摘 要:雞作為世界上分布最為廣泛的家養(yǎng)動(dòng)物之一,對(duì)不同環(huán)境具有良好的適應(yīng)能力并形成了穩(wěn)定的遺傳機(jī)制,是研究動(dòng)物環(huán)境適應(yīng)性的重要模型。測(cè)序技術(shù)的成熟與全球環(huán)境數(shù)據(jù)庫(kù)的日漸完善使遺傳與環(huán)境的關(guān)聯(lián)分析成為可能。群體遺傳學(xué)、景觀基因組學(xué)、泛基因組學(xué)等多種研究方法不斷豐富雞環(huán)境適應(yīng)性的研究,鑒定出一系列與環(huán)境適應(yīng)性相關(guān)的候選因子,如與低氧適應(yīng)性相關(guān)的關(guān)鍵因子EPAS1、HIF1A;與雞寒冷適應(yīng)性相關(guān)的關(guān)鍵因子av-UCP;與雞高溫適應(yīng)性相關(guān)的關(guān)鍵因子HSP,為動(dòng)物環(huán)境適應(yīng)性遺傳機(jī)制研究奠定了重要基礎(chǔ)。盡管如此,目前雞環(huán)境適應(yīng)性的分子機(jī)制仍不完善。本文從高海拔適應(yīng)性、冷適應(yīng)性、熱適應(yīng)性、干旱適應(yīng)性及綜合氣候適應(yīng)性等5個(gè)方面,概述近年來(lái)雞的環(huán)境適應(yīng)性研究進(jìn)展,引出雞環(huán)境適應(yīng)性研究面臨的問(wèn)題,并對(duì)未來(lái)的研究趨勢(shì)進(jìn)行展望,以期為雞的種質(zhì)資源保護(hù)與利用提供理論支持。
關(guān)鍵詞:雞;環(huán)境適應(yīng)性;多組學(xué);環(huán)境變量
中圖分類號(hào):S831.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)07-2809-16
收稿日期:2023-12-08
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFD1200302)
作者簡(jiǎn)介:黃曉?。?000-),男,遼寧大連人,碩士生,主要從事雞遺傳育種研究,E-mail:xlhuang00@163.com
*通信作者:袁經(jīng)緯,主要從事家禽遺傳育種研究,E-mail:amstrongyuan@163.com;盛熙暉,主要從事家禽遺傳育種研究,E-mail:shengxh03@163.com
Research Progress of Environmental Adaptability in Chickens from Perspective of
Omics Analysis
HUANGXiaolong1,2,SHENGXihui1*,YUANJingwei2*
(1.Animal Science and Technology College,Beijing University of Agriculture,Beijing102206,
China; 2.Key Laboratory of Animal(Poultry)Genetics Breeding and Reproduction of
Ministry of Agriculture and Rural Affairs,Institute of Animal Science,Chinese Academy of
Agricultural Sciences,Beijing100193,China)
Abstract:Chicken is one of the most widely distributed animals in the world.It has evolved astable genetic mechanism that allows it to adapt well to various environments,leading chicken as to become an important model for studying the biological mechanism of environmental adaptability.The development of sequencing technology and global environmental databases has made it possible to analyze the association between genetics and the environment.Population genetics,landscape genomics,pan-genome,and other research methods constantly promote researches on the chicken environmental adaptability,identifying aseries of candidate factors,such as EPAS1and HIF1A related to hypoxia adaptability; av-UCP related to cold adaptability and HSP related to heat adaptability in chickens,which laid the foundation for further studies on the genetic mechanism of environmental adaptability.Nevertheless,the molecular mechanisms of chicken environmental adaptability are still elusive.In this review,we summarize the recent research progress that chicken adapted to high-altitude,cold,heat,drought,and comprehensive climate,and put forward the challenges faced and the future research spots in the field,aiming to provide theoretical support for the conservation and utilization of chicken genetic resources.
