯蝦。金黃色葡萄球菌刺激組在克氏原螯蝦第二腹節(jié)處注射金黃色葡萄球菌懸液(以PBS稀釋,2×107 CFU/mL),注射劑量100.0μL;PBS刺激組克氏原螯蝦注射等體積的PBS。注射后0、2、6、12、24、36和48 h,無菌條件下采集克氏原螯蝦的血淋巴、肝胰腺、腸道和鰓組織,每個時間點取3只克氏原螯蝦。其中,血淋巴在4℃下2900 r/min離心10 min,以獲得血細胞(Huang et al.,2023)。分別提取各時間點不同組織總RNA,并反轉(zhuǎn)錄成cDNA,利用實時熒光定量PCR檢測金黃色葡萄球菌刺激后克氏原螯蝦duox1基因的表達情況。以18S rRNA為內(nèi)參基因,擴增程序:95℃預(yù)變性30 s;95℃5 s,60℃34 s,進行40個循環(huán)。設(shè)3個生物學重復(fù),采用2-△△Ct法計算目的基因相對表達量。實時熒光定量PCR擴增引物如表1所示。
1.2.2克氏原螯蝦duox1基因雙鏈RNA體外轉(zhuǎn)錄合成基于前期的轉(zhuǎn)錄組測序結(jié)果,使用Primer 5.0設(shè)計干擾引物(duox1-iF和duox1-iR)(表1)。擴增克氏原螯蝦duox1基因干擾片段,擴增程序:94℃預(yù)變性3 min;94℃30 s,60℃45 s,72℃40 s,進行35個循環(huán);72℃延伸10min。富集純化后進行1%瓊脂糖凝膠電泳,回收目的條帶,-20℃保存?zhèn)溆?。使用T7體外轉(zhuǎn)錄試劑盒(日本TaKaRa公司)進行體外轉(zhuǎn)錄,制備克氏原螯蝦duox1基因雙鏈RNA,反應(yīng)體系25.0μL:10×Transcription Buffer 4.0μL,ATP/UTP/CTP/GTP 4.0μL,RNase Inhibitor 1.0μL,T7 RNA聚合酶1.0μL,DNA模板10.0μL,RNase Free H2O 5.0μL?;靹蚝?,42℃水浴2h。加入RNase free DNaseI 4.0μL,37℃繼續(xù)水浴1h以去除殘留的DNA。體外轉(zhuǎn)錄合成的克氏原螯蝦duox1基因雙鏈RNA置于-80℃冰箱保存?zhèn)溆?,并以相同方法制備GFP雙鏈RNA作為對照。
1.2.3 RNA干擾試驗RNA干擾試驗分為3組,分別為dsduox1+金黃色葡萄球菌組、dsGFP+金黃色葡萄球菌組和PBS組。將制備的雙鏈RNA稀釋至3000 ng/μL。每組隨機挑選30只健康的克氏原螯蝦,于血竇處注射25.0μL雙鏈RNA,同時在第二腹節(jié)處注射金黃色葡萄球菌懸液(2×107 CFU/mL),注射劑量100.0μL。PBS組注射等體積的無菌PBS。
1.2.4 RNA干擾后克氏原螯蝦存活率統(tǒng)計經(jīng)RNA干擾及金黃色葡萄球菌刺激后,對克氏原螯蝦存活率進行統(tǒng)計;同時,在注射后0、24和48 h無菌解剖克氏原螯蝦并采集肝胰腺組織,每個時間點至少解剖3只克氏原螯蝦,肝胰腺組織樣品-80℃冰箱保存?zhèn)溆谩?/p>
1.2.5 RNA干擾后克氏原螯蝦肝胰腺H2O2含量檢測取上述RNA干擾及金黃色葡萄球菌刺激后0、24和48 h的克氏原螯蝦肝胰腺組織(3只克氏原螯蝦的混合樣品),置于無菌勻漿器中加入1 mL預(yù)冷丙酮,冰浴勻漿后,4℃下12000 r/min離心10 min,取上清液,按H2O2含量檢測試劑盒(蘇州格銳思生物科技有限公司)說明在415nm處檢測吸光度(A),并換算為克氏原螯蝦肝胰腺H2O2含量。
1.2.6 RNA干擾后克氏原螯蝦血淋巴黑化反應(yīng)情況觀察在RNA干擾及金黃色葡萄球菌刺激后0、24和48h分別進行克氏原螯蝦血淋巴黑化反應(yīng)情況觀察。每個時間點抽取3只克氏原螯蝦的血淋巴,將2 mL克氏原螯蝦血淋巴與1 mL抗凝劑(表2)混合后,立即滴一滴混合液于載玻片上,輕輕蓋上蓋玻片,電子顯微鏡下觀察拍攝。
