国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

釀酒葡萄原花色素生物合成轉(zhuǎn)錄調(diào)控研究進(jìn)展

2024-11-05 00:00程靜卜瀟王軍

摘要:原花色素又稱縮合單寧,由黃烷-3-醇和黃烷-3,4-二醇縮合構(gòu)成,是一類重要的衡量葡萄果實(shí)和葡萄酒品質(zhì)的多酚類物質(zhì)。文章通過綜述葡萄原花色素的組成和檢測(cè)、生物合成及轉(zhuǎn)錄調(diào)控機(jī)制的進(jìn)展,發(fā)現(xiàn)原花色素主要存在于葡萄果皮和種子中,有利于葡萄抵御生物和非生物脅迫,在葡萄酒釀造過程中,源于果實(shí)的原花色素經(jīng)壓榨浸漬后進(jìn)入葡萄酒中,貢獻(xiàn)葡萄酒的苦味和澀味,原花色素與其他色素之間的輔色作用也可加強(qiáng)葡萄酒顏色的穩(wěn)定性;原花色素的生物合成是苯丙烷—類黃酮代謝路徑的一個(gè)分支,與黃酮醇和花色苷生物合成共享上游路徑,其在葡萄發(fā)育早期大量積累;無色花色素還原酶(LAR)和花色素還原酶(ANR)是原花色素生物合成過程的關(guān)鍵酶,葡萄中有2種LAR,分別由VviLAR1和VviLAR2基因編碼,均具有時(shí)空表達(dá)差異性;葡萄原花色素的生物合成主要受到MYB和bHLH家族轉(zhuǎn)錄因子的調(diào)控,目前已鑒定出8個(gè)R2R3-MYB家族轉(zhuǎn)錄因子(VviMYBPA1、VviMYBPA2、VviMYBPAR、VviMYB5a、VviMYB5b、VviMYB86、VdMYB14、VviMYBC2-L1)和3個(gè)bHLH家族轉(zhuǎn)錄因子(VviCA1、VviMYC1、VvibHLH93);當(dāng)前已鑒定到的轉(zhuǎn)錄因子多以VviLAR1和VviANR為靶基因,特異調(diào)控VviLAR2基因表達(dá)的轉(zhuǎn)錄因子亟待挖掘。今后需要關(guān)注轉(zhuǎn)錄因子對(duì)各種生物和非生物脅迫的響應(yīng)機(jī)制、轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控對(duì)轉(zhuǎn)錄因子的修飾方式及轉(zhuǎn)錄因子與各種信號(hào)和激素之間的互作機(jī)理。文章為釀酒葡萄原花色素調(diào)控機(jī)制的研究提供思路,進(jìn)而指導(dǎo)我國(guó)釀酒葡萄栽培管理實(shí)踐,助力優(yōu)質(zhì)釀酒葡萄品種選育,推動(dòng)多元化、個(gè)性化風(fēng)格葡萄酒的釀造。

關(guān)鍵詞:釀酒葡萄;原花色素;生物合成;轉(zhuǎn)錄調(diào)控;MYB;bHLH

中圖分類號(hào):S663.1文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)08-2360-14

Transcription and regulation of proanthocyanidin biosynthesis in wine grape:A review

CHENG Jing BU Xiao WANG Jun2*

(1Jiangsu Agri-animal Husbandry Vocational College,Taizhou,Jiangsu 225300,China;2College of Food Science andNutritional Engineering/Key Laboratory of Viticulture and Enology,Ministry of Agriculture and Rural Affairs,China Agricultural University,Beijing 100083,China)

Abstract:Proanthocyanidin,also known as condensed tannin,is a mixture offlavanol-3-ols and flavan-3,4-diols in complex forms,and is one of the important polyphenolic compounds to measure the quality of grape berries and wines.In this paper,the composition and detection of proanthocyanidins,biosynthesis and transcriptional regulation of proanthocyani-dins in grapes were reviewed.Proanthocyanidins,which were mainly existed in grape skins and seeds,could contribute protection to grapes under biotic and abiotic stress.In the process of wine-making,the proanthocyanidins from the fruit were pressed and impregnated into the wine,contributing to the bitterness and astringency of wine,and the copig-mentation between them and other pigments could also strengthen the stability of wine color.Proanthocyanidinbiosynthe-sis was a branch of the phenylpropane-flavonoid metabolic pathway,which shared the upstream pathway with flavonols and anthocyanins biosynthesis,and it largely accumulated during early development of grapes.Leucoanthocyanidinreduc-tase(LAR)and anthocyanidin reductase(ANR)were key enzymes in proanthocyanidin biosynthesis.Grape possessed two LAR enzymes,which were encoded by VviLAR1 and VviLAR2 genes respectively,both of them had differences in temporal and spatial expression.The biosynthesis of proanthocyanidin in grapes was mainly regulated by MYB and bHLH family transcription factors.Until now,eight R2R3-MYB family transcription factors(VviMYBPA VviMYBPA Vvi-MYBPAR,VviMYB5a,VviMYB5b,VviMYB86,VdMYB14,VviMYBC2-L1)and three bHLH family transcription factors(VviCA VviMYC VvibHLH93)have been identified.Currently,most of the identified transcription factors utilize VviLAR1 and VviANR as target genes,and the transcription factors that specifically regulated the expression of Vvi-LAR2 gene needed to be explored.In the future,attention should be paid to the response mechanism of transcription fac-tors to various biotic and abiotic stresses,the modification ways of transcription factors by transcription and post-transcriptional regulation,and the interaction mechanism between these transcription factors and various signals and hor-mones.This study is expected to provide insights for the study of the regulation mechanism of wine grape proanthocyani-dins,and then guide the practice of wine viticulture management in China,help the selection and breeding of high-quality wine grape varieties,and promote the production of diversified and personalized wines.

Key words:wine grape;proanthocyanidin;biosynthesis;transcription regulation;MYB;bHLH

Foundation items:Jiangsu Basic Research Plan Special Fund(Natural Science Fund)Project(BK20230297);China Agriculture Research System(CARS-29);Basic Science(Natural Science)Research Project of Jiangsu Higher EducationInstitutions(22KJB210012);Natural Science Fund Reserve Project of Jiangsu Agri-animal Husbandry Vocational College(NSF2022CB01)

0引言

原花色素(Proanthocyanidin)又稱縮合單寧(Condensed tannin),是由以黃烷-3-醇和黃烷-3,4-二醇作為縮合單元的高分子天然化合物,因在強(qiáng)酸條件下易水解成有顏色的花色素而得名(Dixon et al.,2005),是植物果實(shí)、葉片、種子和樹皮中廣泛存在的多酚類物質(zhì)(Liu et al.,2016a;劉敖一等,2023)。原花色素具有眾多生理功能,有助于植物抵御病原菌侵害等生物脅迫及低溫、干旱、紫外線輻射等非生物脅迫(Dixon et al.,2005;Dixon and Sarnala,2020),可有效防止反芻動(dòng)物因胃腸微生物利用牧草蛋白發(fā)酵而導(dǎo)致的致死性脹氣(Pang et al.,2007)。葡萄果實(shí)(尤其是果皮和種子)中的原花色素,可在一定程度上幫助葡萄果實(shí)免受鳥類食用和病蟲害感染,維持果實(shí)品質(zhì);源于果實(shí)的原花色素經(jīng)壓榨浸漬后進(jìn)入葡萄酒中,可豐富葡萄酒的口感,貢獻(xiàn)苦味和澀味;原花色素與其他色素之間的輔色作用也可增強(qiáng)葡萄酒顏色的穩(wěn)定性(Ristic etal.,2010;Weiet al.,2020)。因此,原花色素是葡萄和葡萄酒中維持品質(zhì)和貢獻(xiàn)口感的一類很重要的多酚類物質(zhì)。

發(fā)育調(diào)控是原花色素生物合成的驅(qū)動(dòng)因素之一,受到眾多環(huán)境因子的影響。在葡萄果實(shí)中,原花色素在轉(zhuǎn)色前大量積累,轉(zhuǎn)色期后其總含量呈下降趨勢(shì)(Bogset al.,2005;Bogset al.,2007)。果實(shí)中原花色素的積累與生物和非生物脅迫緊密聯(lián)系,如激素水平(Lacampagne et al.,2010)、光照(Zorattietal.,2014)、水分虧缺(Casassa etal.,2015)、干旱(Malisch et al.,2016)、低溫(An et al.,2018)等。因此,越來越多的研究聚焦于葡萄中原花色素的代謝工程和調(diào)控機(jī)制。目前,已從葡萄中發(fā)現(xiàn)原花色素生物合成的結(jié)構(gòu)基因,同時(shí)也已鑒定出部分對(duì)原花色素生物合成具備調(diào)控功能的轉(zhuǎn)錄因子,主要為MYB(Feller et al.,2011)、bHLH(MYC)(Hichrietal.,2011)、WD40家族成員(Xu etal.,2014a)。為了解這些轉(zhuǎn)錄因子在原花色素生物合成過程中的相互作用,需要對(duì)參與這一復(fù)雜網(wǎng)絡(luò)中的調(diào)節(jié)因子進(jìn)行深入研究。文章在綜述釀酒葡萄原花色素生物合成的基礎(chǔ)上,闡述MYB和bHLH轉(zhuǎn)錄因子對(duì)釀酒葡萄原花色素生物合成調(diào)控機(jī)制研究進(jìn)展,以期深入了解釀酒葡萄原花色素生物合成及轉(zhuǎn)錄調(diào)控機(jī)制,進(jìn)而指導(dǎo)我國(guó)釀酒葡萄栽培管理實(shí)踐,助力優(yōu)質(zhì)釀酒葡萄品種選育,推動(dòng)多元化、個(gè)性化風(fēng)格葡萄酒的釀造。

1原花色素的組成與檢測(cè)

