摘要:【目的】克隆刺葡萄類鈣調(diào)蛋白基因VdCML8基因及其啟動(dòng)子序列,并對(duì)VdCML8基因進(jìn)行表達(dá)分析,對(duì)其啟動(dòng)子進(jìn)行轉(zhuǎn)錄活性測(cè)定,為深入探究該基因在葡萄抗炭疽病中的生物學(xué)功能提供理論參考?!痉椒ā恳源唐咸炎锨餅椴牧?,采用RT-PCR技術(shù)克隆VdCML8基因及其啟動(dòng)子序列,對(duì)VdCML8蛋白的理化性質(zhì)和二級(jí)結(jié)構(gòu)進(jìn)行生物信息學(xué)分析,并采用實(shí)時(shí)熒光定量PCR檢測(cè)刺葡萄紫秋和歐洲葡萄紅地球CML8基因在接種膠孢炭疽菌及外施水楊酸(SA)和茉莉酸(JA)處理后的表達(dá)特征,通過(guò)構(gòu)建β-葡萄糖苷酶(GUS)融合載體轉(zhuǎn)化煙草進(jìn)行轉(zhuǎn)錄活性檢測(cè)。【結(jié)果】VdCML8基因的開放閱讀框(ORF)長(zhǎng)度為450 bp,編碼149個(gè)氨基酸殘基,具有EF-hand結(jié)構(gòu)域,其二級(jí)結(jié)構(gòu)中α-螺旋占65.10%,延伸鏈占4.70%,無(wú)規(guī)則卷曲占20.13%,β-轉(zhuǎn)角占10.07%,該蛋白定位于細(xì)胞膜中。由系統(tǒng)發(fā)育進(jìn)化樹可知,刺葡萄VdCML8蛋白與歐洲葡萄VvCML8和河岸葡萄VrCML8的親緣關(guān)系較近。VdCML8基因的啟動(dòng)子序列(pVdCML8)長(zhǎng)度為1050 bp,除含有大量的CAAT-box和TATA-box外,還含有一些光響應(yīng)元件(L-box、chs-CMALa和TCT-motif)、脫落酸(ABA)響應(yīng)元件(ABRE)、厭氧誘導(dǎo)響應(yīng)元件(ARE)、防御和應(yīng)激元件(TC-rich repeats)、傷害響應(yīng)元件(WUN-motif)等。構(gòu)建pVdCML8的瞬時(shí)表達(dá)載體pVdCML8::GUS,瞬時(shí)轉(zhuǎn)化煙草后發(fā)現(xiàn)pVdCML8具有轉(zhuǎn)錄活性,且能驅(qū)動(dòng)VdCML8基因表達(dá)。在接種膠孢炭疽菌后,刺葡萄紫秋VdCML8基因和歐洲葡萄紅地球VvCML8基因表達(dá)均上調(diào),均在接種后12 h達(dá)峰值,二者的相對(duì)表達(dá)量是對(duì)照組(清水處理)的22.08和9.30倍。SA處理3 h時(shí),VdCML8基因的相對(duì)表達(dá)量是對(duì)照組的7.68倍,是VvCML8基因的2.76倍。JA處理6 h時(shí),VdCML8基因達(dá)峰值,是對(duì)照組的22.25倍,是VvCML8基因的9.04倍?!窘Y(jié)論】VdCML8基因是SA和JA信號(hào)途徑的下游調(diào)控基因,SA和JA可誘導(dǎo)其高效表達(dá),參與葡萄炭疽病響應(yīng)過(guò)程,對(duì)提高植株抗病性具有一定作用。
關(guān)鍵詞:刺葡萄;膠孢炭疽病;VdCML8;啟動(dòng)子;轉(zhuǎn)錄活性;表達(dá)分析
中圖分類號(hào):S663.103.6文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)08-2225-12
Cloning and expression analysis of calmodulin-like protein geneVdCML8 in Vitis davidii and determination of its promotertranscriptional activity
DUAN Feng-feng,CHEN Man-ying,LEI Tian-ci,ZHANG Meng-qi,WEN Zhi-feng*
(College of Horticulture,F(xiàn)ujian Agriculture and Forestry University,F(xiàn)uzhou,F(xiàn)ujian 35000 China)
Abstract:【Objective】Calmodulin-like protein gene(VdCML8)in Vitis davidii and its promoter sequence were cloned,and the expression of VdCML8 gene was analyzed,and the transcriptional activity of its promoter was determinedto provide theoretical reference for further exploring the anti-anthracnose biological function of this gene in grapes.【Method】V.davidiiZiqiu was as mate-rials.The VdCML8 gene and its promoter sequence were cloned by RT-PCR,andthe physicochemical properties and se-condary structure of VdCML8 protein were analyzed by bioinformatics.Real-timefluorescence quantitative PCR was used to detect the expression characteristics of CML8 gene in V.davidiiZiqiu and V.vi-niferacv.Red Globe after inoculation with Colletotrichum gloeosporioides and external salicylic acid(SA)and jasmonicacid(JA)treatments.β-glucosidase(GUS)fusion vector was constructed and transformed tobacco for transcriptional ac-tivity detection.【Result】The open reading frame(ORF)of VdCML8 gene was 450 bp,encoded 149 amino acids residues,and had an EF-hand domain.In the secondary structure,the proportion ofα-helix was 65.10%,that of extension chain was 4.70%,that of random coil was 20.13%,and that ofβ-turn was 10.07%.The protein was localized in the cell mem-brane.According to phylogenetic tree,VdCML8 protein in V.davidii was closely related to V.vinifera VvCML8 and V.ri-paris VrCML8.The VdCML8 gene promoter sequence(pVdCML8)was 1050 bp.It contained a large number of CAAT-box and TATA-box,and also contained some light response elements(L-box,chs-CMALa and CTT-motif),episisic acid(ABA)response element ABRE,anaerobic induction response element(ARE),defense and stress element(TC-rich re-peats),wounding response element(WUN-motif).pVdCML8::GUS,a transient expression vector of pVdCML8,was constructed.It was found that pVdCML8 had transcriptional activity and could drive the expression of VdCML8 gene aftertransient transformation of tobacco.The expression of V.davidiiZiqiu VdCML8 gene and V.vinifera VvCML8 gene were up-regulated and reached the peak at 12 h after inoculation.The relative expression levels of both were as 22.08 times and 9.30 times as that of control group(water treatment).After SA treatment for 3 h,the relative expression of VdCML8 gene was as 7.68 times as that of control and as 2.76 times as that of VvCML8 gene.After JA treatment for 6 h,VdCML8 genereached itspeak and was as 22.25 times as that of control group and as 9.04 times as that of VvCML8 gene.【Conclusion】VdCML8 gene is the downstream regulatory gene of SA and JA signaling pathways.SA and JA can induce its efficient ex-pression,participate in the response process of grape anthracnose,and have certain effects in improving plant disease re-sistance.