1.2.7干擾后克氏原螯蝦肝胰腺抗菌肽基因表達檢測取RNA干擾及金黃色葡萄球菌刺激后0、24和48 h的克氏原螯蝦肝胰腺組織樣品50 mg(3只克氏原螯蝦的混合樣品),使用RNAiso Plus試劑盒(日本TaKaRa公司)提取總RNA,以NanoDrop 2000超微量分光光度計檢測RNA濃度,并通過1%瓊脂糖凝膠電泳測定其完整性。采用Prime Script TR Reagent Kit試劑盒(日本TaKaRa公司)反轉(zhuǎn)錄合成cDNA,反應(yīng)體系10.0μL:5×Prime Script TR Master Mix 2.0μL,RNA模板1.0μL,RNase freedH2O 7.0μL。反轉(zhuǎn)錄程序:37℃15 min,85℃5 s。以制備獲得的cDNA為模板,通過實時熒光定量PCR檢測抗菌肽基因(toll1、dorsal、crustin3和crustin4)的表達情況,以18S rRNA為內(nèi)參基因,采用2-ΔΔCt法計算目的基因相對表達量。擴增引物序列如表1所示,擴增程序同1.2. 每個樣品設(shè)3個生物學重復(fù)。
1.3統(tǒng)計分析
試驗數(shù)據(jù)采用Excel 2020進行統(tǒng)計分析,并通過GraphPad Prism 8.0進行雙因素方差分析(Two-way ANOVA)。
2結(jié)果與分析
2.1金黃色葡萄球菌刺激后克氏原螯蝦duox1基因表達模式
通過實時熒光定量PCR檢測金黃色葡萄球菌刺激后duox1基因在克氏原螯蝦不同組織中的表達模式,結(jié)果如圖1所示。經(jīng)金黃色葡萄球菌刺激后,克氏原螯蝦duox1基因在血細胞、肝胰腺、腸道及鰓組織中的相對表達量較PBS組整體上呈上升趨勢。在血細胞中,duox1基因相對表達量在金黃色葡萄球菌刺激后6~48 h呈顯著上調(diào)趨勢(P<0.05,下同),于感染后24 h達最高值(圖1-A);金黃色葡萄球菌刺激后2 h,肝胰腺中的duox1基因相對表達量達最高值,隨后呈顯著下降趨勢(圖1-B);在鰓組織中,duox1基因在金黃色葡萄球菌刺激6h后開始上調(diào)表達,其相對表達量在刺激后24h達最高值(圖1-C);金黃色葡萄球菌刺激后12h,腸道中的duox1基因相對表達量達最高值(圖1-D)。由此推測,duox1基因參與克氏原螯蝦的抗菌先天免疫應(yīng)答,具有潛在的抵抗細菌侵染作用。
2.2 RNA干擾及金黃色葡萄球菌刺激后克氏原螯蝦的存活率
經(jīng)RNA干擾及金黃色葡萄球菌刺激后,克氏原螯蝦的存活率如圖2所示。與dsGFP+金黃色葡萄球菌組和PBS組相比,dsduox1+金黃色葡萄球菌組克氏原螯蝦存活率呈明顯下降趨勢,在刺激后36和48 h的差異達極顯著水平(P<0.0 下同)。
2.3 RNA干擾及金黃色葡萄球菌刺激后克氏原螯蝦肝胰腺的H2O2含量
為進一步探究duox1基因?qū)耸显r抗金黃色葡萄球菌侵染的作用機制,使用H2O2含量檢測試劑盒檢測克氏原螯蝦肝胰腺的H2O2含量,結(jié)果如圖3所示。與dsGFP+金黃色葡萄球菌組相比,dsduox1+金黃色葡萄球菌組克氏原螯蝦肝胰腺的H2O2含量呈先降低后回升的變化趨勢,在刺激后24 h達最低值,H2O2含量被顯著抑制。
2.4 RNA干擾及金黃色葡萄球菌刺激后克氏原螯蝦血淋巴黑化現(xiàn)象
經(jīng)RNA干擾及金黃色葡萄球菌刺激后,分別于刺激后0、24和48 h對克氏原螯蝦血淋巴黑化反應(yīng)進行觀察,結(jié)果如圖4所示。與dsGFP+金黃色葡萄球菌組相比,dsduox1+金黃色葡萄球菌組克氏原螯蝦血淋巴黑化反應(yīng)被抑制。在刺激后24和48 h,dsGFP+金黃色葡萄球菌組克氏原螯蝦血淋巴出現(xiàn)明顯的黑化現(xiàn)象,dsduox1+金黃色葡萄球菌組克氏原螯蝦雖然存在血淋巴黑化現(xiàn)象,但黑化反應(yīng)程度明顯減弱。
2.5 RNA干擾及金黃色葡萄球菌刺激后克氏原螯蝦肝胰腺抗菌肽基因表達情況