原花色素是由黃烷-3-醇和黃烷-3,4-二醇以復(fù)雜形式組成的混合物(Abrahams et al.,2002)。黃烷-3-醇具有類黃酮物質(zhì)代表性的C6-C3-C6型分子骨架(圖1),其中位于中心位置的含氧吡喃環(huán)是C環(huán),通過C2位單鍵連接的芳香環(huán)為B環(huán),A環(huán)則是一個(gè)融合的芳香環(huán)。原花色素結(jié)構(gòu)的多樣性主要取決于組成單元上C環(huán)手性碳的立體結(jié)構(gòu)、B環(huán)的羥基化模式、C4位黃烷鍵的連接方式、平均聚合度(Mean degree of polymerization,mDP)及C3或C5位置是否發(fā)生糖基化或?;╖hao and Dixon,2009;Yu et al.,2023)。其中,B環(huán)上的羥基化差異是造成PA多樣性的重要原因,羥基化可在B環(huán)的3'4'位置、3'4'5'位置或僅在4'位置發(fā)生,由F3'H和F3'5'H決定(Dixon et al.,2005;Liu et al.,2016b)。黃烷-3-醇單體包括(+)-兒茶素和(?)-表兒茶素,以及二者的衍生物棓兒茶素、兒茶素沒食子酸酯、棓兒茶素沒食子酸酯、(?)-表兒茶素沒食子酸酯、(?)-表?xiàng)攦翰杷睾停?)-表?xiàng)攦翰杷貨]食子酸酯(Hanlin et al.,2011)。后續(xù)研究發(fā)現(xiàn),(+)-兒茶素和(?)-表兒茶素均可作為起始單元,黃烷-3-醇和黃烷-3,4-二醇則作為延伸單元共同參與原花色素的聚合(Yuetal.,2020)。

原花色素相鄰單元間的黃烷鍵通常以α或β構(gòu)型在前一單元的C8位與后一單元的C4位,部分黃烷鍵也存在C6-C4的連接方式(Jun etal.,2018),以上述2種連接方式存在的原花色素為B型原花色素,B1~B8型原花色素在葡萄、蘋果、苜蓿和擬南芥等植物中廣泛存在(Yuetal.,2020)。黃烷鍵以C2β-O-C7連接方式存在的原花色素為A型,這種類型的原花色素存在于花生、蔓越莓等植物中(Yuetal.,2020)。目前常見黃烷-3-醇單體和部分原花色素二聚體的結(jié)構(gòu)如圖1所示。

原花色素在酸性環(huán)境中經(jīng)親核試劑(如間苯三酚等)進(jìn)攻可發(fā)生水解反應(yīng),黃烷鍵斷裂,釋放出以黃烷-3-醇單體形式存在的起始單元和以碳正離子形式存在的延伸單元(Kennedy and Jones,2001)。利用液相色譜等技術(shù),可分離出起始單元和延伸單元—親核試劑加合物,利用標(biāo)準(zhǔn)品進(jìn)行相對(duì)定量,從而計(jì)算出樣品中原花色素組成單元的數(shù)量(Ken-nedy and Jones,2001)。

聚合度是衡量原花色素組成單元數(shù)量的指標(biāo)(Liu et al.,2010),但實(shí)際樣本所含原花色素是聚合度大小不一的混合物。因此,引入mDP指標(biāo)用于衡量植物樣品中原花色素的聚合度(Liu et al.,2010;劉敖一等,2022)。隨著原花色素mDP的增加,其溶解度逐漸降低,溶解度過低甚至?xí)纬沙恋恚≧ousse-rie et al.,2019)。因此,根據(jù)原花色素的溶解度可將原花色素分為可溶性原花色素和不可溶性原花色素。能被70%丙酮水溶液(v/v)提取出來的組分被默認(rèn)為是可溶性原花色素,而提取后剩下的沉淀被認(rèn)為是不可溶性原花色素(Panget al.,2007)。

對(duì)二甲氨基肉桂醛[4-d(imethylamino)cinnam-aldehyde,DMACA]的醛基可與含間苯三酚A環(huán)的C8位發(fā)生縮合反應(yīng),生成640nm下有最大吸收峰的藍(lán)/綠色產(chǎn)物(Treutter,1989;Li etal.,1996)。原花色素具有間苯三酚結(jié)構(gòu),且該反應(yīng)僅發(fā)生在起始單元A環(huán)的C8位,因而常用DMACA染色法和(或)光譜法,以黃烷-3-醇單體為標(biāo)準(zhǔn)品結(jié)合外標(biāo)法,對(duì)樣品中可溶性原花色素含量進(jìn)行相對(duì)定量測(cè)定(Treutter,1989;Li etal.,1996)。利用酸水解原理,不可溶性原花色素與丁醇-HCl溶液混合加熱后,原花色素組成單元釋放出帶有碳正離子的延伸單元,其可被快速氧化成550nm下有最大吸收峰的花色素,且生成花色素的量與原花色素的mDP呈正相關(guān),故常以原花色素二聚體為標(biāo)準(zhǔn)品結(jié)合外標(biāo)法對(duì)不可溶性原花色素含量進(jìn)行測(cè)定(Panget al.,2007;董瑞霞等,2008)。

2釀酒葡萄原花色素的生物合成

原花色素在植物中的生物合成途徑已基本明晰,其是苯丙烷—類黃酮代謝路徑的一個(gè)分支,與黃酮醇和花色苷生物合成共享上游路徑(圖2)(He et al.,2008;Unusan,2020)。通過苯丙烷代謝路徑,苯丙氨酸從“蛋白質(zhì)生產(chǎn)線”轉(zhuǎn)向“酚類物質(zhì)生產(chǎn)線”,進(jìn)而產(chǎn)生木質(zhì)素、類黃酮、酚酸和芪類化合物等(Humphreys and Chapple,2002)。

類黃酮代謝路徑位于苯丙烷生物合成途徑的下游。類黃酮路徑的前體物質(zhì)是4-羥基香豆酸輔酶A和丙二酰輔酶A。類黃酮生物合成路徑的入口酶是查爾酮合成酶(CHS)。一分子的4-羥基香豆酸輔酶A與三分子的丙二酰輔酶A經(jīng)CHS的催化生成類黃酮代謝路徑中首個(gè)具有C6-C3-C6骨架的四羥基查爾酮,隨后在查爾酮異構(gòu)酶(CHI)的作用下迅速發(fā)生異構(gòu)化反應(yīng)或在缺少CHI的情況下自發(fā)異構(gòu)轉(zhuǎn)變?yōu)?R-柚皮素(Holton and Cornish,1995),使C6-C3-C6骨架擁有苯并吡喃環(huán)結(jié)構(gòu),這也是類黃酮類化合物的核心化學(xué)結(jié)構(gòu),同時(shí)賦予原花色素組成單元C2位的立體構(gòu)象。2R-柚皮素既可直接通過F3H的作用催化生成二氫山柰酚,也可先經(jīng)F3'H和F3'5'H的催化,分別在C3'和C3'5'位置上發(fā)生羥基化反應(yīng),產(chǎn)生圣草酚和五羥黃烷酮,而后在F3H的催化下生成二氫槲皮素和二氫楊梅素。同時(shí),二氫山柰酚也可在F3'H或F3'5'H的作用下轉(zhuǎn)變?yōu)槎溟纹に鼗蚨錀蠲匪?。F3H的參與使二氫黃酮醇類物質(zhì)具有2,3-trans的立體構(gòu)象,而F3'H和F3'5'H的相對(duì)活性決定了類黃酮類物質(zhì)B環(huán)羥基基團(tuán)的數(shù)目,也是決定黃酮醇、花色苷和原花色素組成的關(guān)鍵因素(Bogs et al.,2006)。此后,二氫黃酮醇既可在FLS的作用下生成黃酮醇,也可通過二氫黃酮醇還原酶(DFR)將C4位的羰基還原成羥基,形成無色花色素,也被稱為黃烷-3,4-二醇(Martens et al.,2002)。

自生成無色花色素后,類黃酮代謝路徑進(jìn)入原花色素和花色苷的生物合成階段。ANS也被稱作無色花色素雙加氧酶(LDOX),屬于鐵離子(Fe2+)和2-酮戊二酸依賴型的加氧酶(Saito et al.,1999),功能是將無色花色素催化生成有顏色的花色素。無色花色素和花色素分別為無色花色素還原酶(LAR)和花色素還原酶(ANR)的底物,催化生成2,3-trans-黃烷-3-醇,如(+)-兒茶素、(+)-棓兒茶素等,以及2,3-cis-黃烷-3-醇單體,如(-)-表兒茶素、(-)-表?xiàng)攦翰杷氐?,而后作為組成單元參與原花色素的縮合過程(Dixon et al.,2005)。同時(shí),不穩(wěn)定的花色素也可在UDP-葡萄糖:類黃酮-3-O-葡萄糖基轉(zhuǎn)移酶(UFGT)或3-GT的作用下,與糖基結(jié)合生成穩(wěn)定的花色苷(He etal.,2008)。