Key words:Vitisdavidii;Colletotrichum gloeosporioides;VdCML8;promoter;transcriptional activity;expression analysis
Foundation items:National Natural Science Foundation of China(31701907)
0引言
【研究意義】葡萄(Vitis vinifera L.)屬于葡萄科葡萄屬,因其獨(dú)特的風(fēng)味和廣泛的用途,具有很高的經(jīng)濟(jì)價(jià)值(張潔,2022)。葡萄霜霉病、黑痘病、炭疽病等是葡萄生產(chǎn)中常見的病害,其中由膠孢炭疽菌引發(fā)的炭疽病危害較為嚴(yán)重,成為葡萄的主要病害之一,對(duì)葡萄生產(chǎn)造成了嚴(yán)重?fù)p失。目前我國(guó)葡萄種質(zhì)資源圃已有3000個(gè)以上(劉偉等,2016;段長(zhǎng)青等,2019;張新龍等,2023)。研究發(fā)現(xiàn),部分葡萄種質(zhì)資源攜帶有效的抗病基因,從中挑選培養(yǎng)出最具經(jīng)濟(jì)效益的抗炭疽病葡萄品種,是預(yù)防炭疽病發(fā)生的有效方法(李順雨等,2010)。刺葡萄(V.davidii)是葡萄屬中東亞種群的一種野生種質(zhì)資源,其品質(zhì)好、耐粗放管理,有良好的抗病性及耐濕熱性,對(duì)炭疽病近乎免疫,故刺葡萄可作為抗真菌病害育種的優(yōu)良資源(阮仕立和李記明,2002;程大偉等,2015),但其抗性基因尚未被挖掘。類鈣調(diào)蛋白(CML)在植物對(duì)病原菌的防御反應(yīng)中發(fā)揮調(diào)控作用,但葡萄中CML基因的相關(guān)研究較少。因此,深入研究CML基因在葡萄抗炭疽病過(guò)程中的調(diào)控機(jī)制,有助于揭示其在抗病原菌響應(yīng)過(guò)程中的具體功能和調(diào)控網(wǎng)絡(luò)?!厩叭搜芯窟M(jìn)展】鈣是植物體中調(diào)節(jié)信息轉(zhuǎn)導(dǎo)的重要物質(zhì),是生物體中的第二信使。目前已發(fā)現(xiàn)4類鈣信號(hào)系統(tǒng):鈣調(diào)蛋白(CaMs)、CML、類鈣調(diào)蛋白因子(CBL)和改依賴性蛋白激酶(CDPK)(曹紹玉等,2018),其中ChKi//Yvbs1N2TwLL1/ptng==ML蛋白是一類廣泛存在于植物界中含有鈣離子結(jié)合EF-hand結(jié)構(gòu)域的蛋白,對(duì)于生物的多種生物學(xué)過(guò)程具有調(diào)控功能(Day et al.,2002)。例如,已從大豆(陳超等,2015)、番茄(Munir et al.,2016)、葡萄(Vandelleet al.,2018)、陸地棉(楊秀等,2019)和銀杏(Zhang et al.,2022b)中分別鑒定到68、52、62、154和26個(gè)CML基因,這些基因在植物響應(yīng)多種環(huán)境脅迫過(guò)程中發(fā)揮重要作用。擬南芥中的AtCML24基因編碼1種潛在的鈣離子傳感器,該傳感器可能有助于對(duì)脫落酸(ABA)、日長(zhǎng)和各種鹽的存在做出反應(yīng)。從巴西橡膠樹、美國(guó)山核桃等作物中克隆獲得CML基因,其參與調(diào)控抗高鹽和高溫等非生物脅迫響應(yīng)(劉輝等,2015)。山葡萄(V.amu-rensisRupr)中32個(gè)VaCMLs基因積極響應(yīng)非生物脅迫(Dubrovina et al.,2019),其中VaCML21基因的所有4個(gè)剪接變異體受冷應(yīng)激的高度誘導(dǎo)(Aleynova et al.,2020)。植物在長(zhǎng)期進(jìn)化過(guò)程中逐漸形成一系列有效機(jī)制來(lái)感知和抑制病原菌的入侵(Zipfel and Felix,2005),在病原體侵染植物的過(guò)程中,部分CMLs家族成員可能通過(guò)與其他蛋白質(zhì)的相互作用和信號(hào)傳遞,參與調(diào)控植物的抗病響應(yīng)(曹紹玉等,2018)。擬南芥受丁香假單胞菌侵染時(shí),AtCML41基因參與防御響應(yīng)(Xu etal.,2017);AtCML9基因可通過(guò)鞭毛蛋白依賴途徑響應(yīng)病原菌,從而提高自身免疫力(Leba et al.,2012)。對(duì)于生物脅迫,山葡萄VaCML65基因作為正調(diào)控因子參與二苯乙烯的生物合成信號(hào)通路,而二苯乙烯可在葡萄中迅速積累來(lái)應(yīng)對(duì)傷害或病原體,從而提高葡萄的抗性(Aley-nova etal.,2022)。使用病毒誘導(dǎo)基因沉默(VGIS)技術(shù)對(duì)AtCML24基因進(jìn)行沉默,會(huì)導(dǎo)致植株中一氧化氮和超敏物質(zhì)含量下降(Ma etal.,2008)。在一些病原物的侵染下,擬南芥AtCML37和AtCML42基因發(fā)揮防御調(diào)控作用(Heyer et al.,2022)。棉花GhCML11和GhMYB108基因?qū)Υ篼愝喼哂姓虻膮f(xié)同調(diào)控作用,導(dǎo)致植株對(duì)大麗輪枝菌抗性增強(qiáng),但將GhCML11和GhMYB108基因沉默,協(xié)同調(diào)控作用消失,一些與鈣信號(hào)相關(guān)基因表達(dá)量下調(diào)(Cheng et al.,2016)。【本研究切入點(diǎn)】目前,CML基因在非生物脅迫下的表達(dá)變化及功能響應(yīng)是目前主要的研究方向,對(duì)于其響應(yīng)生物脅迫的研究較少,尤其是鮮見有關(guān)CML基因參與葡萄抗炭疽病方面的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以刺葡萄紫秋為試驗(yàn)材料,采用RT-PCR技術(shù)克隆VdCML8基因及其啟動(dòng)子序列,對(duì)VdCML8蛋白的理化性質(zhì)和二級(jí)結(jié)構(gòu)進(jìn)行生物信息學(xué)分析,并采用實(shí)時(shí)熒光定量PCR檢測(cè)刺葡萄紫秋和歐洲葡萄紅地球CML8基因在接種膠孢炭疽菌及外施水楊酸(SA)和茉莉酸(JA)處理后的表達(dá)特征,通過(guò)構(gòu)建β-葡萄糖苷酶(GUS)融合載體轉(zhuǎn)入煙草進(jìn)行轉(zhuǎn)錄活性檢測(cè),為深入探究CML基因抗葡萄炭疽病的生物學(xué)功能提供理論參考。
1材料與方法
1.1試驗(yàn)材料
供試材料為樹齡5年且生長(zhǎng)狀態(tài)良好的刺葡萄紫秋和歐洲葡萄紅地球(V.viniferacv.Red Globe),栽培于福州市農(nóng)業(yè)科學(xué)研究所(25°58′N,119°22′E),采集其葉片液氮速凍后,-80℃保存?zhèn)溆?。葡萄膠孢炭疽菌菌株(FZ-1)由福建農(nóng)林大學(xué)園藝學(xué)院果樹抗病與遺傳育種實(shí)驗(yàn)室提供。