經(jīng)RNA干擾及金黃色葡萄球菌刺激后,分別在刺激后0、24和48 h通過實時熒光定量PCR檢測克氏原螯蝦肝胰腺抗菌肽基因表達情況,結(jié)果如圖5所示。與PBS組相比,dsGFP+金黃色葡萄球菌組克氏原螯蝦肝胰腺中toll1、dorsal、crustin3和crustin4基因的表達整體上呈不同程度的上調(diào)趨勢。與dsGFP+金黃色葡萄球菌組相比,dsduox1+金黃色葡萄球菌組克氏原螯蝦肝胰腺中toll1、dorsal、crustin3和crustin4基因呈顯著下調(diào)表達趨勢??梢?,干擾duox1基因表達并感染金黃色葡萄球菌后,克氏原螯蝦肝胰腺Toll信號通路上的toll1、dorsal、crustin3和crustin4基因表達被抑制,導(dǎo)致參與抗細菌反應(yīng)的先天免疫能力下降,最終引起克氏原螯蝦存活率下降。
3討論
DUOX是NOX家族的主要成員之一。NOX家族包括5個產(chǎn)生超氧陰離子的Noxes和2個產(chǎn)生H2O2的Duoxes(Inada et al.,2013)。DUOX主要介導(dǎo)H2O2的產(chǎn)生,進而產(chǎn)生低硫氰酸根離子,在宿主的防御反應(yīng)或促炎反應(yīng)中發(fā)揮重要作用(Rada and Leto,2008)。在脊椎動物中,duox基因與黏膜免疫相關(guān);在無脊椎動物中,duox基因的主要功能是維持機體腸道菌群平衡(Li etal.,2024)。細菌通過自身產(chǎn)生的尿嘧啶,促使膜上的G蛋白偶聯(lián)受體激活2條信號通路[激活轉(zhuǎn)錄因子2(ATF2)和內(nèi)質(zhì)網(wǎng)膜應(yīng)激]。其中,內(nèi)質(zhì)網(wǎng)膜應(yīng)激致使內(nèi)質(zhì)網(wǎng)膜上的通道打開,鈣離子外泄形成鈣波,作為第二信使激活duox基因表達,從而產(chǎn)生ROS(Hong and Qin,2023)。
DUOX主要與氧化應(yīng)激、能量代謝及炎癥反應(yīng)等有關(guān)(Lee et al.,2018;Grasberger et al.,2021;Baek et al.,2022),但至今有關(guān)無脊椎動物DUOX的研究報道較少。Yang等(2016)以日本囊對蝦(Marsu-penaeus japonicus)為研究對象,發(fā)現(xiàn)在鰻弧菌(V.anguillarum)侵染機體后,duox1基因呈明顯上調(diào)表達趨勢;Sun等(2018)研究發(fā)現(xiàn),以LPS模擬細菌刺激及副溶血性弧菌感染擬穴青蟹后,其體內(nèi)的duox1基因表現(xiàn)出明顯的免疫響應(yīng),故推測擬穴青蟹duox1基因參與機體抵抗細菌侵襲的免疫過程。可見,duox1基因在無脊椎動物抵御病原菌侵染的過程中發(fā)揮重要作用。本研究以金黃色葡萄球菌為病原菌感染刺激克氏原螯蝦,分別檢測血細胞、肝胰腺、腸道和鰓組織中的duox1基因表達情況,結(jié)果發(fā)現(xiàn)duox1基因在各組織中的表達整體上呈上升趨勢。值得注意的是,鰓組織中duox1基因的上調(diào)表達主要集中在感染后期,可能是鰓組織作為主要的呼吸器官,其免疫響應(yīng)相對較弱,而出現(xiàn)滯后現(xiàn)象(Burgos-Aceves et al.,2021)。為進一步驗證duox1基因在抵御金黃色葡萄球菌侵染的作用機制,本研究通過RNA干擾技術(shù)敲低duox1基因表達,再以金黃色葡萄球菌進行刺激,結(jié)果顯示,與dsGFP+金黃色葡萄球菌組相比,克氏原螯蝦存活率極顯著下降,與Inada等(2013)的研究結(jié)果相似,即敲低duox基因表達后以WSSV進行刺激,日本囊對蝦的存活率顯著下降。說明duox1基因在克氏原螯蝦抵抗病原菌感染的過程中對于維持機體生存起重要作用。