葡萄原花色素主要存在于葡萄果實(shí)的果皮和種子中,微量存在于果肉中(Adams,2006;Braidot et al.,2008)。果實(shí)中原花色素主要以游離的黃烷-3-醇單體和聚合體的形式存在,并通過壓榨浸漬工藝浸入葡萄酒中(Downey et al.,2003;Bogs et al.,2005)。葡萄中原花色素的生物合成和積累模式與模式植物擬南芥有很大差異。在擬南芥種皮中僅檢測(cè)到(-)-表兒茶素型原花色素,這是因?yàn)閿M南芥基因組中缺少編碼LAR的基因(Devic et al.,1999)。而在葡萄中,(+)-兒茶素型原花色素和(-)-表兒茶素型原花色素在種子和果皮均有分布(Downey et al.,2003;Bogset al.,2005;Adams,2006)。葡萄種子和果皮在原花色素含量和組成上明顯不同。就含量而言,種子原花色素總含量要遠(yuǎn)高于果皮(Downey et al.,2003;Bogs et al.,2005)。原花色素組成上的差異體現(xiàn)在以下2個(gè)方面。一方面是mDP的不同,葡萄果皮中原花色素的mDP(3.8~81.0)高于種子中原花色素的mDP(2.8~12.8)(Cosme et al.,2009)。另一方面是組成單元不同,葡萄種子中60%的起始單元和90%的延伸單元均是(-)-表兒茶素,而葡萄果皮中(+)-兒茶素占起始單元組成的67%,(-)-表兒茶素則是主要的延伸單元,約占60%(Kennedy et al.,2000a,2000b)。在成熟葡萄的果皮中,原花色素、花色苷和黃酮醇物質(zhì)分布在皮下厚壁內(nèi)層上,而在表皮細(xì)胞壁中,主要分布的是蠟質(zhì)酚類、木質(zhì)素和木栓質(zhì)及少量類黃酮物質(zhì)(Adams,2006;Braidot et al.,2008)。此外,在莖、葉等組織形成發(fā)育過程中也檢測(cè)到不同mDP和原花色素,但未檢測(cè)到花色苷(Boss et al.,1996;Kennedy et al.,2001;Bogs et al.,2005)??梢姡ㄉ氐纳锖铣刹粌H因植物物種而異,也因組織器官而異,且不均勻分布在不同的細(xì)胞層中(Czemmel et al.,2012)。

原花色素、黃酮醇和花色苷共享類黃酮生物合成路徑上游,但黃酮醇、花色苷和原花色素生物合成途徑中的特異性酶可通過競(jìng)爭(zhēng)共同底物來促進(jìn)相應(yīng)產(chǎn)物的生物合成。這3個(gè)分支途徑在葡萄果實(shí)發(fā)育過程中具有不同的時(shí)空積累模式,從而有效避免對(duì)同一底物的競(jìng)爭(zhēng)(圖3)(Czemmel et al.,2012)。

3 LAR和ANR的研究進(jìn)展

3.1 LAR

LAR是原花色素生物合成中的關(guān)鍵酶之一。LAR將無色花青素轉(zhuǎn)變?yōu)椋?)-兒茶素,是原花色素生物合成中的第一個(gè)反應(yīng)(Stafford,1991)。隨后,大量研究證實(shí)LAR與原花色素的積累相關(guān)。LAR是一種胞質(zhì)NADPH依賴性酶,其體外試驗(yàn)表明,當(dāng)花旗松細(xì)胞懸浮液的粗酶提取液pH為7.4時(shí),LAR可在NADPH輔助下將無色花青素轉(zhuǎn)變?yōu)椋?)-兒茶素(Stafford and Lester,1985)。無色花青素是首選的反應(yīng)底物,無色花葵素和無色花翠素也可作為該酶的底物,但反應(yīng)親和力低(Rousserie et al.,2019)。此外,該反應(yīng)也可在NADH輔助下發(fā)生,但反應(yīng)速率僅為NADPH輔助時(shí)的30%,從而導(dǎo)致反應(yīng)緩慢(Tanner et al.,2003)。

Tanner等(2003)從豆科植物山螞蝗葉片中純化出LAR蛋白,并首次克隆獲得LAR的編碼基因,發(fā)現(xiàn)LAR是由382個(gè)氨基酸組成的單體蛋白,分子量為42.7 kD;LAR編碼基因的表達(dá)模式與葉片中原花色素的積累模式相一致,且重組蛋白DuLAR可催化不同羥基化形式的無色花色素為對(duì)應(yīng)的2,3-trans構(gòu)象的黃烷-3-醇單體。該研究結(jié)果明晰了LAR的生化功能,并確定了其在原花色素生物合成中的重要作用。但LAR的體內(nèi)功能與其催化生成(+)-兒茶素的體外功能并不完全一致,如在過表達(dá)DuLAR基因的白三葉草和煙草葉片總蛋白中檢測(cè)到LAR活性,但未檢測(cè)到(+)-兒茶素的積累(Tanner et al.,2003)。茶樹或可可樹的LAR基因在煙草中過表達(dá)時(shí),(?)-表兒茶素含量的增幅高于(+)-兒茶素的增幅(Liu et al.,2013;Pang et al.,2013)。直到2016年Liu等研究發(fā)現(xiàn),苜蓿中LAR是一個(gè)雙功能酶,既具有將無色花青素轉(zhuǎn)變?yōu)椋?)-兒茶素的催化功能,又可將4β-S-半胱氨酸-(?)-表兒茶素裂解成(?)-表兒茶素單體和半胱氨酸(Liu et al.,2016a),上述現(xiàn)象才得以解釋。

從多種植物的不同組織中純化獲得LAR,且發(fā)現(xiàn)在同一組織中LAR可能存在多種亞型。葡萄果實(shí)中有2個(gè)LAR,即VviLAR1和VviLAR 分別由VviLAR1和VviLAR2基因編碼,由Bogs等(2005)在葡萄EST數(shù)據(jù)庫(kù)中利用DuLAR蛋白序列比對(duì)所得。VviLAR1基因(AJ865336)包含一段1038 bp的開放閱讀框(ORF),編碼346個(gè)氨基酸殘基。VviLAR2基因的ORF長(zhǎng)度為1086 bp,編碼362個(gè)氨基酸殘基。這2個(gè)蛋白的氨基酸序列一致性達(dá)60%,相似性達(dá)77%。Adams(2006)通過在大腸桿菌中表達(dá)VviLAR1基因,在體外驗(yàn)證了VviLAR1蛋白的酶學(xué)活性。Pfeiffer等(2006)研究發(fā)現(xiàn),葡萄葉片或其他植物葉片的粗酶提取液中VviLAR1和VviLAR2均具有將無色花色素轉(zhuǎn)變?yōu)椋?)-兒茶素的催化功能。后續(xù)的體外重組酶活試驗(yàn)證實(shí),葡萄中2個(gè)LAR還可將新型的(?)-表兒茶素型原花色素延伸單元4β-S-半胱氨酸-(?)-表兒茶素和(+)-兒茶素型原花色素延伸單元4β-S-半胱氨酸-(+)-兒茶素分別催化為(?)-表兒茶素和(+)-兒茶素(Yuetal.,2019)。通過構(gòu)建過表達(dá)VviLAR1或VviLAR2基因的苜蓿lar:ldox雙突變體轉(zhuǎn)基因植物,進(jìn)一步證明了VviLARs可降低新型原花色素延伸單元的積累水平。體內(nèi)外試驗(yàn)共同證實(shí)VviLAR1和VviLAR2除具有酶學(xué)功能外,還具有降低原花色素聚合度的功能(Yuetal.,2019)。

釀酒葡萄中VviLARs基因的表達(dá)模式具有時(shí)空特異性。VviLAR1基因在種子中特異表達(dá),花后兩周其表達(dá)量達(dá)到峰值而后持續(xù)降低,在果皮和葉片中表達(dá)水平極低;VviLAR2基因在種子中同樣具有最高的表達(dá)量,發(fā)生在轉(zhuǎn)色期,VviLAR2基因在花、果皮和葉片中也有表達(dá),盡管水平較低(Bogset al.,2005;Chenget al.,2021)。

3.2 ANR

ANR是植物原花色素生物合成中的關(guān)鍵酶,其生化功能是將花色素催化成為2,3-cis-黃烷-3-醇(Xie et al.,2003)。此外,還有研究發(fā)現(xiàn),在缺少LAR的擬南芥中,ANR可能影響原花色素鏈的長(zhǎng)度,其作用機(jī)制有2種,一是在ANR的作用下,以花青素為底物獲得(?)-表兒茶素單體;二是與苜蓿MtANR一樣,以黃烷-3,4-二醇為底物合成2R,3R,4R-無色花青素(Jun etal.,2018;Yuetal.,2023)。ANR在植物體內(nèi)由BANYULS基因編碼(Xie et al.,2003)。VviANR基因在葡萄的發(fā)育早期大量表達(dá),轉(zhuǎn)色期后幾乎不表達(dá),且主要在果皮、種子和葉片中表達(dá)(Xie et al.,2003;Bogset al.,2005)。

4轉(zhuǎn)錄因子對(duì)原花色素生物合成的調(diào)控

葡萄不同器官間原花色素組成的差異、VviLARs和VviANR基因的時(shí)空表達(dá)差異及基因組中分布著不同的數(shù)量性狀基因座均表明葡萄原花色素生物合成具有多種調(diào)控機(jī)制(Huang et al.,2014;Cheng et al.,2021)。在分子水平上,結(jié)構(gòu)基因的表達(dá)受到順式作用元件和反式作用元件的調(diào)控。轉(zhuǎn)錄因子是一種具有特殊結(jié)構(gòu),能直接與啟動(dòng)子上的順式作用元件結(jié)合或間接與其他蛋白相互作用,而后調(diào)控基因表達(dá)的蛋白質(zhì)分子(熊安平等,2021),是反式作用元件中很重要的一類調(diào)控因子(樊寶蓮和王小云,2021)。典型的轉(zhuǎn)錄因子含有DNA結(jié)合域、轉(zhuǎn)錄激活域及核定位信號(hào)等功能性結(jié)構(gòu)域。各功能域分工不同,其中DNA結(jié)合域負(fù)責(zé)確定目標(biāo)基因,同一轉(zhuǎn)錄因子家族的DNA結(jié)合域高度保守。同一轉(zhuǎn)錄因子家族的功能差異由轉(zhuǎn)錄激活域決定。轉(zhuǎn)錄因子可通過轉(zhuǎn)錄水平調(diào)控基因的表達(dá)水平進(jìn)而指導(dǎo)細(xì)胞或生物體的發(fā)育進(jìn)程及影響植物對(duì)逆境脅迫的響應(yīng)機(jī)制等。基于此生物學(xué)意義,開展對(duì)轉(zhuǎn)錄因子功能研究已成為目前的熱點(diǎn)。在已研究的植物中,對(duì)原花色素生物合成有調(diào)控作用的主要轉(zhuǎn)錄因子家族為MYB、bHLH及常作為輔因子出現(xiàn)的WDR(Czem-melet al.,2012)。此外,來自WRKY、bZIP、Zinc fin-ger和MADS等家族的轉(zhuǎn)錄因子也可參與原花色素的生物合成(Weiet al.,2020)。