主要試劑:RNAprep Pure Plant Kit多糖多酚RNA提取試劑盒購(gòu)自南京諾唯贊生物科技股份公司;DNA純化回收檢測(cè)試劑盒、質(zhì)粒小提檢測(cè)試劑盒和植物基因組DNA提取試劑盒等購(gòu)自天根生化科技(北京)有限公司;SYBR Green PCR Mastermix試劑盒購(gòu)自寶生物(大連)有限公司??敲顾兀↘ana)和氨芐西林(Amp)購(gòu)自生工生物工程(上海)股份有限公司,用于篩選陽(yáng)性菌落。主要儀器設(shè)備:實(shí)時(shí)熒光定量PCR儀(德國(guó)Analytik Jena公司)、凝膠成像系統(tǒng)(美國(guó)BIO-RAD公司)、離心機(jī)(美國(guó)ThermoFisher Scientific公司)、高壓滅菌鍋(日本HIRAYAMA公司)、恒溫水浴鍋(上海精宏實(shí)驗(yàn)設(shè)備有限公司)、紫外分光光度計(jì)(德國(guó)Analytik Jena公司)。
1.2試驗(yàn)方法
1.2.1膠孢炭疽菌接種及SA和JA處理膠孢炭疽菌接種處理:噴施前,將濃度為1×106個(gè)/mL的膠孢炭疽菌分生孢子加入0.2%吐溫20,選擇生長(zhǎng)健康的刺葡萄紫秋和歐洲葡萄紅地球植株進(jìn)行噴施,以葉片不滴水為宜,同時(shí)設(shè)無(wú)菌水處理作為對(duì)照組(CK)。將植株保持在25℃、80%濕度的條件下培養(yǎng)。接種后0、6、12、24、48和72 h,收集被處理的葡萄葉片樣品,使用液氮速凍后于-80℃保存?zhèn)溆?。每個(gè)時(shí)間點(diǎn)設(shè)3次重復(fù)試驗(yàn)。
SA和JA處理:使用SA和JA(濃度均為100μmol/L)均勻噴施于刺葡萄紫秋和歐洲葡萄紅地球植株上,以無(wú)菌水處理為對(duì)照組(CK)。取樣、培養(yǎng)方法同上述一致。分別在0、3、6、12和24 h時(shí)收集葡萄葉片,使用液氮速凍后于-80℃保存?zhèn)溆谩C總€(gè)時(shí)間點(diǎn)設(shè)3次重復(fù)。
1.2.2 VdCML8基因克隆提取條帶完整、OD260/OD280約為2.0的RNA作為模板。使用Primer 5.0設(shè)計(jì)PCR擴(kuò)增刺葡萄紫秋VdCML8基因完整開放閱讀框(ORF)的上、下游引物(表1)。反應(yīng)體系25.0μL:2×Taq PCR Master Mix 12.5μL,上、下游引物各1.0μL,cDNA 1.0μL,ddH2O補(bǔ)足至25.0μL。擴(kuò)增程序:94℃預(yù)變性90 s;94℃30 s,58℃60 s,72℃90 s,進(jìn)行34個(gè)循環(huán);72℃延伸10min。將PCR產(chǎn)物用1%瓊脂糖凝膠電泳檢測(cè)。將目的片段與pMD20-T克隆載體連接,再利用凍融法將連接產(chǎn)物轉(zhuǎn)化大腸桿菌,將轉(zhuǎn)化菌液涂布在含100 mg/LAmp的LB固體培養(yǎng)基上。挑選陽(yáng)性單菌落,并將其送至尚亞生物技術(shù)(福州)有限公司進(jìn)行測(cè)序。
1.2.3生物信息學(xué)分析使用ORFfinder對(duì)VdCML8基因進(jìn)行ORF預(yù)測(cè);利用NCBI數(shù)據(jù)庫(kù)NCBI Con-served Domain Database(CDD)工具預(yù)測(cè)VdCML8蛋白的保守結(jié)構(gòu)域;使用DNAMAN 8.0對(duì)不同物種的CML基因序列進(jìn)行多重比對(duì)及系統(tǒng)發(fā)育分析;利用SOPMA工具預(yù)測(cè)VdCML8蛋白的二級(jí)結(jié)構(gòu)。利用ProtParam預(yù)測(cè)VdCML8蛋白的理化性質(zhì)。使用PlantCARE預(yù)測(cè)VdCML8基因啟動(dòng)子的順式作用元件。
1.2.4 VdCML8蛋白亞細(xì)胞定位以VdCML8-GFP-F和VdCML8-GFP-R(攜帶Hind III和Xba I酶切位點(diǎn))為引物(表1),對(duì)VdCML8基因的ORF進(jìn)行PCR擴(kuò)增。隨后將PCR產(chǎn)物與pBI221-35S-GFP載體連接獲得表達(dá)載體pBI221-35S-VdCML8-GFP,將其送至尚亞生物科技(福州)有限公司進(jìn)行測(cè)序,并通過(guò)農(nóng)桿菌介導(dǎo)法將表達(dá)載體轉(zhuǎn)化洋蔥內(nèi)表皮細(xì)胞,在培養(yǎng)48h后,使用激光掃描共聚焦顯微鏡觀察洋蔥內(nèi)表皮中GFP的熒光反應(yīng)。
1.2.5 VdCML8基因啟動(dòng)子克隆及GUS融合表達(dá)載體構(gòu)建從NCBI數(shù)據(jù)庫(kù)的葡萄基因組中搜索到CML8基因啟動(dòng)子序列,并利用Primer 5.0設(shè)計(jì)其特異性引物(表1),以刺葡萄DNA為模板,PCR擴(kuò)增VdCML8基因啟動(dòng)子序列(pVdCML8),反應(yīng)體系與1.2.2相同。將PCR產(chǎn)物送至尚亞生物技術(shù)(福州)有限公司進(jìn)行測(cè)序,以驗(yàn)證PCR產(chǎn)物的正確性。使用BamH I和Pst I對(duì)中間載體pMD20-T-pVdCML8和pC0380::GUS進(jìn)行雙酶切。使用T4連接酶將兩者連接成重組載體(pVdCML8::GUS),并轉(zhuǎn)化大腸桿菌感受態(tài)細(xì)胞,菌液PCR檢測(cè)陽(yáng)性克隆。通過(guò)BamH I和Pst I雙酶切驗(yàn)證,挑選陽(yáng)性克隆送至尚亞生物技術(shù)(福州)有限公司進(jìn)行測(cè)序,并采用凍融法轉(zhuǎn)化農(nóng)桿菌GV3101。
1.2.6 GUS化學(xué)染色分析與GUS活性測(cè)定使用農(nóng)桿菌注射滲透法瞬時(shí)轉(zhuǎn)化本式煙草,將葉片放入GUS染色液中37℃避光染色1 d,用75%乙醇進(jìn)行多次脫色處理,直至完全脫色,然后使用體視顯微鏡拍照記錄。將含pVdCML8::GUS、pC0380::GUS(陰性對(duì)照)和pCaMV35S::GUS(陽(yáng)性對(duì)照)的農(nóng)桿菌重懸液通過(guò)葉片背面注射瞬時(shí)轉(zhuǎn)化煙草葉片中,暗培養(yǎng)2 d后采集葉片液氮速凍進(jìn)行GUS活性測(cè)定對(duì)葉片進(jìn)行膠孢炭疽菌、SA和MeJA處理2 d后收集葉片,液氮速凍后進(jìn)行GUS活性測(cè)定。