DUOX主要介導(dǎo)H2O2的產(chǎn)生而發(fā)揮殺菌作用,同時可作為第二信使激活或募集血細胞執(zhí)行免疫效應(yīng)(Cheon et al.,2020;Giusti et al.,2020;To et al.,2020)。Huang等(2020)以黑水牤(Hermetiaillucens)為模式生物,敲低duox基因表達后發(fā)現(xiàn),相對于dsGFP組,其H2O2含量顯著下降;Jia等(2023)以中華絨螯蟹(Eriocheir sinensis)為研究對象,同樣發(fā)現(xiàn)敲低duox基因表達后,機體內(nèi)的ROS含量顯著降低,表明duox基因介導(dǎo)ROS產(chǎn)生的主要類型是H2O2;Zhang等(2023)對同家族的NOX基因進行RNA干擾,結(jié)果發(fā)現(xiàn)擬穴青蟹H2O2含量也出現(xiàn)明顯的抑制現(xiàn)象,其體內(nèi)細菌含量則顯著增加。本研究結(jié)果表明,經(jīng)RNA干擾及金黃色葡萄球菌刺激后,克氏原螯蝦肝胰腺H2O2含量較dsGFP+金黃色葡萄球菌組呈先降低后回升的變化趨勢,在刺激后24 h達最低值。此外,Li等(2019)在以大腸桿菌(Escherichia coli)刺激的家蠶(Bombyx mori)中發(fā)現(xiàn)血淋巴黑化現(xiàn)象增加,表明血淋巴黑化作用有可能具有清除病原體的功能。在本研究中,敲低duox1基因表達后以金黃色葡萄球菌進行刺激,克氏原螯蝦血淋巴黑化反應(yīng)程度明顯減弱,與H2O2含量檢測結(jié)果相互驗證。
抗菌肽作為一種廣譜抗菌活性物質(zhì),是無脊椎動物殺菌的主要途徑(李博等,2020;梁子瑩等,2023;Guryanova et al.,2023)。Lipinski等(2009)在敲低duox基因表達的基礎(chǔ)上,發(fā)現(xiàn)NOD2基因和duox基因協(xié)同發(fā)揮抗菌作用;Huang等(2020)以黑水虻為研究對象,通過干擾體內(nèi)duox基因信號級聯(lián),發(fā)現(xiàn)其體內(nèi)抵抗病原菌侵染的相關(guān)基因顯著下調(diào)表達,推測duox基因通過影響下游效應(yīng)基因表達而發(fā)揮作用。此外,Chakrabarti和Visweswariah(2020)研究表明,機體損傷部位的H2O2水平?jīng)Q定著DUOX活性,H2O2在血細胞內(nèi)的產(chǎn)生與積累對JAK/STAT信號通路和Toll信號通路的激活至關(guān)重要。為進一步探究引起克氏原螯蝦存活率下降的原因,本研究通過RNA干擾敲低duox1基因表達,再進行金黃色葡萄球菌刺激,結(jié)果發(fā)現(xiàn)克氏原螯蝦肝胰腺中的toll1、dorsal、crustin3和crustin4基因均呈顯著下調(diào)表達,無法及時發(fā)揮殺菌作用。綜上所述,在克氏原螯蝦針對金黃色葡萄球菌感染的免疫響應(yīng)中duox1基因可能通過影響抗菌肽相關(guān)基因表達而發(fā)揮免疫調(diào)控功能。
4結(jié)論
克氏原螯蝦duox1基因通過調(diào)控H2O2產(chǎn)生、影響血淋巴黑化現(xiàn)象及調(diào)控toll1、dorsal、crustin3和crustin4等抗菌肽基因的表達,參與機體的先天免疫應(yīng)答,進而協(xié)助機體抵御金黃色葡萄球菌的侵染。
參考文獻(References):
陳衛(wèi)軍.2019.中國蝦蟹養(yǎng)殖現(xiàn)狀[J].科學養(yǎng)魚,(2):1-2.[Chen W J.2019.Status of shrimp and crab farming in China[J].Scientific Fish Farming,(2):1-2.]doi:10.14184/j.cnki.issn 1004-843x.2019.02.001.