4.1 MYB轉(zhuǎn)錄因子

MYB轉(zhuǎn)錄因子通常在N末端具有高度保守的MYB結(jié)構(gòu)域,在C末端分布1個(gè)具有增強(qiáng)或抑制作用的結(jié)構(gòu)域(Dubos etal.,2010)。MYB結(jié)構(gòu)域包含約52個(gè)氨基酸,由1~4個(gè)不完全一致的氨基酸重復(fù)序列組(Repeats,R)組成,每一個(gè)R基序可形成3個(gè)α-螺旋,其中在第2、3個(gè)α-螺旋間有1個(gè)由3個(gè)規(guī)律間隔的色氨酸(或疏水基)形成的螺旋—轉(zhuǎn)角—螺旋結(jié)構(gòu)。每個(gè)重復(fù)中第3個(gè)螺旋的職責(zé)是識(shí)別并嵌入DNA(Du etal.,2009)。而C末端結(jié)構(gòu)域主要負(fù)責(zé)調(diào)控靶基因的表達(dá)。

MYB蛋白根據(jù)R基序的數(shù)目分為四大類:1R-MYB、R2R3-MYB、3R-MYB和4R-MYB(圖4)(Dubos et al.,2010)。其中,R2R3-MYB是植物中MYB轉(zhuǎn)錄因子的最大亞家族,主要參與初生代謝和次生代謝等多種生物代謝途徑及各種生物和非生物逆境響應(yīng)(Liu et al.,2015;Wu et al.,2022;張群華等,2024)。MYB轉(zhuǎn)錄因子通過識(shí)別并結(jié)合到類黃酮合成途徑結(jié)構(gòu)基因啟動(dòng)子上的結(jié)合位點(diǎn)來調(diào)節(jié)其表達(dá),這些結(jié)合位點(diǎn)包括MBS、MBSI、MBSⅡG和MRE等(Romero et al.,1998;Hartmann et al.,2005)。需要注意的是,MYB轉(zhuǎn)錄因子對(duì)這些結(jié)合位點(diǎn)的識(shí)別相對(duì)靈活,且不同物種的MYB轉(zhuǎn)錄因子可結(jié)合相同的結(jié)合位點(diǎn),從而對(duì)同一途徑進(jìn)行調(diào)控(Hichri et al.,2011)。

隨著研究的深入,葡萄原花色素生物合成過程涉及的結(jié)構(gòu)基因及其表達(dá)模式已基本明晰,證實(shí)R2R3-MYB轉(zhuǎn)錄因子直接影響原花色素生物合成路徑中基因的表達(dá),是葡萄及其他植物中調(diào)控原花色素生物合成的主要轉(zhuǎn)錄因子家族(Czemmel et al.,2012)?;跀M南芥中參與調(diào)控原花色素生物合成的AtTT2蛋白序列,通過同源克隆的方式相繼從葡萄中克隆獲得3個(gè)專一調(diào)控原花色素生物合成的R2R3-MYB轉(zhuǎn)錄因子基因,分別為VviMYBPA1、Vvi-MYBPA2和VviMYBPAR(Bogs et al.,2007;Terrier et al.,2009;Koyama et al.,2014)。VviMYBPA1基因主要在葡萄種子中表達(dá),VviMYBPA2基因主要在果皮和葉片中表達(dá)(Bogset al.,2007;Terrier et al.,2009)。在葡萄毛狀根系統(tǒng)中過表達(dá)VviMYBPA1或VviMYBPA2基因均可激活VviLAR1和VviANR的表達(dá),從而引起原花色素在含量和組成上的顯著變化,如過表達(dá)VviMYBPA1或VviMYBPA2基因的株系較對(duì)照均顯著提高原花色素的積累量和增加三羥基組成單元的比例(Bogs et al.,2007;Terrier et al.,2009)。與Vvi-MYBPA1和VviMYBPA2基因不同,VviMYBPAR基因在葡萄果實(shí)中的時(shí)空表達(dá)模式及其對(duì)脫落酸的響應(yīng)模式與VviLAR2基因的模式更相似(Koyama et al.,2014),推測(cè)VviLAR2是VviMYBPAR的靶基因之一。

除了功能專一的R2R3-MYB轉(zhuǎn)錄因子外,在葡萄中也鑒定出一些對(duì)整個(gè)類黃酮途徑甚至是其他次級(jí)代謝途徑有調(diào)控功能的R2R3-MYB轉(zhuǎn)錄因子,較典型的是VviMYB5a和VviMYB5b。VviMYB5a和VviMYB5b基因均在葡萄早期發(fā)育階段的果皮和種子中大量表達(dá)。體外瞬時(shí)表達(dá)試驗(yàn)證實(shí),VviMYB5a和VviMYB5b通過激活類黃酮途徑早期(VviCHI和VviF3'5'H)和后期結(jié)構(gòu)基因(VviLAR1、VviANS和VviANR)的啟動(dòng)子活性來間接激活原花色素生物合成(Deluc et al.,2006,2008)。在煙草中過表達(dá)VviMYB5a或VviMYB5b,除促進(jìn)原花色素生物合成之外,還可改變木質(zhì)素、類胡蘿卜素、黃酮醇和花色苷的代謝流向和相關(guān)基因的表達(dá)(Deluc etal.,2006,2008)。赤霞珠葡萄VviMYB86和刺葡萄VdMYB14對(duì)原花色素和花色苷生物合成的調(diào)控機(jī)制不同,均表現(xiàn)為促進(jìn)原花色素生物合成,抑制花色苷的生物合成(李慎昌等,2020;Chenget al.,2021)。目前,在其他植物中也發(fā)現(xiàn)一些R2R3-MYB轉(zhuǎn)錄因子對(duì)類黃酮不同分支途徑具有不同的調(diào)控機(jī)制。MtPAR通過直接抑制苜蓿中異黃酮生物合成和改變花色苷途徑上中間前體物的流向,從而促進(jìn)原花色素的積累(Li etal.,2016);過表達(dá)CsMYB5a基因的煙草花中,原花色素含量顯著增加,而花色苷含量明顯下降(Jiang et al.,2018);水仙NtMYB3可促進(jìn)原花色素的積累,但抑制類黃酮途徑上另2個(gè)終產(chǎn)物的生物合成(Anwar etal.,2019)。該調(diào)控機(jī)制為有效提高植物或飼料中原花色素含量的代謝工程策略提供了思路。

R2R3-MYB轉(zhuǎn)錄因子對(duì)原花色素生物合成途徑而言均屬于轉(zhuǎn)錄激活因子,在整個(gè)葡萄發(fā)育過程中對(duì)原花色素生物合成進(jìn)行調(diào)控(圖5)。在轉(zhuǎn)錄調(diào)控過程中,為了平衡植物體中原花色素的積累水平,也存在一些轉(zhuǎn)錄負(fù)調(diào)控因子,如苜蓿MtMYB2(Jun et al.,2015)及楊樹PtrMYB165、PtrMYB194(Ma etal.,2018)均可抑制原花色素的積累。通過表達(dá)數(shù)量性狀位點(diǎn)(eQTL)方式從葡萄中篩選出VviMYBC2-L 也已被證實(shí)參與負(fù)向調(diào)控原花色素生物合成(Huang et al.,2014)。與大多數(shù)參與調(diào)控類黃酮路徑的R2R3-MYB轉(zhuǎn)錄激活因子不同,R2R3-MYB轉(zhuǎn)錄負(fù)調(diào)控因子更傾向于抑制不止一個(gè)終產(chǎn)物。在葡萄毛狀根系統(tǒng)中過表達(dá)VviMYBC2-L1基因可抑制苯丙烷代謝途徑基因的表達(dá),從而降低原花色素和芪類化合物的含量(Yuetal.,2019)。

4.2 bHLH轉(zhuǎn)錄因子

bHLH轉(zhuǎn)錄因子也稱MYC轉(zhuǎn)錄因子,被分為25個(gè)亞家族(Heim etal.,2003)。bHLH蛋白包含1個(gè)約60個(gè)氨基酸組成的堿性螺旋—環(huán)—螺旋結(jié)構(gòu)域,該結(jié)構(gòu)域分為2個(gè)功能區(qū),分別為由13~17個(gè)親水堿性氨基酸構(gòu)成的Basic區(qū)和由1個(gè)環(huán)將2個(gè)“-螺旋分隔開的HLH區(qū)。Basic區(qū)包含1個(gè)HER基序(His-Glu-Arg),主要負(fù)責(zé)識(shí)別并結(jié)合到下游基因啟動(dòng)子上的結(jié)合元件(Hichrietal.,2010)。結(jié)合元件是典型的順式作用元件E-box(CANNTG),但大約81%的bHLH蛋白更傾向于識(shí)別其變體G-box(CACGTG)(Heim etal.,2003)。在植物中,bHLH轉(zhuǎn)錄因子普遍參與調(diào)控生長(zhǎng)發(fā)育和信號(hào)轉(zhuǎn)導(dǎo)過程,且在響應(yīng)逆境脅迫和次生代謝等方面也發(fā)揮重要作用(Pires and Dolan,2010;安昌等,2023)。從葡萄基因組中已分離鑒定出至少119個(gè)屬于bHLH家族的蛋白,是目前調(diào)控類黃酮生物合成的主要轉(zhuǎn)錄因子家族之一(Velasco et al.,2007)。