1.2.7實(shí)時(shí)熒光定量PCR檢測(cè)以葡萄Actin為內(nèi)參基因,實(shí)時(shí)熒光定量PCR檢測(cè)刺葡萄紫秋和歐洲葡萄紅地球CML8基因在膠孢炭疽菌、SA、JA處理后不同時(shí)間點(diǎn)的相對(duì)表達(dá)量。反應(yīng)體系10.0μL:5.0μL:SYBR Green I qPCR Mix,10μmol/L上、下游引物0.8μL,cDNA模板2.0μL,ROX 0.4μL,ddH2O補(bǔ)足至10.0μL。擴(kuò)增程序:95℃預(yù)變性180 s;94℃30 s,60℃30 s,進(jìn)行42個(gè)循環(huán)。采用2-ΔΔCt方法計(jì)算目的基因的相對(duì)表達(dá)量(Schmittgen and Livak,2008),并用SPSS 26.0進(jìn)行差異顯著性分析。
2結(jié)果與分析
2.1 VdCML8基因cDNA克隆及序列分析結(jié)果
PCR擴(kuò)增獲得VdCML8基因的ORF序列(Gen-Bank登錄號(hào)為MN913567.1),長(zhǎng)度為450 bp(圖1),編碼149個(gè)氨基酸殘基,包含EF-hand結(jié)構(gòu)域(84~146個(gè)氨基酸)(圖2)。VdCML8蛋白分子式為C727H1147N193O252S1 相對(duì)分子量為16.97 kD,理論等電點(diǎn)4.08,不穩(wěn)定系數(shù)44.5 半衰期30 h,脂肪系數(shù)78.59,親水指數(shù)-0.429,說(shuō)明VdCML8為帶正電荷且不穩(wěn)定的親水蛋白。VdCML8蛋白的二級(jí)結(jié)構(gòu)中“-螺旋占比最高,達(dá)65.10%,無(wú)規(guī)則卷曲、β-轉(zhuǎn)角和延伸鏈占比分別為20.13%、10.07%和4.70%(圖3-A)。VdCML8蛋白無(wú)信號(hào)肽(圖3-B)。
2.2 VdCML8蛋白系統(tǒng)發(fā)育分析及同源對(duì)比結(jié)果
對(duì)從NCBI數(shù)據(jù)庫(kù)中下載的不同物種CML8氨基酸序列進(jìn)行同源比對(duì),結(jié)果顯示,刺葡萄VdCML8(GenBank登錄號(hào)MN913567.1)與GenBank上已經(jīng)公布的歐洲葡萄(V.vinifera,RVW54726.1)VvCML8、河岸葡萄(V.riparis,XP_034690901.1)VrCML8、橡膠樹(Hevea brasiliensis,XP_021635369.1)HbCML8、蘋果(Malus domestica,XP_008368689.2)、石榴(Punica granatum,XP_031401729.1)PgCML8的氨基酸序列相似性分別為99.33%、97.32%、85.14%、83.56%和84.93%,推測(cè)VdCML8與VvCML8、VrCML8、HbCML8為同源蛋白,氨基酸序列比對(duì)結(jié)果如圖4所示。
由系統(tǒng)發(fā)育進(jìn)化樹(圖5)可知,刺葡萄VdCML8與歐洲葡萄(V.vinifera,RVW54726.1)VvCML8和河岸葡萄(V.riparis,XP_034690901.1)VrCML8聚在一起,形成同一個(gè)小分支,說(shuō)明三者間親緣關(guān)系較近,其次是VdCML8與番木瓜(Carica papaya,XP_0218 99590.1)CpCML8親緣關(guān)系較近,與楊梅(Morella rubra,KAB1203367.1)MrCML8、石榴(Punica gra-natum,XP_031401729.1)PgCML8、橡膠樹(H.brasi-liensis,XP_021635369.1)HbCML8、李(Prunus per-sica,XP_007200520.1)PpCML8和中華薔薇(Rosa chinensis,XP_024168224.1)RcCML8的親緣關(guān)系較遠(yuǎn)。歐洲葡萄、河岸葡萄和刺葡萄紫秋均屬于葡萄科葡萄屬,表明刺葡萄VdCML8在進(jìn)化上較為保守。
2.3 VdCML8蛋白亞細(xì)胞定位結(jié)果
通過(guò)農(nóng)桿菌介導(dǎo)的洋蔥表皮細(xì)胞瞬時(shí)表達(dá)分析VdCML8蛋白亞細(xì)胞定位,結(jié)果如圖6所示。含有空載體pBI221-35S-GFP洋蔥細(xì)胞的細(xì)胞核和細(xì)胞膜中有綠色熒光;將含有VdCML8的融合蛋白表達(dá)載體(pBI221-35S-VdCML8-GFP)注射到洋蔥表皮細(xì)胞中后,在細(xì)胞膜中觀察到綠色熒光,結(jié)果表明VdCML8蛋白定位在細(xì)胞膜上。
2.4 VdCML8基因啟動(dòng)子克隆及順式作用元件分析結(jié)果
以刺葡vOCG98+i3wQM1SmVnnRhkJsElhtTKa0LUHfIVMXyPCQ=萄紫秋DNA為模板進(jìn)行PCR擴(kuò)增,獲得長(zhǎng)度約為1050 bp的啟動(dòng)子序列pVdCML8(Gen-Bank登錄號(hào):PP852686)(圖7)。通過(guò)PlantCARE預(yù)測(cè)pVdCML8序列的順式作用元件,結(jié)果(表2)顯示,pVdCML8除含有大量的CAAT-box和TATA-box外,還含有一些光響應(yīng)元件(L-Box、chs-CMALa和TCT-motif)、ABA響應(yīng)元件(ABRE)、厭氧誘導(dǎo)響應(yīng)元件(ARE)、防御和應(yīng)激元件(TC-rich repeats)、傷害響應(yīng)元件有(WUN-motif)等。由此可見,pVdCML8啟動(dòng)子能響應(yīng)多種信號(hào)誘導(dǎo),說(shuō)明VdCML8基因在激素誘導(dǎo)和QHpPPrBED2sHHxoqmMQY7rwLsk+ycPuss9mGSu7GLww=逆境響應(yīng)中扮演重要的調(diào)控角色,為進(jìn)一步研究刺葡萄的應(yīng)激響應(yīng)機(jī)制提供了重要線索。
2.5 VdCML8基因啟動(dòng)子融合表達(dá)載體構(gòu)建
對(duì)pVdCML8進(jìn)行PCR擴(kuò)增后,在pVdCML8兩端加入酶切位點(diǎn)BamH I和Pst I。將pVdCML8連接至pC0380::GUS上,獲得GUS融合表達(dá)載體pVd-CML8::GUS(圖8)。
2.6 VdCML8基因啟動(dòng)子活性測(cè)定結(jié)果
GUS化學(xué)染色結(jié)果顯示,陽(yáng)性對(duì)照顏色較深(圖9-A),試驗(yàn)組pVdCML8::GUS染色的葉片較陽(yáng)性對(duì)照顏色淺(圖9-B),陰性對(duì)照無(wú)色(圖9-C),說(shuō)明VdCML8基因啟動(dòng)子能正常表達(dá)。通過(guò)將pVdCML8::GUS融合表達(dá)載體序列轉(zhuǎn)化煙草葉片,并進(jìn)行接種膠孢炭疽菌及噴施SA和MeJA處理,結(jié)果發(fā)現(xiàn),與對(duì)照相比,處理樣品的GUS活性極顯著升高(圖10)(P<0.01),推測(cè)膠孢炭疽菌和MeJA可誘導(dǎo)VdCML8基因表達(dá)。