蘭培利,戴蕾,趙瑞臻,衛(wèi)少華,周鵬,陳彥哲,程春榮.2024.一起由金黃色葡萄球菌感染引起的食物中毒疫情的病原檢測[J].現(xiàn)代疾病預(yù)防控制,35(2):138-141.[Lan P L,Dai L,Zhao R Z,Wei S H,Zhou P,Chen Y Z,Cheng C R.2024.Pathogenic detection of food poisoning caused by Staphylococcus aureus[J].Modern Disease Control and Prevention,35(2):138-141.]doi:10.13515/j.cnki.hnjpm.1006-8414.2024.02.017.
李博,王凱,于曉東,劉睿哲,藺思函,商靜,沈秀麗,杜志強.2020.克氏原螯蝦抗菌肽crustin5基因克隆及其表達分析[J].南方農(nóng)業(yè)學報,51(4):953-960.[Li B,Wang K,Yu X D,Liu R Z,Lin S H,Shang J,Shen X L,Du Z Q.2020.Gene cloning and expression analysis of crustin5 gene in Procambarus clarkii[J].Journal of Southern Agri-culture,51(4):953-960.]doi:10.3969/j.issn.2095-1191.2020.04.028.
梁子瑩,邱麗華,王鵬飛,張博,閆路路,喬秀亭,趙超.2023.斑節(jié)對蝦新型抗菌肽ALF-like基因克隆表達及其抗菌功能分析[J].南方農(nóng)業(yè)學報,54(9):2654-2664.[Liang ZY,Qiu L H,Wang P F,Zhang B,Yan L L,Qiao X T,Zhao C.2023.Cloning,expression and antibacterial function analy-sis of novel antibacterial peptide gene ALF-like in Penaeus monodon[J].Journal of Southern Agriculture,54(9):2654-2664.]doi:10.3969/j.issn.2095-1191.2023.09.016.
孟思妤,孟長明,陳昌福.2017.人工養(yǎng)殖淡水螯蝦的傳染性病害問題(1)[J].漁業(yè)致富指南,(14):67-68.[Meng S Y,Meng C M,Chen C F.2017.Infectious disease prob-lems of freshwater crayfish in captivity(1)[J].Fishery Guide to Be Rich,(14):67-68.]
張慶利.2007.中國明對蝦免疫系統(tǒng)中抗氧化相關(guān)基因的克隆與表達分析[D].北京:中國科學院研究生院.[Zhang Q L.2007.Cloning and expression analysis of antioxidantgenes involving in the immune system in Chinese shrimp Fenneropenaeus chinensis[D].Beijing:University of Chi-nese Academy of Sciences.]
Baek M,Jang W,Kim C.2022.Dual oxidase,a hydrogen-peroxide-producing enzyme,regulates neuronal oxidative damage and animal lifespan in Drosophila melanogaster[J].Cells,11(13):2059.doi:10.3390/cells 11132059.
Bedard K,Krause K H.2007.The NOX family of ROS-generating NADPH oxidases:Physiology and pathophysio-logy[J].Physiological Reviews,87(1):245-313.doi:10.1152/physrev.00044.2005.
Burgos-Aceves M A,Abo-Al-Ela H G,F(xiàn)aggio C.2021.Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates:A review on physiological,biochemical,and genomic aspects[J].Jour-nal of Hazardous Materials,419:126426.doi:10.1016/j.jhazmat.2021.126426.
Caillou B,Dupuy C,Lacroix L,Nocera M,Talbot M,Ohayon R,Dème D,Bidart J M,Schlumberger M,Virion A.2001.Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase(ThoX,LNOX,Duox)genes and pro-teins in human thyroid tissues[J].The Journal of Clinical Endocrinology&Metabolism,86(7):3351-3358.doi:10.1210/jcem.86.7.7646.