VviMYCA1可能是從葡萄中鑒定出的首個(gè)參與原花色素和花色苷生物合成的bHLH轉(zhuǎn)錄因子,其與擬南芥AtEGL3和AtGL3功能相似,既參與毛狀體的生長(zhǎng),也可恢復(fù)擬南芥tt8突變體的部分功能,同時(shí)與類黃酮代謝路徑相關(guān)的MYB轉(zhuǎn)錄因子互作(Matus etal.,2010)。VviMYC1與擬南芥AtTT8親緣關(guān)系很近,具備調(diào)控類黃酮生物合成和表皮細(xì)胞發(fā)育雙重功能。VviMYC1基因在葡萄發(fā)育時(shí)期的表達(dá)模式與原花色素和花色苷的生物合成緊密相關(guān)。體外瞬時(shí)表達(dá)試驗(yàn)表明,當(dāng)VviMYC1基因與另一個(gè)調(diào)控花色苷路徑的VviMYCA1基因共同轉(zhuǎn)化葡萄懸浮細(xì)胞時(shí),可誘導(dǎo)花色苷的生物合成(Hichrietal.,2010)。經(jīng)酵母單雜交篩選到的VvibHLH93基因在葡萄花和卷須中大量表達(dá);酵母單雜交一對(duì)一驗(yàn)證、雙螢光素酶和凝膠遷移試驗(yàn)均證實(shí)VvibHLH93與VviLAR1基因啟動(dòng)子上的MYC和G-box直接結(jié)合,且雙螢光素酶和葡萄愈傷組織過表達(dá)試驗(yàn)結(jié)果也表明,VvibHLH93通過下調(diào)VviLAR1和VviLAR2基因的表達(dá)來抑制葡萄原花色素生物合成(Chenget al.,2022)。

4.3 MYB-bHLH-WD40三元復(fù)合體

植物體中調(diào)控原花色素生物合成的MYB和bHLH轉(zhuǎn)錄因子通常以復(fù)合體的形式呈現(xiàn),擬南芥中通常還伴有WD40蛋白的參與(Weiet al.,2020)。在三元復(fù)合體(MYB-bHLH-WD40,MBW)中,MYB、bHLH和WD40等3個(gè)家族的蛋白各司其職,其中MYB蛋白大多以R2R3-MYB的形式出現(xiàn),主要負(fù)責(zé)特異性激活靶基因;bHLH蛋白的職能是與DNA序列特異性結(jié)合;WD40則為MYB/bHLH之間的相互作用提供對(duì)接平臺(tái),以穩(wěn)固復(fù)合物結(jié)構(gòu)(Huang et al.,2014;Zumajo-Cardona et al.,2023)。在MYB-bHLH-WD40三元復(fù)合體中,WD40的功能相對(duì)固定,MYB和bHLH蛋白的功能則相對(duì)靈活。擬南芥中由AtTT2(AtMYB123)、AtTT8(AtbHLH42)和AtTTG1組成的MYB-bHLH-WD40三元復(fù)合物具有代表性,其通過激活DFR、ANS、ANR、TT12(MATE)、TT13(AHA10)和TT19(GST)基因的表達(dá)以實(shí)現(xiàn)對(duì)原花色素的專一調(diào)控(Baudry etal.,2004)。這3個(gè)蛋白的任一編碼基因突變均會(huì)導(dǎo)致擬南芥中原花色素含量較少或缺失而表現(xiàn)為透明種皮(Abrahams et al.,2003;Terrier et al.,2009)。TTG1也可與MYB5-TT8和TT2-GLABRA3形成MYB-bHLH-WD40三元復(fù)合體,從而在一定程度上調(diào)節(jié)原花色素和花色苷生物合成的共享途徑(Xu etal.,2014b)。苜蓿中與TTG1同源的MtWD40-1基因表達(dá)可被MtPAR、MtMYB5和MtMYB14等3個(gè)MYB轉(zhuǎn)錄因子激活,其中當(dāng)MtTT8和MtWD40同時(shí)存在的情況下,MtMYB5和MtMYB14可協(xié)同促進(jìn)原花色素的生物合成(Verdieret al.,2012;Liu et al.,2014)。為避免花色苷和原花色素的過量合成,轉(zhuǎn)錄抑制因子MtMYB2和PpMYB18與轉(zhuǎn)錄激活因子競(jìng)爭(zhēng)以結(jié)合bHLHs,從而決定花色苷和原花色素的時(shí)空積累(Jun etal.,2015;Honget al.,2019)。葡萄中已鑒定出負(fù)調(diào)控原花色素和花色苷合成的VviMYBC2-L1/3與MtMYB2和PpMYB18高度相似,VviMYBC2-L1/3是否在類黃酮路徑中參與MYB-bHLH-WD40三元復(fù)合體活性的反饋閉環(huán),還有待進(jìn)一步驗(yàn)證。

4.4其他轉(zhuǎn)錄因子

除MYB、bHLH和WD蛋白外,其他家族的轉(zhuǎn)錄因子也可能具有調(diào)控原花色素生物合成的功能。Akagi等(2012)研究發(fā)現(xiàn),在柿子葉片中過表達(dá)DKbZIP5基因可大幅增加DkMYB4基因的表達(dá)量,從而促進(jìn)原花色素大量積累;Wang等(2017)將草藥大黃中的Zinc finger蛋白基因BrTT1沉默,可阻斷原花色素的積累,進(jìn)而導(dǎo)致大黃種皮由黃色轉(zhuǎn)變?yōu)橥该鳎籗un等(2019)研究發(fā)現(xiàn),蘋果MdNAC52以MdLAR為靶基因控制原花色素的生物合成;Zheng等(2019)結(jié)合代謝組和轉(zhuǎn)錄組數(shù)據(jù)構(gòu)建了多層調(diào)控網(wǎng)絡(luò),揭示了MADS和WRKY蛋白可能參與茶樹(+)-兒茶素型原花色素生物合成的不同步驟。葡萄中具備調(diào)控原花色素生物合成功能的Zinc finger、bZIP、NAC、WRKY和MADS轉(zhuǎn)錄因子還需通過與原花色素分支途徑的關(guān)鍵基因建立共表達(dá)網(wǎng)絡(luò)等手段進(jìn)一步驗(yàn)證。

5展望

近年來,因原花色素不僅有助于釀酒葡萄抵御各種生物和非生物脅迫,而且對(duì)葡萄酒收斂性的貢獻(xiàn)(Yuetal.,2023),其在葡萄中的生物合成路徑和調(diào)控機(jī)制一直是品質(zhì)調(diào)控研究領(lǐng)域的重點(diǎn),并取得較大進(jìn)展,但仍存在很多問題需要進(jìn)一步探討。目前,對(duì)VviLAR1、VviLAR2和VviANR在原花色素縮合過程中的作用已基本明晰,但需要注意到釀酒葡萄體內(nèi)編碼這3個(gè)酶的基因表達(dá)具有時(shí)間和空間上的差異性,當(dāng)前已鑒定到的大多數(shù)轉(zhuǎn)錄因子多以VviLAR1和VviANR為靶基因,而何種轉(zhuǎn)錄因子特異性地調(diào)控VviLAR2基因轉(zhuǎn)錄亟待探索。對(duì)于釀酒葡萄而言,我國(guó)釀酒葡萄種植區(qū)分布廣泛,縱橫南北,貫穿東西,各產(chǎn)區(qū)氣候、土壤、光照等環(huán)境因子差異大,在此背景下,探究釀酒葡萄響應(yīng)生物和非生物脅迫的機(jī)制是非常必要的。目前在已研究的植物中,MYB轉(zhuǎn)錄因子是參與調(diào)控植物生物和非生物脅迫及信號(hào)響應(yīng)的主要轉(zhuǎn)錄因子家族。在釀酒葡萄中,已通過體內(nèi)外試驗(yàn)證實(shí)VviMYB5a、VviMYB5b、VviMYBPA1、VviMYBPA2、VviMYBPAR、VviMYB 86、VviMYBC2-L1等調(diào)控果實(shí)原花色素的生物合成(Yu et al.,2023)。在擬南芥等物種中發(fā)現(xiàn)MYB-bHLH-WD40三元復(fù)合體也可參與原花色素的生物合成,但復(fù)合體中bHLH和WD40輔因子常參與其他通路的調(diào)節(jié),故認(rèn)為二者對(duì)原花色素調(diào)節(jié)的特異性低于MYB轉(zhuǎn)錄因子,且目前bHLH、WD40及其他家族的轉(zhuǎn)錄因子關(guān)注相對(duì)較少(Yuetal.,2020)。葡萄果實(shí)中原花色素的積累是體內(nèi)響應(yīng)各種脅迫的結(jié)果,后續(xù)研究需繼續(xù)關(guān)注上述轉(zhuǎn)錄因子對(duì)各種生物和非生物脅迫的響應(yīng)機(jī)制、轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控對(duì)上述轉(zhuǎn)錄因子的修飾方式及上述轉(zhuǎn)錄因子與各種信號(hào)和激素之間的互作機(jī)理。

明晰釀酒葡萄原花色素生物合成網(wǎng)絡(luò)的調(diào)控機(jī)制,可為針對(duì)性的基因修飾提供理論指導(dǎo),為釀酒葡萄抗性研究提供新思路,對(duì)釀酒葡萄育種具有重要意義。代謝工程和分子生物學(xué)的快速發(fā)展,為改良釀酒葡萄原花色素的組成和含量提供了先進(jìn)技術(shù),結(jié)合栽培手段,可幫助實(shí)現(xiàn)釀酒葡萄多酚品質(zhì)的定向提升及個(gè)性化風(fēng)格葡萄酒的定向釀造。

參考文獻(xiàn)(References):

安昌,陸琳,沈夢(mèng)千,陳盛圳,葉康卓,秦源,鄭平.2023.植物bHLH基因家族研究進(jìn)展及在藥用植物中的應(yīng)用前景[J].生物技術(shù)通報(bào),39(10):1-16.[An C,Lu L,Shen M Q,Chen S Z,Ye K Z,Qin Y,Zheng P.2023.Research progress of bHLH gene family in plants and its application prospects in medical plants[J].Biotechnology Bulletin,39(10):1-16.]doi:10.13560/j.cnki.biotech.bull.1985.2023-0243.