2.7不同葡萄品種CML8基因在膠孢炭疽菌、JA和SA誘導(dǎo)下的表達(dá)模式
利用實(shí)時(shí)熒光定量PCR檢測(cè)接種膠孢炭疽菌后刺葡萄紫秋VdCML8基因和歐洲葡萄紅地球VvCML8基因在葉片的相對(duì)表達(dá)量,結(jié)果如圖11-A所示。接種后0~72 h,VdCML8基因相對(duì)表達(dá)量呈先上升后下降的變化趨勢(shì),在接種6、12、24、48和72 h的相對(duì)表達(dá)量分別為對(duì)照組的7.89、22.08、11.72、5.36和1.19倍,尤其在接種后0~12 h相對(duì)表達(dá)量迅速增長(zhǎng)。歐洲葡萄紅地球?qū)儆谝赘胁∑贩N,在接種膠孢炭疽菌后,VvCML8基因的相對(duì)表達(dá)量較對(duì)照組也有提高,同樣在12 h達(dá)最高,為對(duì)照組的9.30倍,但其相對(duì)表達(dá)量低于刺葡萄紫秋,表明VdCML8能響應(yīng)膠孢炭疽菌的脅迫,推測(cè)VdCML8基因在炭疽病防御反應(yīng)中扮演重要角色,并對(duì)其提高抗病性具有一定的調(diào)控作用。
利用實(shí)時(shí)熒光定量PCR檢測(cè)SA和JA處理下刺葡萄紫秋VdCML8基因和歐洲葡萄紅地球VvCML8基因在葉片的相對(duì)表達(dá)量,結(jié)果如圖11-B和11-C所示。SA處理后0~24 h,VdCML8基因在3 h出現(xiàn)峰值,為對(duì)照組的7.68倍,是VvCML8基因的2.76倍(圖11-B)。JA處理后0~24 h,VdCML8基因的表達(dá)量總體呈現(xiàn)先上升后下降的變化趨勢(shì),在6h的相對(duì)表達(dá)量出現(xiàn)峰值,為對(duì)照組的22.25倍,為VvCML8基因的9.04倍(圖11-C)。綜上所述,VdCML8基因可能是SA和JA信號(hào)途徑的下游調(diào)控因子,參與刺葡萄紫秋對(duì)炭疽病的抗性反應(yīng)。
3討論
CML作為最典型的鈣離子結(jié)合蛋白,在植物生長(zhǎng)發(fā)育和脅迫應(yīng)答中發(fā)揮重要作用(Boonburapong and Buaboocha,2007)。研究表明,CML蛋白廣泛參與植物抗病調(diào)控機(jī)制,其與鈣離子結(jié)合后會(huì)發(fā)生空間結(jié)構(gòu)改變,并在下游引發(fā)特異反應(yīng)(Cheung,1980;McAinsh and Pittman,2009),下游的感受器接收鈣信號(hào),從而調(diào)節(jié)植物的生命活動(dòng)(Scrase-Field and Knight,1979)。小麥TaCML25和TaCML26基因能增強(qiáng)對(duì)葉銹病的抗性,對(duì)有效防治葉銹病具有重要意義(劉鵬等,2020)。擬南芥受丁香假單胞菌侵染后,AtCML8和AtCML9基因表達(dá)上調(diào)(Zhu et al,2017)。從擬南芥中克隆獲得1個(gè)與CaM蛋白相關(guān)的基因AtCML43,當(dāng)擬南芥受丁香假單胞菌侵染時(shí),AtCML43基因在擬南芥葉片中快速響應(yīng),通過(guò)過(guò)表達(dá)加速超敏反應(yīng),能在植物對(duì)病原菌的免疫反應(yīng)中起作用(Chiasson et al,2005)。此外,CML在植物抗病毒過(guò)程中也發(fā)揮重要作用。當(dāng)煙草葉片受煙草蝕紋病毒侵染時(shí),rgs-CaM過(guò)量表達(dá)可抑制HC-Pro的活性,從而增強(qiáng)植物對(duì)病毒的抵抗力(Nakahara,2012)。甜瓜接種尖孢鐮刀菌后,CmCMLs基因表達(dá)顯著上調(diào),推測(cè)CmCMLs對(duì)甜瓜枯萎病有抑制作用(羅瀾等,2021)。小麥基因系TcLr19接種小麥葉銹菌后,TaCML25和TaCML26基因表達(dá)上調(diào),其表達(dá)量是感病突變體mu19中表達(dá)量的4倍(劉鵬等,2020)。大麗輪枝菌Vd080侵染棉花后,GhCML41基因的表達(dá)量顯著升高,說(shuō)明GhCML41參與了棉花抗黃萎病響應(yīng)過(guò)程(趙沛,2019)。本研究對(duì)刺葡萄紫秋(抗病品種)和歐洲葡萄紅地球(感病品種)在接種膠孢炭疽菌后不同時(shí)間點(diǎn)檢測(cè)CML8基因的表達(dá)模式,結(jié)果發(fā)現(xiàn),VdCML8基因的相對(duì)表達(dá)量整體上高于VvCML8基因,推測(cè)該基因參與葡萄炭疽病的抗病反應(yīng)。
植物中植物激素的調(diào)節(jié)是非常重要的抗病機(jī)制,其中SA和JA能激活不同防御信號(hào)途徑,最終使植物產(chǎn)生防御蛋白或次生代謝物(Creelman and Mullet,1997)。棉花GhCML41基因經(jīng)VIGS技術(shù)沉默后,葉片的木質(zhì)素含量減少,胼胝質(zhì)沉淀能力下降,SA和JA含量升高(趙沛,2019)。沉默辣椒SlCML55基因可增加抗病基因PR1的表達(dá),激活植物中SA的免疫反應(yīng),從而增強(qiáng)辣椒對(duì)疫霉菌的抵抗能力(Zhang et al.,2022a)。將花生AhCML69基因過(guò)表達(dá)并瞬時(shí)轉(zhuǎn)化煙草,在接種青枯菌后,其中超敏反應(yīng)(HR)及JA和SA信號(hào)通路相關(guān)基因的表達(dá)均被誘導(dǎo),并顯著上調(diào)(Yang et al.,2024)。本研究通過(guò)SA和JA處理刺葡萄紫秋,結(jié)果顯示VdCML8基因的相對(duì)表達(dá)量明顯高于對(duì)照,推測(cè)外源激素SA和JA能誘導(dǎo)VdCML8基因表達(dá),VdCML8能通過(guò)介導(dǎo)SA和JA信號(hào)參與葡萄炭疽病的抗病反應(yīng)。