Chakrabarti S,Visweswariah S S.2020.Intramacrophage ROS primes the innate immuGpTyYQBFOPhhTlxhLZQ8RWEIvYNE8OdBjYg1zzsKGI8=ne system via JAK/STAT and Toll activation[J].Cell Reports,3(6):108368.doi:10.1016/j.celrep.2020.108368.
Cheon Y H,Lee C H,Jeong D H,Kwak S C,Kim S,Lee M S,Kim J Y.2020.Dual oxidase maturation factor 1 positivelyregulates RANKL-induced osteoclastogenesis via activa-ting reactive oxygen species and TRAF6-mediated signa-ling[J].International Journal of Molecular Sciences,21(17):6416.doi:10.3390/ijms21176416.
Cheung G Y C,Bae J S,Otto M.2021.Pathogenicity and viru-lence of Staphylococcus aureus[J].Virulence,12(1):547-569.doi:10.1080/21505594.2021.1878688.
Chopra K,Ishibashi S,Amaya E.2019.Zebrafish duoxmuta-tions provide a model for human congenital hypothyroi-dism[J].Biology Open,8(2):bio037655.doi:10.1242/bio.037655.
García J G,Ansorena E,Izal I,Zalba G,de Miguel C,Milagro F I.2023.Structure,regulation,and physiological func-tions of NADPH oxidase 5(NOX5)[J].Journal of Physio-logy and Biochemistry,79(2):383-395.doi:10.1007/s13105-023-00955-3.
Giusti N,Gillotay P,Trubiroha A,Opitz R,Dumont J E,Costa-gliola S,de Deken X.2020.Inhibition of the thyroid hor-monogenic H2O2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound[J].Mo-lecular and Cellular Endocrinology,500:110635.doi:10.1016/j.mce.2019.110635.
Grasberger H,Magis A T,Sheng E,Conomos M P,Zhang M,Garzotto L S,Hou G P,Bishu S,Nagao-Kitamoto H,El-Zaatari M,Kitamoto S,Kamada N,Stidham R W,Akiba Y,Kaunitz J,Haberman Y,Kugathasan S,Denson L A,Omenn G S,Kao J Y.2021.DUOX2 variants associate with preclinical disturbances in microbiota-immune ho-meostasis and increased inflammatory bowel disease risk[J].The Journal of Clinical Investigation,131(9):e141676.doi:10.1172/JCI141676.
Gu F,Krüger A,Roggenkamp H G,Alpers R,Lodygin D,Jaquet V,M?ckl F,Hernandez C L C,Winterberg K,BaucheA,Rosche A,Grasberger H,Kao J Y,Schetelig D,Werner R,Schr?der K,Carty M,Bowie A G,Huber S,Meier C,Mittrücker H W,Heeren J,Krause K H,F(xiàn)lügel A,Diercks B P,Guse A H.2021.Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are neces-sary for Ca2+signaling during T cell activation[J].Science Signaling,14(709):eabe3800.doi:10.1126/scisignal.abe 3800.
Guan R,Wen X Y,Leung C H,Ciano-Oliveira C D,Lam S,Dai S Y,Karbassi F,Mauro A,Wang Y D,Rotstein O.2021.Plasma obtained following murine hindlimb ische-mic conditioning protects againstPTKG5otGWt/GG4Iv+Zk0kA== oxidative stress in zebrafish models through activation of nrf2a and down-regulation of duox[J].PLoS One,16(11):e0260442.doi:10.1371/journal.pone.0260442.
Guryanova S V,Balandin S V,Belogurova-Ovchinnikova O Y,Ovchinnikova T V.2023.Marine invertebrate antimicro-bial peptides and their potential as novel peptide antibiotics[J].Marine Drugs,21(10):503.doi:10.3390/md21100503.
Hong S Y,Qin B L.2023.The protective role of dietary poly-phenols in urolithiasis:Insights into antioxidant effects and mechanisms of action[J].Nutrients,15(17):3753.doi:10.3390/nu 15173753.
Huang Y Q,Yu Y Q,Zhan S,Tomberlin J K,Huang D,Cai M M,Zheng L Y,Yu Z N,Zhang J B.2020.Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intesti-nal bacterial community homeostasis in Hermetiaillucens L.[J].PLoS One,15(4):e0225873.doi:10.1371/journal.pone.0225873.