董瑞霞,李立祥,王茜,徐瑞瑞.2008.植物中原花青素含量測(cè)定[J].茶業(yè)通報(bào),30(2):67-69.[Dong R X,Li L X,Wang Q,Xu R R.2008.Determination of proanthocyanidins con-tent in plants[J].Journal of Tea Business,30(2):67-69.]doi:10.16015/j.cnki.jteabusiness.2008.02.014.

樊寶蓮,王曉云.2021.轉(zhuǎn)錄因子調(diào)控植物類胡蘿卜素合成途徑的研究進(jìn)展[J].分子植物育種,19(13):4401-4408.[Fan B L,Wang X Y.2021.Research progress of transcriptionfactors regulating carotenoid synthesis pathway in plant[J].Molecular Plant Breeding,19(13):4401-4408.]doi:10.13271/j.mpb.019.004401.

李慎昌,孫磊,樊秀彩,張穎,姜建福,劉崇懷.2020.刺葡萄R2R3-MYB轉(zhuǎn)錄因子VdMYB14調(diào)控類黃酮合成功能解析[J].果樹學(xué)報(bào),37(6):783-792.[Li S C,Sun L,F(xiàn)an X C,Zhang Y,Jiang J F,Liu C H.2020.Functional analysis of Vitis davidii R2R3-MYB transcription factorVd-MYB14 in the regulation of flavonoid biosynthesis[J].Journal of Fruit Science,37(6):783-792.]doi:10.13925/j.cnki.gsxb.20190577.

劉敖一,夏弄玉,王京京,孫琪,潘秋紅.2023.‘赤霞珠’種子成熟過程中縮合單寧的變化及其與顏色參數(shù)的相關(guān)性[J].中外葡萄與葡萄酒,(2):1-9.[Liu A Y,Xia N Y,Wang J J,Sun Q,Pan Q H.2023.Variation of condensedtannins during maturation of‘Cabernet Sauvignon’seeds and its correlation with color parameters[J].Sino-Overseas Grapevine&Wine,(2):1-9.]doi:10.13414/j.cnki.zwpp.2023.02.001.

劉敖一,孫琪,董志剛,劉鎮(zhèn)海,段長(zhǎng)青,潘秋紅.2022.‘赤霞珠’與‘西拉’雜交群體內(nèi)種子單寧的遺傳趨勢(shì)分析[J].中外葡萄與葡萄酒,(4):8-13.[Liu AY,Sun Q,Dong Z G,Liu Z H,Duan C Q,Pan Q H.2022.Inheritance trend of seed condensed tannins in F1 hybrids of‘Cabernet Sau-vignon’and‘Syrah’of Vitis vinifera[J].Sino-Overseas Grapevine&Wine,(4):8-13.]doi:10.13414/j.cnki.zwpp.2022.04.002.

熊安平,姜艷芳,彭亞麗,高倩,董文,林原,秦玉芝,何長(zhǎng)征,熊興耀,胡新喜.2021.調(diào)控植物生物堿生物合成的轉(zhuǎn)錄因子研究進(jìn)展[J].分子植物育種,19(17):5720-5728.[XiongA P,Jiang Y F,Peng Y L,Gao Q,Dong W,Lin Y,Qin Y Z,He C Z,Xiong X Y,Hu X X.2021.Advances oftranscription factors regulating alkaloid biosynthesis in plant[J].Molecular Plant Breeding,19(17):5720-5728.]doi:10.13271/j.mpb.019.005720.

張群華,方玉占,杜建科,陳躍,劉濤,趙婉秋,王筠竹,孫崇波.2024.園藝植物R2R3-MYB轉(zhuǎn)錄因子研究現(xiàn)狀[J].分子植物育種,22(1):85-96.[Zhang Q H,F(xiàn)ang Y Z,Du J K,Chen Y,Liu T,Zhao W Q,Wang Y Z,Sun C B.2024.Research status of R2R3-MYB transcription factors in hor-ticultural plants[J].Molecular Plant Breeding,22(1):85-96.]doi:10.13271/j.mpb.022.000085.

Abrahams S,Lee E,Walker A R,Tanner G J,Larkin P J,Ash-ton A R.2003.The Arabidopsis TDS4 gene encodes leuco-anthocyanidin dioxygenase(LDOX)and is essential for proanthocyanidin synthesis and vacuole development[J].The Plant Journal,35(5):624-636.doi:10.1046/j.1365-313x.2003.01834.x.

Abrahams S,Tanner G J,Larkin P J,Ashton AR.2002.Identifi-cation and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis[J].Plant Physio-logy,130(2):561-576.doi:10.1104/pp.006189.

Adams D O.2006.Phenolics and ripening in grape berries[J].American Journal of Enology and Viticulture,57(3):249-256.doi:10.1186/1748-7188-1-7.

Akagi T,Katayama-Ikegami A,Kobayashi S,Sato A,Kono A,Yonemori K.2012.Seasonal abscisic acid signal and a basic leucine zipper transcription factor,DkbZIP5,regu-late proanthocyanidin biosynthesis in persimmon fruit[J].Plant Physiology,158(2):1089-1102.doi:10.1104/pp.111.191205.

An J P,Li R,Qu F J,You C X,Wang X F,Hao Y J.2018.R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J].The Plant Journal,96(3):562-577.doi:10.1111/tpj.14050.

Anwar M,Yu W J,Yao H,Zhou P,Allan A C,Zeng L H.2019.NtMYB3,an R2R3-MYB from narcissus,regulates flavo-noid biosynthesis[J].International Journal of Molecular Sciences,20(21):5456.doi:10.3390/ijms20215456.

Baudry A,Heim M A,Dubreucq B,Caboche M,Weisshaar B,Lepiniec L.2004.TT TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyani-din biosynthesis in Arabidopsis thaliana[J].The Plant Journal,39(3):366-380.doi:10.1111/j.1365-313x.2004.02 138.x.

Bogs J,Downey M O,Harvey J S,Ashton A R,Tanner G J,Robinson S P.2005.Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reduc-tase and anthocyanidin reductase in developing grape ber-ries and grapevine leaves[J].Plant Physiology,139(2):652-663.doi:10.1104/pp.105.064238.

Bogs J,Ebadi A,McDavid D,Robinson S P.2006.Identifica-tion of the flavonoid hydroxylases from grapevine and their regulation during fruit development[J].Plant Physio-logy,140(1):279-291.doi:10.1104/pp.105.073262.

Bogs J,JafféF W,Takos A M,Walker A R,Robinson S P.2007.The grapevine transcription factor VvMYBPA1 regu-lates proanthocyanidin synthesis during fruit development[J].Plant Physiology,143(3):1347-1361.doi:10.1104/pp.106.093203.

Boss P K,Davies C,Robinson S P.1996.Expression of antho-cyanin biosynthesis pathway genes in red and white grapes[J].Plant Molecular Biology,32(3):565-569.doi:10.1007/bf00019111.

Braidot E,Zancani M,Petrussa E,Peresson C,Bertolini A,Patui S,MacrìF(xiàn),Vianello A.2008.Transport and accumu-lation of flavonoids in grapevine(Vitis vinifera L.)[J].Plant Signaling and Behavior,3(9):626-632.doi:10.4161/psb.3.9.6686.

Casassa L F,Keller M,Harbertson J F.2015.Regulated deficit irrigation alters anthocyanins,tannins and sensory proper-ties of Cabernet Sauvignon grapes and wines[J].Mole-cules,20(5):7820-7844.doi:10.3390/molecules20057820.

Cheng J,Shi Y,Wang J,Duan C Q,Yu K J.2022.Transcription factor VvibHLH93 negatively regulates proanthocyanidin biosynthesis in grapevine[J].Frontiers in Plant Science,13:1007895.doi:10.3389/fpls.2022.1007895.

Cheng J,Yu K J,Shi Y,Wang J,Duan C Q.2021.Transcription factor VviMYB86 oppositely regulates proanthocyanidin and anthocyanin biosynthesis in grape berries[J].Frontiersin Plant Science,11:613677.doi:10.3389/fpls.2020.613677.

Cosme F,Ricardo-Da-Silva J M,Laureano O.2009.Tannin pro-files of Vitis vinifera L.cv.red grapes growing in Lisbon and from their monovarietal wines[J].Food Chemistry,112(1):197-204.doi:10.1016/j.foodchem.2008.05.058.

Czemmel S,Heppel S C,Bogs J.2012.R2R3 MYB transcrip-tion factors:Key regulators of the flavonoid biosynthetic pathway in grapevine[J].Protoplasma:An International Journal of Cell Biology,249(S2):109-118.doi:10.1007/s00709-012-0380-z.

Deluc L,Barrieu F,Marchive C,Lauvergeat V,qPuBYr64g/GVa0aiJz9QPw==Decendit A,Richard T,Carde J P,Mérillon J M,Hamdi S.2006.Charac-terization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J].Plant Phy-siology,140(2):499-511.doi:10.1104/pp.105.067231.

Deluc L,Bogs J,Walker A R,F(xiàn)errier T,Decendit A,Merillon J M,Robinson S P,Barrieu F.2008.The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J].Plant Physiology,147(4):2041-2053.doi:10.1104/pp.108.118919.

Devic M,Guilleminot J,Debeaujon I,Bechtold N,Bensaude E,KoornneefM,Pelletier G,Delseny M.1999.The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development[J].The Plant Journal:For Cell and Molecular Biology,19(4):387-398.doi:10.1046/j.1365-313X.1999.00529.x.