啟動(dòng)子是一段控制結(jié)構(gòu)基因轉(zhuǎn)錄、活化,且參與轉(zhuǎn)錄RNA聚合酶的DNA序列(昝新麗等,2013;崔小月等,2024)。中國(guó)華東野生葡萄中的誘導(dǎo)型啟動(dòng)子pVpSTS受白粉病和赤星病誘導(dǎo)表達(dá),該啟動(dòng)子含有TC-rich repeats、ABRE等順式作用元件(Xu et al.,2010)。中國(guó)野生葡萄VpTNL1基因啟動(dòng)子序列(pVpTNL1)中的TC-rich repeats元件可能在葡萄對(duì)葉斑病脅迫的響應(yīng)中起重要作用(Wen et al.,2017)。研究發(fā)現(xiàn),煙草NtVQ35基因能同時(shí)被SA和青枯病菌高效誘導(dǎo)表達(dá),對(duì)該基因的啟動(dòng)子區(qū)域進(jìn)行分析,結(jié)果發(fā)現(xiàn)其啟動(dòng)子區(qū)域含有3個(gè)脅迫和防御響應(yīng)相關(guān)的順式作用元件(劉翠花,2020)。本研究克隆刺葡萄紫秋VdCML8基因的啟動(dòng)子序列,其含有響應(yīng)逆境、激素及光等多種的順式作用元件,因此推測(cè)該順式作用元件在VdCML8基因?qū)δ婢趁{迫的響應(yīng)和防御中發(fā)揮重要作用。玉米ZmRXO1基因的啟動(dòng)子序列包含P-box、GARE-motif和MBS等激素響應(yīng)元件。這些元件使得ZmRXO1基因能對(duì)外源激素如JA、赤霉素和ABA等作出響應(yīng),導(dǎo)致ZmRXO1基因的表達(dá)水平升高(Tao et al.,2015)。玉米Zmap基因啟動(dòng)子序列中含有茉莉酸甲酯(MeJA)響應(yīng)元件,對(duì)瞬時(shí)表達(dá)的煙草噴施MeJA后GUS活性顯著增加,說(shuō)明該基因啟動(dòng)子被激活并促進(jìn)了基因表達(dá)(Jin et al.,2019)。對(duì)木薯MeCML42轉(zhuǎn)基因體胚用100μmol/L的MeJA和SA溶液處理后進(jìn)行GUS活性測(cè)定,結(jié)果發(fā)現(xiàn)2種激素均能調(diào)控MeCML42基因啟動(dòng)子的活性,且不同激素的調(diào)控方式存在差異(侯靜怡等,2024)。本研究構(gòu)建GUS融合表達(dá)載體進(jìn)行GUS活性測(cè)定,在膠孢炭疽菌和MeJA誘導(dǎo)下,GUS活性增強(qiáng),推測(cè)VdCML8基因能夠響應(yīng)膠孢炭疽菌和調(diào)節(jié)MeJA來(lái)抵抗病原菌的侵染。
4結(jié)論
VdCML8基因是SA和JA信號(hào)途徑的下游調(diào)控基因,SA和JA可誘導(dǎo)其高效表達(dá),參與葡萄炭疽病響應(yīng)過(guò)程,對(duì)提高植株抗病性具有一定作用。
參考文獻(xiàn)(References):
曹紹玉,王艷芳,蘇婉玉,張琳,張應(yīng)華,許俊強(qiáng).2018.類鈣調(diào)蛋白在植物生長(zhǎng)發(fā)育及逆境脅迫中的功能研究進(jìn)展[J].植物生理學(xué)報(bào),54(10):1517-1526.[Cao S Y,Wang Y F,Su W Y,Zhang L,Zhang Y H,Xu J Q.2018.Research progress on functions of calmodulin-like proteins in pro-cesses of plant growth and developments and stresses[J].Plant Physiology Journal,54(10):1517-1526.]doi:10.13592/j.cnki.ppj.2018.0053.
陳超,端木慧子,朱丹,劉艾林,肖佳雷,朱延明.2015.大豆CML家族基因的生物信息學(xué)分析[J].大豆科學(xué),34(6):957-963.[Chen C,Duanmu H Z,Zhu D,Liu A L,Xiao J L,Zhu Y M.2015.Bioinformatics analysis of GmCML genes in soybean genome[J].Soybean Science,34(6):957-963.]doi:10.11861/j.issn.1000-9841.2015.06.0957.
程大偉,張國(guó)海,姜建福,樊秀彩,張穎,劉崇懷.2015.刺葡萄種內(nèi)遺傳多樣性研究進(jìn)展[J].植物遺傳資源學(xué)報(bào),16(6):1141-1151.[Cheng D W,Zhang G H,Jiang J F,F(xiàn)an X C,Zhang Y,Liu C H.2015.Intraspecies genetic diver-sityof Vitis davidii[J].Journal of Plant Genetic Resources,16(6):1141-1151.]doi:10.13430/j.cnki.jpgr.2015.06.002.
崔小月,尚泓泉,呂中偉,婁玉穗,張柯,樊紅杰,吳文瑩,張曉鋒.2024.歐洲葡萄NF-YB3基因克隆與表達(dá)分析[J].河南農(nóng)業(yè)科學(xué),53(4):111-118.[Cui X Y,Shang H Q,LüZ W,Lou Y S,Zhang K,F(xiàn)an H J,Wu W Y,Zhang X F.2024.Cloning and expression analysis of NF-YB3 gene from Vitis vinifera[J].Journal of Henan Agricultural Scien-ces,53(4):111-118.]doi:10.15933/j.cnki.1004-3268.2024.04.012.
段長(zhǎng)青,劉崇懷,劉鳳之,王忠躍,劉延琳,徐麗明.2019.新中國(guó)果樹科學(xué)研究70年—葡萄[J].果樹學(xué)報(bào),36(10):1292-1301.[Liu C Q,Duam C H,Liu F Z,Wang Z Y,Liu Y L,Xu L M.2019.Fruit scientific research in new Chinain the past 70 years:Grape[J].Journal of Fruit Science,36(10):1292-1301.]doi:10.13925/j.cnki.gsxb.Z05.
侯靜怡,甄興厚,王亞杰,張慧敏,李瑞梅,劉姣,郭建春,耿夢(mèng)婷,姚遠(yuǎn).2023.木薯MeCML42基因啟動(dòng)子克隆及激素響應(yīng)分析[J/OL].分子植物育種.https://kns.cnki.net/kcms2/detail/46.1068.S.20230526.0955.002.html.[Hou J Y,Zhen X H,Wang Y J,Zhang H M,Li R M,Liu J,Guo J C,Geng M T,Yao Y.2023.Cloning and hormone response analysis of cassava MeCML42 gene promoter[J/OL].Molecular Plant Breeding.http://kns.cnki.net/kcms/detail/46.1068.S.20230526.0955.002.html.]
李順雨,潘學(xué)軍,張文娥,張素杰,劉崇懷.2010.葡萄屬種質(zhì)資源多樣性及利用[J].種子,29(1):61-64.[Li S Y,Pan X J,Zhang W E,Zhang S J,Liu C H.2010.The diversity and utilization of Vitis L.germplasm resource[J].Seed,29(1):61-64.]doi:10.16590/j.cnki.1001-4705.2010.01.080.