Huang Z H,Guan W L,Wei X B,Chen R C,Lyu X M,Zheng G H,Mao L C.2023.Examination of the role of hypoxia-inducible factor-1α(HIF-1α)in preventing hemocyte apo-ptosis in whiteleg shrimp(Litopenaeusvannamei)[J].Aquaculture,563:738905.doi:10.1016/j.aquaculture.2022.738905.
Inada M,Kihara K,Kono T,Sudhakaran R,Mekata T,Sakai M,Yoshida T,Itami T.2013.Deciphering of the Dual oxi-dase(Nox family)gene from kuruma shrimp,Marsu-penaeus japonicus:Full-length cDNA cloning and charac-terization[J].Fish&Shellfish Immunology,34(2):471-485.doi:10.1016/j.fsi.2012.11.026.
Ji Y J,Gao B,Zhao D,Wang Y,Zhang L,Wu H,Xie Y F,ShiQ Y,Guo W.2024.Involvement of Sep38βin the insecti-cidal activity of Bacillus thuringiensis against beet army-worm,Spodoptera exigua(Lepidoptera)[J].Journal of Agricultural and Food Chemistry,72(4):2321-2333.doi:10.1021/acs.jafc.3c06667.
Jia R,Dai X L,Li Y F,Yang X T,Min X W,Quan D R,Liu P,Huang X,Ge J C,Ren Q.2023.Duox mediated ROS pro-duction inhibited WSSV replication in Eriocheir sinensis under short-term nitrite stress[J].Aquatic Toxicology,260:106575.doi:10.1016/j.aquatox.2023.106575.
Kim S H,Lee W J.2014.Role of DUOX in gut inflammation:Lessons from Drosophila model of gut-microbiota interac-tions[J].Frontiers in Cellular and Infection Microbiology,3:116.doi:10.3389/fcimb.2013.00116.
Lee K A,Cho K C,Kim B,Jang I H,Nam K,Kwon Y E,Kim M,Hyeon D Y,Hwang D,Seol J H,Lee W J.2018.Inflammation-modulated metabolic reprogramming is re-quired for DUOX-dependent gut immunity in Drosophila[J].Cell Host&Microbe,23(3):338-352.doi:10.1016/j.chom.2018.01.011.
Li C S,Kausar S,Gul I,Yao X X,Li M Y,Chen C C,Abbas M N,Dai L S.2020.Heat shock protein 20 from Procam-barus clarkii is involved in the innate immune responses against microbial infection[J].Developmental&Compa-rative Immunology,106:103638.doi:10.1016/j.dci.2020.103638.
Li Q Q,Zhang M D,Qin S Y,Wen J,Shen X L,Du Z Q.2024.Dual oxidase 2(duox 2)participates in the intestinal anti-bacterial innate immune responses of Procambarus clarkii by regulating ROS levels[J].Developmental&Compara-tive Immunology,153:105116.doi:10.1016/j.dci.2023.105116.
Li T,Yan D F,Wang X H,Zhang L,Chen P.2019.Hemocyte changes during immune melanization in Bombyx mori infected with Escherichia coli[J].Insects,10(9):301.doi:10.3390/insects 10090301.
Lipinski S,Till A,Sina C,Arlt A,Grasberger H,Schreiber S,Rosenstiel P.2009.DUOX2-derived reactive oxygen spe-cies are effectors of NOD2-mediated antibacterial res-ponses[J].Journal of Cell Science,122(19):3522-3530.doi:10.1242/jcs.050690.
Nocella C,D'Amico A,Cammisotto V,Bartimoccia S,Castel-lani V,Loffredo L,Marini L,F(xiàn)errara G,Testa M,Motta G,Benazzi B,Zara F,F(xiàn)rati G,Sciarretta S,Pignatelli P,Violi F,Carnevale R,Group S.2023.Structure,activation,and regulation of NOX2:At the crossroad between the innate immunity and oxidative stress-mediated pathologies[J].Antioxidants,12(2):429.doi:10.3390/antiox 12020429.
Qin Z D,Babu V S,Lin H Z,Dai Y,Kou H Y,Chen L H,Li J,Zhao L J,Lin L.2019.The immune function of propheno-loxidase from red swamp crayfish(Procambarus clarkii)in response to bacterial infection[J].Fish&ShellfishIm-munology,92:83-90.doi:10.1016/j.fsi.2019.05.005.