Dixon R A,Sarnala S.2020.Proanthocyanidin biosynthesis—A matter of protection[J].Plant Physiology,184(2):579-591.doi:10.1104/pp.20.00973.

Dixon RA,Xie D Y,Sharma S B.2005.Proanthocyanidins—A final frontier in flavonoid research?[J].New Phytologist,165(1):9-28.doi:10.1111/j.1469-8137.2004.01217.x.

Downey M O,Harvey J S,Robinson S P.2003.Analysis of tan-nins in seeds and skins of Shiraz grapes throughout berry development[J].Australian Journal of Grape and Wine Research,9(1),15-27.doi:10.1111/j.1755-0238.2003.tb 00228.x.

Du H,Zhang L,Liu L,Tang X F,Yang W J,Wu Y M,Huang Y B,Tang Y X.2009.Biochemical and molecular characteri-zation of plant MYB transcription factor family[J].Bio-chemistry(Moscow),74(1):1-11.doi:10.1134/s000629 7909010015.

Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L.2010.MYB transcription factors in Arabidop-sis[J].Trends in Plant Science,15(10):573-581.doi:10.1016/j.tplants.2010.06.005.

Feller A,Machemer K,Braun E L,Grotewold E.2011.Evolu-tionary and comparative analysis of MYB and bHLH plant transcription factors[J].The Plant Journal:For Cell and Molecular Biology,66(1):94-116.doi:10.1111/j.1365-313X.2010.04459.x.

Hanlin R L,Kelm M A,Wilkinson K L,Downey M O.2011.Detailed characterization of proanthocyanidins in skin,seeds,and wine of Shiraz and Cabernet Sauvignon winegrapes(Vitis vinifera)[J].Journal of Agricultural and FoodChemistry,59(24):13265-13276.doi:10.1021/jf203466u.

Hartmann U,Sagasser M,Mehrtens F,Stracke R,Weisshaar B.2005.Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB,BZIP,and BHLH factors control light-responsive and tissue-specific activa-tion of phenylpropanoid biosynthesis genes[J].Plant Mole-cular Biology,57(2):155-171.doi:10.1007/s 11103-004-6910-0.

He F,Pan Q H,Shi Y,Duan C Q.2008.Biosynthesis and genetic regulation of proanthocyanidins in plants[J].Mo-lecules,13(10):2674-2703.doi:10.3390/molecules 1310 2674.

Heim M A,Jakoby M,Werber M,Martin C,WeisshaarlkghPgaGeL07U5T5TXa2lg== B,Bai-ley P C.2003.The basic helix-loop-helix transcription fac-tor family in plants:A genome-wide study of proteinstruc-ture and functional diversity[J].Molecular Biology and Evolution,20(5):735-747.doi:10.1093/molbev/msg088.

Hichri I,Barrieu F,Bogs J,Kappel C,Delrot S,Lauvergeat V.2011.Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J].Journal of Experi-mental Botany,62(8):2465-2483.doi:10.1093/jxb/erq442.

Hichri I,Heppel S C,Pillet J,Léon C,Czemmel S,Delrot S,Lauvergeat V,Bogs J.2010.The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine[J].Mole-cular Plant,3(3):509-523.doi:10.1093/mp/ssp 118.

Holton T A,Cornish E C.1995.Genetics and biochemistry of anthocyanin biosynthesis[J].The Plant Cell,7(7):1071-1083.doi:10.1105/tpc.7.7.1071.

Hong Y,Li M L,Dai S L.2019.Ectopic expression of multiple chrysanthemum(Chrysanthemum×morifolium)R2R3-MYB transcription factor genes regulates anthocyanin accumula-tion in tobacco[J].Genes(Basel),10(10):777.doi:10.3390/genes 10100777.

Huang Y F,Vialet S,Guiraud J L,Torregrosa L,Bertrand Y,Cheynier V,This P,Terrier N.2014.A negative MYB regulator of proanthocyanidin accumulatio,identified through expression quantitative locus mapping in the grape berry[J].New Phytologist,201(3):795-809.doi:10.1111/nph.12557.

Humphreys J M,Chapple C.2002.Rewriting the lignin road-map[J].Current Opinion in Plant Biology,5(3),224-229.doi:10.1016/s 1369-5266(02)00257-1.

Jiang X L,Huang KY,Zheng G S,Hou H,Wang P Q,Jiang H,Zhao X C,Li M Z,Zhang S X,Liu Y J,Gao L P,Zhao L,Xia T.2018.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proantho-cyanidin biosynthesis[J].Plant Science,270:209-220.doi:10.1016/j.plantsci.2018.02.009.

Jun J H,Liu C,Xiao X,Dixon R A.2015.The transcriptionalrepressor MYB2 regulates both spatial and temporal pat-terns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula[J].The Plant Cell,27(10):2860-2879.doi:10.1105/tpc.15.00476.

Jun J H,Xiao X R,Rao X L,Dixon R A.2018.Proanthocyani-din subunit composition determined by functionally diver-ged dioxygenases[J].Nature Plants,4(12):1034-1043.doi:10.1038/s41477-018-0292-9.

Kennedy J A,Hayasaka Y,Vidal S,Waters E J,Jones G P.2001.Composition of grape skin proanthocyanidins at dif-ferent stages of berry development[J].Journal of Agricul-tural and Food Chemistry,49(11):5348-5355.doi:10.1021/jf010758h.

Kennedy J A,Jones G P.2001.Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol[J].Journal of Agricultural and Food Chemistry,49(4):1740-1746.doi:10.1021/jf0010 30o.

Kennedy J A,Matthews M A,Waterhouse A L.2000a.Changes in grape seed polyphenols during fruit ripening[J].Phyto-chemistry,55(1):77-85.doi:10.1016/s0031-9422(00)00196-5.

Kennedy J A,Troup G J,Pilbrow J R,Hutton D R,Hewitt D,Hunter C R,Ristic R,Iland P G,Jones G P.2000b.Deve-lopment of seed polyphenols in berries from Vitis vinifera L.cv.Shiraz[J].Australian Journal of Grape and Wine Research,6(3),244-254.doi:10.1111/j.1755-0238.2000.tb00185.x.

Koyama K,Numata M,Nakajima I,Goto-Yamamoto N,Mat-sumura H,Tanaka N.2014.Functional characterization of a new grapevine MYB transcription factor and regulation of proanthocyanidin biosynthesis in grapes[J].Journal of Experimental Botany,65(15):4433-4449.doi:10.1093/jxb/eru213.

Lacampagne S,GagnéS,Gény L.2010.Involvement of abscisic acid in controlling the proanthocyanidin biosyn-thesis pathway in grape skin:New elements regarding the regulation of tannin composition and leucoanthocyanidin reductase(LAR)and anthocyanidin reductase(ANR)ac-tivities and expression[J].Journal of Plant Growth Re-gulation,29(1):81-90.doi:10.1007/s00344-009-9115-6.

Li P H,Dong Q,Ge S J,He X Z,Verdier J,Li D Q,Zhao J.2016.Metabolic engineering of proanthocyanidin produc-tion by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume[J].Plant Biotech-nology Journal,14(7):1604-1618.doi:10.1111/pbi.12524.

Li Y G,Tanner G,Larkin P.1996.The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safetyin forage legumes[J].Journal of the Science of Food and Agriculture,70(1):89-101.doi:10.1002/(sici)1097-0010(199601)70:1<89::Aid-jsfa470>3.0.Co;2-n.

Liu C G,Jun J H,Dixon R A.2014.MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medi-cagotruncatula[J].Plant Physiology,165(4):1424-1439.doi:10.1104/pp.114.241877.

Liu C G,Wang X Q,Shulaev V,Dixon R A.2016a.A role for leucoanthocyanidin reductase in the extension of proantho-cyanidins[J].Nature Plants,2:16182.doi:10.1038/nplants.2016.182.

Liu J Y,Osbourn A,Ma P D.2015.MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J].Molecular Plant,8(5):689-708.doi:10.1016/j.molp.2015.03.012.

Liu M Y,Song C Z,Chi M,Wang T M,Zuo L L,Li X L,Zhang Z W,Xi Z M.2016b.The effects of light and ethy-lene and their interaction on the regulation of proanthocya-nidin and anthocyanin synthesis in the skidmqhPYy/B5ACDAG7EMglj2qt7AtN3DOitl4s1GZX4BQ=ns of Vitis vini-fera berries[J].Plant Growth Regulation,79(3):377-390.doi:10.1007/s 10725-015-0141-z.

Liu Y X,Pan Q H,Yan G L,He J J,Duan C Q.2010.Changes offlavan-3-ols with different degrees of polymerization in seeds of‘Shiraz’,‘Cabernet Sauvignon’and‘Marselan’grapes after veraison[J].Molecules,15(11):7763-7774.doi:10.3390/molecules 15117763.

Liu Y,Shi Z,Maximova S,Payne M J,Guiltinan M J.2013.Proanthocyanidin synthesis in Theobroma cacao:Genes encoding anthocyanidin synthase,anthocyanidin reductase,and leucoanthocyanidin reductase[J].BMC Plant Biology,13:202.doi:10.1186/1471-2229-13-202.

Ma D,Reichelt M,Yoshida K,Gershenzon J,Constabel C P.2018.Two R2R3-MYB proteins are broad repressors offla-vonoid and phenylpropanoid metabolism in poplar[J].The Plant Journal,96(5):949-965.doi:10.1111/tpj.14081.

Malisch C S,Salminen J P,K?lliker R,Engstr?m M T,Suter D,Studer B,Lüscher A.2016.Drought effects on proan-thocyanidins in Sainfoin(Onobrychisviciifolia Scop.)are dependent on the plant’s ontogenetic stage[J].Journal of Agricultural and Food Chemistry,64(49):9307-9316.doi:10.1021/acs.jafc.6b02342.