劉翠花.2020.煙草NtVQ35基因的鑒定及其抗青枯病基本功能研究[D].重慶:西南大學(xué).[Liu C H.2020.Identifica-tion of NtVQ35 gene in Nicotiana tabacum and prelimi-nary study on its function against tobacco bacterial wilt disease[D].Chongqing:Southwest University.]
劉輝,鄧治,陳江淑,李德軍.2015.巴西橡膠樹類鈣調(diào)素蛋白基因HbCML27克隆與表達(dá)分析[J].分子植物育種,13(12):2721-2727.[Liu H,Deng Z,Chen J S,Li D J.2015.Cloning and expression analysis of calmodulin-like protein gene HbCML27 from Hevea brasiliensis[J].Mo-lecular Plant Breeding,13(12):2721-2727.]doi:10.13271/j.mpb.013.002721.
劉梅,張瑋,周瑩,嚴(yán)紅,喬廣行,黃金寶.2011.葡萄炭疽病研究進(jìn)展[J].中國(guó)植保導(dǎo)刊,34(1):29-33.[Liu M,Zhang W,Zhou Y,Yan H,Qiao G X,Huang J B.2011.Research progress on grape anthracnose[J].China Plant Protection,34(1):29-33.]doi:10.3969/j.issn.1672-6820.2014.01.006.
劉鵬,韋杰,楊毅清,張娜,溫曉蕾,范學(xué)鋒,楊文香,劉大群.2020.小麥類鈣調(diào)素新亞型基因TaCML25/26調(diào)控抗葉銹性[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),22(4):120-128.[Liu P,Wei J,Yang Y Q,Zhang N,Wen X L,F(xiàn)an X F,Yang W X,Liu D Q.2020.A new subtype of calmodulin-like TaCML25/26 in wheat regulate resistance to leaf rust[J].Journal of Agricultural Science and Technology,22(4):120-128.]doi:10.13304/j.nykjdb.2019.0596.
劉偉,王蕓蕓,趙武娟,趙雪輝,董志剛.2016.21種不同類型葡萄種質(zhì)資源遺傳多樣性的SSR分析[J].中國(guó)農(nóng)學(xué)通報(bào),32(34):143-148.[Liu W,Wang YY,Zhao W J,Zhao X H,Dong Z G.2016.Genetic diversity of 21 kinds of grape germplasm resources by SSR markers[J].Chinese Agricultural Science Bulletin,32(34):143-148.]
羅瀾,司修洋,孫蕾,高鵬,李勇,王學(xué)征.2021.甜瓜CML基因家族的鑒定與表達(dá)特性分析[J].分子植物育種,19(24):8081-8094.[Luo L,Si X Y,Sun L,Gao P,Li Y,Wang X Z.2021.Identification and expression characteristic analy-sis of CML gene family of melon[J].Molecular Plant Breeding,19(24):8081-8094.]doi:10.13271/j.mpb.019.008081.
阮仕立,李記明.2002.野生葡萄種質(zhì)資源的抗性及其利用研究進(jìn)展[J].中外葡萄與葡萄酒,27(4):30-33.[Ruan S L,Li J M.2002.Progress in the study of resistance and its uti-lization of wild grapevine germplasm resources[J].Sino-Overseas Grapevine&Wine,27(4):30-33.]doi:10.13414/j.cnki.zwpp.2002.04.009.
楊秀,許艷超,楊芳芳,蔡小彥,侯宇清,王玉紅,王星星,王坤波,劉方,周忠麗.2019.棉花CML基因家族成員鑒定與功能分析[J].棉花學(xué)報(bào),31(4):307-318.[Yang X,Xu Y C,Yang F F,Cai X Y,Hou Y Q,Wang Y H,Wang X X,Wang K B,Liu F,Zhou Z L.2019.IdenA+EWlaeBABbXeJhqTCOE6O+FrJhk2em72gedDQyJyj4=tification and func-tional analysis of CML gene family in cotton[J].Cotton Science,31(4):307-318.]
昝新麗,高英,陳玉玲,趙開軍.2013.病原菌誘導(dǎo)型啟動(dòng)子順式作用元件及其互作的轉(zhuǎn)錄因子[J].植物學(xué)報(bào),48(2):219-229.[Zan X L,Gao Y,Chen Y L,Zhao K J.2013.Pathogen-responsive cis-acting elements and their interac-tive transcription factors[J].Chinese Bulletin of Botany,48(2):219-229.]doi:10.3724/SP.J.1259.2013.00219.
張潔.2022.中國(guó)野生葡萄抗病相關(guān)轉(zhuǎn)錄因子互作篩選與功能研究[D].楊凌:西北農(nóng)林科技大學(xué).[Zhang J.2022.Interaction and functional study of transcription factorsrelated to disease resistance in Chinese wild grapevine[D].Yangling:Northwest A&F University.]
張新龍,張國(guó)福,楊素梅,金巖,張耀中,范昆,付麗.2023.葡萄炭疽病病原菌的分離鑒定及防控藥劑篩選[J].中外葡萄與葡萄酒,(6):46-51.[Zhang X L,Zhang G F,Yang S M,Jin Y,Zhnag Y Z,F(xiàn)an K,F(xiàn)u L.2023.Isolation and identification of grape anthracnose pathogens of Colle-totrichumviniferum and fungicide screening[J].Sino-Overseas Grapevine&Wine,(6):46-51.]doi:10.13414/j.cnki.zwpp.2023.06.007.
趙沛.2019.GhCML41蛋白調(diào)控棉花抗黃萎病的分子機(jī)制[D].楊凌:西北農(nóng)林科技大學(xué).[Zhao P.2019.Molecular mechanism of cotton resistance to verticillium wilt regu-lated by GhCML41 protein[D]Yangling:Northwest A&F University.]
Aleynova O A,Kiselev K V,Ogneva Z V,Dubrovina A S.2020.The grapevine calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response[J].International Journal of Molecular Scien-ces,21(21):7939.doi:10.3390/ijms21217939.
Aleynova O A,Suprun A R,Ananev A A,Nityagovsky N N,Ogneva Z V,Dubrovina A S,Kiselev K V.2022.Effect of cmodulin-like gene(CML)overexpression on stilbene bio-synthesis in cell cultures of Vitis amurensis Rupr[J].Plants,11(2):171.doi:10.3390/plants 11020171.
Boonburapong B,Buaboocha T.2007.Genome-wide identifica-tion and analyses of the rice calmodulin and related poten-tial calcium sensor proteins[J].BMC Plant Biology,7:4.doi:10.1186/1471-2229-7-4.
Cheng H Q,Han L B,Yang C L,Wu X M,Zhong N Q,Wu J H,Wang F X,Wang H Y,Xia G X.2016.The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against Verticillium dahliae infection[J].Journal of Experimental Botany,67(6):1935-1950.doi:10.1093/jxb/erw016.
Cheung W Y.1979.Calmodulin plays a pivotal role in cellular regulation[J].Science,207(4426):19-27.doi:10.1126/science.6243188.
Chiasson D,Ekengren S K,Martin G B,Dobney S L,Snedden W A.2005.Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomo-nassyringaepv.tomato[J].Plant Molecular Biology,58(6):887-897.doi:10.1007/s 11103-005-8395-x.