Rada B,Leto T L.2008.Oxidative innate immune defenses by Nox/Duox family NADPH oxidases[J].Trends in Innate Immunity,15:164-187.doi:10.1159/000136357.
Ramond E,JametA,Ding X Q,Euphrasie D,Bouvier C,Lalle-mant L,He X Y,Arbibe L,Coureuil M,Charbit A.2021.Reactive oxygen species-dependent innate immune mecha-nisms control methicillin-resistant Staphylococcus aureus virulence in the drosophila larval model[J].mBio,12(3):e0027621.doi:10.1128/mBio.00276-21.
Sun Z Q,Hao S F,Gong Y,Zhang M,Aweya J J,Tran N T,Zhang Y L,Ma H Y,Li S K.2018.Dual oxidases partici-pate in the regulation of hemolymph microbiota homeosta-sis in mud crab Scylla paramamosain[J].Developmental&Comparative Immunology,89:111-121.doi:10.1016/j.dci.2018.08.009.
Tassanakajon A,Rimphanitchayakit V,Visetnan S,Amparyup P,Somboonwiwat K,Charoensapsri W,Tang S.2018.Shrimp humoral responses against pathogens:Antimicro-bial peptides and melanization[J].Developmental&Com-parative Immunology,80:81-93.doi:10.1016/j.dci.2017.05.009.
To E E,O'Leary J J,O'Neill L A J,Vlahos R,Bozinovski S,Porter C J H,Brooks R D,Brooks D A,Selemidis S.2020.Spatial properties of reactive oxygen species govern pathogen-specific immune system responses[J].Antioxi-dants&Redox Signaling,32(13):982-992.doi:10.1089/ars.2020.8027.
Vasta G R,Wang J X.2020.Galectin-mediated immune recog-nition:Opsonic roles with contrasting outcomes in selected shrimp and bivalve mollusk species[J].Developmental&Comparative Immunology,110:103721.doi:10.1016/j.dci.2020.103721.
Wilson K,Cotter S C,Reeson A F,Pell J K.2001.Melanism and disease resistance in insects[J].Ecology Letters,4(6):637-649.doi:10.1046/j.1461-0248.2001.00279.x.
Yang H T,Yang M C,Sun J J,Shi X Z,Zhao X F,Wang J X.2016.Dual oxidases participate in the regulation of intesti-nalmicrobiotic homeostasis in the kuruma shrimp Marsu-penaeus japonicus[J].Developmental&ComparativeIm-munology,59:153-163.doi:10.1016/j.dci.2016.01.024.
Yang Q H,Sun Z Q,Zhou Y L,Tran N T,Zhang X S,Lin Q,Zhou C,Zhang Y L,Li S K.2020.SpATF2 participates in maintaining the homeostasis of hemolymph microbiota by regulating dual oxidase expression in mud crab[J].Fish&Shellfish Immunology,104:252-261.doi:10.1016/j.fsi.2020.05.049.
Yu J J,Teng S S,Yue X,Wang H X,Liu B Z.2023.The Toll pathway and Duox-ROS system are required for the clam antibacterial immune response in the hepatopancreas[J].Aquaculture,574:739637.doi:10.1016/j.aquaculture.2023.739637.
Zhang D,Dong M R,Song X R,Qiao X,Yang Y,Yu S M,Sun W D,Wang L L,Song L S.2022.ROS function as an inducer of autophagy to promote granulocyte proliferation in Pacific oyster Crassostrea gigas[J].Developmental&Comparative Immunology,135:104479.doi:10.1016/j.dci.2022.104479.
Zhang M,Tran N T,Zhang Y S,Yang Q H,Tang Y,Zhang Y L,Li S K.2023.SpNox regulates the homeostasis in the hemolymph and gut of mud crab(Scylla paramamosain)by generating ROS[J].Aquaculture,575:739760.doi:10.1016/j.aquaculture.2023.739760.
Zhang X J,Li G Y,Jiang H Y,Li L M,Ma J G,Li H M,Chen J P.2019.Full-length transcriptome analysis of Litopenaeusvannamei reveals transcript variants involved in the innate immune system[J].Fish&Shellfish Immunology,87:346-359.doi:10.1016/j.fsi.2019.01.023.
(責任編輯蘭宗寶)