Martens S,Teeri T,F(xiàn)orkmann G.2002.Heterologous expres-sion of dihydroflavonol 4-reductases from various plants[J].FEBS Letters,531(3):453-458.doi:10.1016/s0014-5793(02)03583-4.

Matus J T,Poupin M J,Ca?ón P,Bordeu E,Alcalde J A,Arce-Johnson P.2010.Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine(Vitis vinifera L.)[J].Plant Molecular Biology,72(6):607-620.doi:10.1007/s 11103-010-9597-4.

Pang Y Z,Abeysinghe I S B,He J,He X Z,Huhman D,Mewan K M,Sumner L W,Yun J F,Dixon R A.2013.Functional characterization of proanthocyanidin pathway enzymesfrom tea and their application for metabolic engineering[J].Plant Physiology,161(3):1103-1116.doi:10.1104/pp.112.212050.

Pang Y,Peel G J,Wright E,Wang Z,Dixon R A.2007.Early steps in proanthocyanidin biosynthesis in the modellegumeMedicagotruncatula[J].Plant Physiology,145(3):601-615.doi:10.1104/pp.107.107326.

Pfeiffer J,Kühnel,C,Brandt J,Duy D,Punyasiri PA N,F(xiàn)ork-mann G,F(xiàn)ischer T C.2006.Biosynthesis of flavan 3-ols by leucoanthocyanidin 4-reductases and anthocyanidin re-ductases in leaves of grape(Vitis viniferaL.),apple(Malus×domestica Borkh.)and other crops[J].Plant Physiology and Biochemistry,44(5-6):323-334.doi:10.1016/j.pla-phy.2006.06.001.

Pires N,Dolan L.2010.Origin and diversification of basic-Helix-Loop-Helix proteins in plants[J].Molecular Biology and Evolution,27(4):862-874.doi:10.1093/molbev/msp 288.

Ristic R,Bindon K,F(xiàn)rancis L I,Herderich M J,Iland P G.2010.Flavonoids and C-13-norisoprenoids in Vitis vinifera L.cv.Shiraz:Relationships between grape and wine com-position,wine colour and wine sensory properties[J].Aus-tralian Journal of Grape and Wine Research,16(3):369-388.doi:10.1111/j.1755-0238.2010.00099.x.

Romero I,F(xiàn)uertes A,Benito M J,Malpica J M,Leyva A,Paz-Ares J.1998.More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana[J].The Plant Jour-nal,14(3):273-284.doi:10.1046/j.1365-313x.1998.00113.x.

Rousserie P,RabotA,Geny-Denis L.2019.From flavanols bio-synthesis to wine tannins:What place for grape seeds?[J].Journal of Agricultural and Food Chemistry,67(5):1325-1343.doi:10.1021/acs.jafc.8b05768.

Saito K,Kobayashi M,Gong Z Z,Tanaka Y,Yamazaki M.1999.Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase:Molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens[J].The Plant Journal,17(2):181-189.doi:10.1046/j.1365-313X.1999.00365.x.

Stafford H A,Lester H H.1985.Flavan-3-ol biosynthesis:The conversion of(+)-dihydromyricetin to its flavan-3,4-diol(leucodelphinidin)and to(+)-gallocatechin by reductases extracted from tissue-cultures of Ginkgo biloba and Pseu-dotsugamenziesii[J].Plant Physiology,78(4):791-794.doi:10.1104/pp.78.4.791.

Stafford H A.1991.Flavonoid evolution—An enzymatic approach[J].Plant Physiology,96(3):680-685.doi:10.1104/pp.96.3.680.

Sun Q G,Jiang S H,Zhang T L,Xu H F,F(xiàn)ang H F,Zhang J,Su M Y,Wang Y C,Zhang Z Y,Wang N,Chen X S.2019.Apple NAC transcription factor MdNAC52 regulates bio-synthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11[J].Plant Science,289:110286.doi:10.1016/j.plantsci.2019.110286.

Tanner G J,F(xiàn)rancki K T,Abrahams S,Watson J M,Larkin P J,Ashton A R.2003.Proanthocyanidin biosynthesis in plants—Purification of legume leucoanthocyanidin reduc-tase and molecular cloning of its cDNA[J].Journal of Bio-logical Chemistry,278(34):31647-31656.doi:10.1074/jbc.M302783200.

Terrier N,Torregrosa L,Ageorges A,Vialet S,Verriès C,Cheynier V,Romieu C.2009.Ectopic expression of VvMYBPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J].Plant Physiology,149(2):1028-1041.doi:10.1104/pp.108.131862.

Treutter D.1989.Chemical-reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde[J].Journal of Chromatography,467(1):185-193.doi:10.1016/s0021-9673(01)93963-9.

Unusan N.2020.Proanthocyanidinsin grape seeds:An updated review of their health benefits and potential uses in the food industry[J].Journal of Functional Foods,67:103861.doi:10.1016/j.jff.2020.103861.

Velasco R,ZharkikhA,Troggio M,Cartwright DA,Cestaro A,Pruss D,Pindo M,F(xiàn)itzgerald L M,Vezzulli S,Reid J,Malacarne G,Iliev D,Coppola G,Wardell B,Micheletti D,Macalma T,F(xiàn)acci M,Mitchell J T,Perazzolli M,Eldredge G,Gatto P,Oyzerski R,Moretto M,Gutin N,Ste-fanini M,Chen Y,Segala C,Davenport C,DemattèL,Mraz A,Battilana J,Stormo K,Costa F,Tao Q,Si-Ammour A,Harkins T,Lackey A,Perbost C,Taillon B,Stella A,Solovyev V,F(xiàn)awcett J A,Sterck L,Vandepoele K,Grando S M,Toppo S,Moser C,Lanchbury J,Bogden R,Skolnick M,Sgaramella V,Bhatnagar S K,F(xiàn)ontana P,Gutin A,Van de Peer Y,Salamini F,Viola R.2007.A high quality draft consensus sequence of the genome of a hete-rozygous grapevine variety[J].PLoS One,2(12):e1326.doi:10.1371/journal.pone.0001326.

Verdier J,Zhao J,Torres-Jerez I,Ge S J,Liu C G,He X Z,Mysore K S,Dixon R A,Udvardi M K.2012.MtPAR MYB transcription factor acts as an on switch for proantho-cyanidin biosynthesis in Medicago truncatula[J].Procee-dings of the National Academy of Sciences of the United States of America,109(5),1766-1771.doi:10.1073/pnas.1120916109.

Wang Y H,Xiao L,Dun X L,Liu K D,Du D Z.2017.Charac-terization of the BrTT1 gene responsible for seed coat color formation in Dahuang(Brassica rapaL.landrace)[J].Molecular Breeding,37(11):137.doi:10.1007/s11032-017-0736-3.

Wei X F,Ju Y L,Ma T T,Zhang J X,F(xiàn)ang Y L,Sun X Y.2020.New perspectives on the biosynthesis,transportation,astringency perception and detection methods of grape proanthocyanidins[J].Critical Reviews in Food Science and Nutrition,61(14):2372-2398.doi:10.1080/10408398.2020.1777527.

Wu Y,Wen J,Xia Y P,Zhang L S,Du H.2022.Evolution and functional diversification of R2R3-MYB transcription fac-tors in plants[J].Horticulture Research,9:uhac058.doi:10.1093/hr/uhac058.

Xie D Y,Sharma S B,Paiva N L,F(xiàn)erreira D,Dixon RA.2003.Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis[J].Science,299(5605):396-399.doi:10.1126/science.1078540.

Xu W J,Dubos C,Lepiniec L.2014a.Transcriptional control offlavonoid biosynthesis by MYB-bHLH-WDR complexes[J].Trends in Plant Science,20(3),176-185.doi:10.1016/j.tplants.2014.12.001.

Xu W J,Lepiniec L C,Dubos C.2014b.New insights toward the transcriptional engineering of proanthocyanidin biosyn-thesis[J].Plant Signal and Behavior,9(4):e28736.doi:10.4161/psb.28736.

Yu D,Huang T,Tian B,Zhan J C.2020.Advances in biosynthe-sis and biological functions of proanthocyanidins in horti-cultural plants[J].Foods,9(12):1774.doi:10.3390/foods 9121774.

Yu K J,Jun J H,Duan C Q,Dixon R A.2019.VvLAR1 and VvLAR2 are bifunctional enzymes for proanthocyanidin biosynthesis in grapevine[J].Plant Physiology,180(3):1362-1374.doi:10.1104/pp.19.00447.

Yu K,Song Y,Lin J,Dixon R A.2023.The complexities of proanthocyanidin biosynthesis and its regulation in plants[J].Plant Communications,4:100498.doi:10.1016/j.xplc.2022.100498.

Zhao J,Dixon R A.2009.MATE transporters facilitate vacuo-lar uptake of epicatechin 3'-O-glucoside for proanthocy-anidin biosynthesis in Medicago truncatulaandArabidop-sis[J].The Plant Cell,21(8):2323-2340.doi:10.1105/tpc.109.067819.

Zheng C,Ma J Q,Chen J D,Ma C L,Chen W,Yao M Z,Chen L.2019.Gene coexpression networks reveal key drivers offlavonoid variation in eleven tea cultivars(Camellia sinen-sis)[J].Journal of Agricultural and Food Chemistry,67(35):9967-9978.doi:10.1021/acs.jafc.9b04422.

Zoratti L,Karppinen K,Escobar L A,H?ggman H,Jaakola L.2014.Light-controlled flavonoid biosynthesis in fruits[J].Frontiers in Plant Science,5:534.doi:10.3389/fpls.2014.00534.

Zumajo-Cardona C,Gabrieli F,Anire J,Albertini E,Ezquer I,Colombo L.2023.Evolutionary studies of the bHLHtran-scription factors belonging to MBW complex:Their role in seed development[J].Annals of Botany,132(3):383-400.doi:10.1093/aob/mcad097.

(責(zé)任編輯陳燕)