Creelman RA,Mullet J E.1997.Biosynthesis and action of jas-monates in plants[J].Annual Review of Plant Biology and Plant Molecular Biology,48:355-381.doi:10.1146/an-nurev.arplant.48.1.355.
Day I S,Reddy V S,Shad Ali G,Reddy A S.2002.Analysis of EF-hand-containing proteins in Arabidopsis[J].Genome Biology,3(10):RESEARCH0056.doi:10.1186/gb-2002-3-10-research0056.
Delk N A,Johnson K A,Chowdhury N I,Braam J.2005.CML24,regulated in expression by diverse stimuli,encodes a potential Ca2+sensor that functions in responses to abscisic acid,daylength,and ion stress[J].Plant Physio-logy,139(1):240-253.doi:10.1104/pp.105.062612.
Dubrovina A S,Aleynova O A,Ogneva Z V,Suprun A R,Ananev A A,Kiselev K V.2019.The effect of abiotic stress conditions on expression of calmodulin(CaM)and calmodulin-like(CML)genes in wild-growing grapevine Vitis amurensis[J].Plants(Basel),8(12):602.doi:10.3390/plants8120602.
Jin B,Sheng Z,Muhammad I,Chen J Q,Yang H L.2019.Cloning and functional analysis of the promoter of a stress-inducible gene(Zmap)in maize[J].PLoS One,14(2):e211941.doi:10.1371/journal.pone.0211941.
Heyer M,Scholz S S,Reichelt M,Kunert G,Oelmüller R,Mith?fer A.2022.The Ca2+sensor proteins CML37 andCML42 antagonistically regulate plant stress responses byaltering phytohormone signals[J].Plant Molecular Bio-logy,109(4-5):611-625.doi:10.1007/s 11103-021-01184-2.Leba
L J,Cheval C,Ortiz-Martín I,Ranty B,Beuzón C R,Galaud J P,Aldon D.2012.CML9,an Arabidopsiscalmodulin-like protein,contributes to plant innate immu-nity through a flagellin-dependent signalling pathway[J].Plant Journal,71(6):976-989.doi:10.1111/j.1365-313X.2012.05045.x.
Ma W,Smigel A,Tsai Y C,Braam J,Berkowitz G A.2008.Innate immunity signaling:Cytosolic Ca2+elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein[J].Plant Physiology,148(2):818-828.doi:10.1104/pp.108.125104.
McAinsh M R,Pittman J K.2009.Shaping the calcium signa-ture[J].The New Phytologist,181(2):275-294.doi:10.1111/j.1469-8137.2008.02682.x.
Munir S,Khan M R,Song J W,Munir S,Zhang Y Y,Ye Z B,Wang T T.2016.Genome-wide identification,characteriza-tion and expression analysis of calmodulin-like(CML)pro-teins in tomato(Solanum lycopersicum)[J].Plant Physio-logy and Biochemistry,102:167-179.doi:10.1016/j.pla-phy.2016.02.020.
Nakahara K S,Masuta C,Yamada S,Shimura H,Kashihara Y,Wada T S,Meguro A,Goto K,Tadamura K,Sueda K,Seki-guchi T,Shao J,Itchoda N,Matsumura T,Igarashi M,Ito K,Carthew R W,Uyeda I.2012.Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors[J].Proceedings of the National Academy of Sciences ofthe United States of America,109(25):10113-10118.doi:10.1073/pnas.1201628109.
Schmittgen T D,Livak K J.2008.Analyzing real-time PCR data by the comparative C(T)method[J].Nature Proto-cols,3(6):1101-1108.doi:10.1038/nprot.2008.73.
Scrase-Field S A M G,Knight M R.2003.Calcium:Just a chemical switch?[J].Current Opinion in Plant Biology,6(5):500-506.doi:10.1016/s 1369-5266(03)00091-8.
Tao Y,Wang F T,Jia D M,Li J T,Zhang Y M,Jia C G,Wang D P,Pan H Y.2015.Cloning and functional analysis of thepromoter of a stress-inducible gene(ZmRXO1)in maize[J].Plant Molecular Biology Reporter,33(2):200-208.doi:10.1007/s 11105-014-0741-1.
Vandelle E,Vannozzi A,Wong D,Danzi D,Digby A M,Dal Santo S,Astegno A.2018.Identification,characterization,and expression analysis of calmodulin and calmodulin-like genes in grapevine(Vitis vinifera)reveal likely roles in stress responses[J].Plant Physiology and Biochemistry,129:221-237.doi:10.1016/j.plaphy.2018.06.003.
Wen Z F,Yao L P,Singer S D,Muhammad H,Li Z,Wang X P.2017.Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabi-dopsis and tobacco enhances resistance tophytopathogenic fungi and bacteria[J].Plant Physiology and Biochemistry,112:346-361.doi:10.1016/j.plaphy.2017.01.017.
Xu B,Cheval C,Laohavisit A,Hocking B,Chiasson D,Olsson T S G,Shirasu K,F(xiàn)aulkner C,Gilliham M.2017.Aal-modulin-like protein regulates plasmodesmal closure du-ring acterial immune responses[J].New Phytologist,215(1):77-84.doi:10.1111/nph.14599.
Xu W R,Yu Y H,Ding J H,Hua Z Y,Wang Y J.2010.Charac-terization of a novel stilbene synthase promoter involved in pathogen-and stress-inducible expression from Chinese wild Vitis pseudoreticulata[J]Planta,231(2):475-487.doi:10.1007/s00425-009-1062-8.
Yang D,Chen T,Wu Y S,Tang H Q,Yu J Y,Dai X Q,Zheng Y X,Wan X R,Yang Y,Tan X D.2024.Genome-wide analy-sis of the peanut CaM/CML gene family reveals that the AhCML69 gene is associated with resistance to Ralstonia solanacearum[J].BMC Genomics,25(1):200.doi:10.1186/s 12864-024-10108-5.
Zhang J,Zou AH,Wen YX,Wei X F,Liu CY,Lv X,Ma X Z,F(xiàn)an G J,Sun X C.2022a.SlCML55,a novel Solanum lyco-persicum calmodulin-like gene,negatively regulates plant immunity to Phytophthora pathogens[J].Scientia Horti-culturae,299:111049.doi:10.1016/j.scienta.2022.111049.
Zhang X X,Tian J,Li S,Liu Y Y,F(xiàn)eng T,Wang Y Y,Li Y J,Huang X X,Li D H.2022b.Characterization of the calmodulin/calmodulin-like protein(CAM/CML)family in Ginkgo biloba,and the influence of an ectopically expressed GbCML gene(Gb_30819)on seedling and fruit development of transgenic Arabidopsis[J].Plants(Basel),11(11):1506.doi:10.3390/plants 11111506.
Zhu X Y,Perez M,Aldon D,Galaud J P.2017.Respective con-tribution of CML8 and CML9,two arabidopsis calmodulin-like proteins,to plant stress responses[J].Plant Signaling Behavior,12(5):e1322246.doi:10.1080/15592324.2017.1322246.
Zipfel C,F(xiàn)elix G.2005.Plants and animals:A different taste for microbes?[J].Current Opinion in Plant Biology,8(4):353-360.doi:10.1016/j.pbi.2005.05.004.
(責(zé)任編輯陳燕)