Key words:chicken; environmental adaptability; omics; environmental variables
*Corresponding authors:YUAN Jingwei,E-mail:amstrongyuan@163.com; SHENG Xihui,E-mail:shengxh03@163.com
氣候環(huán)境是生物適應(yīng)性進(jìn)化的重要驅(qū)動(dòng)力?,F(xiàn)代生物進(jìn)化論認(rèn)為,生物適應(yīng)性進(jìn)化是自然環(huán)境驅(qū)動(dòng)生物發(fā)生遺傳突變導(dǎo)致其表型改變以適應(yīng)環(huán)境的過(guò)程。在動(dòng)物環(huán)境適應(yīng)性研究領(lǐng)域,涉及高原(低氧、低壓、強(qiáng)輻射)[1]、炎熱[2]、干旱[3]、寒冷[4]等環(huán)境類型。大量研究認(rèn)為,動(dòng)物能夠適應(yīng)環(huán)境而存活,通常取決于其適應(yīng)現(xiàn)有環(huán)境條件的能力[5]。當(dāng)面臨環(huán)境壓力時(shí),動(dòng)物可以通過(guò)細(xì)胞應(yīng)激反應(yīng)等途徑,保護(hù)大分子免受損傷,維持細(xì)胞和有機(jī)體的正常生理功能,進(jìn)而適應(yīng)環(huán)境的改變。這一過(guò)程被稱為應(yīng)激誘導(dǎo)進(jìn)化,是動(dòng)物進(jìn)化的主要驅(qū)動(dòng)力,主要涉及基因突變、DNA損傷和修復(fù)、表觀遺傳變化(DNA甲基化、組蛋白翻譯后修飾、轉(zhuǎn)座因子活性等)、染色體結(jié)構(gòu)變異等分子機(jī)制。長(zhǎng)期生存在某一環(huán)境中的物種會(huì)在群體水平上產(chǎn)生可遺傳表型變異,提高動(dòng)物群體適應(yīng)新環(huán)境條件的能力,減小種群滅絕幾率[6-7]。通過(guò)研究這些變異可以揭示動(dòng)物環(huán)境適應(yīng)性的潛在遺傳機(jī)制,為地方品種資源的保護(hù)和利用提供科學(xué)方法,有利于保護(hù)物種多樣性與維持生態(tài)平衡。
人們主要利用群體遺傳學(xué)來(lái)研究環(huán)境適應(yīng)性,并鑒定出一系列關(guān)鍵因子。近年來(lái)隨著測(cè)序技術(shù)的成熟與大量測(cè)序數(shù)據(jù)的累積,人們相繼提出了景觀基因組學(xué)、泛基因組學(xué)等組學(xué)概念[8]。景觀基因組學(xué)在群體遺傳分析基礎(chǔ)上,整合遺傳變異數(shù)據(jù)與環(huán)境變量數(shù)據(jù),分析基因型-環(huán)境互作關(guān)系(genotype-environment associations,GEAs),進(jìn)而揭示生物適應(yīng)氣候環(huán)境因子的分子機(jī)制[9]。泛基因組相較于單一參考基因組包含更多的變異信息,通過(guò)泛基因組研究動(dòng)物環(huán)境適應(yīng)性可以發(fā)現(xiàn)大量以往被我們所忽略的重要基因。然而利用景觀基因組學(xué)、泛基因組學(xué)來(lái)分析雞環(huán)境適應(yīng)性的研究很少,需要相應(yīng)研究填充該領(lǐng)域內(nèi)容。目前,利用上述研究方法已經(jīng)鑒定到大量雞環(huán)境適應(yīng)性候選基因,但是這些基因發(fā)揮功能的分子機(jī)制仍不明確,未來(lái)需要整合基因組、轉(zhuǎn)錄組、甲基化組、蛋白質(zhì)組、代謝組、微生物組等多種組學(xué)研究,同時(shí)聯(lián)合分子試驗(yàn)來(lái)解析雞的環(huán)境適應(yīng)性遺傳機(jī)制[10]。
雞起源于東南亞地區(qū),其祖先是紅色原雞滇南亞種(Gallus galluss padiceus)[11-12],被人類馴化后,跟隨人類的遷移,分布在世界各地,如高海拔的青藏高原、青海,寒冷的西伯利亞、黑龍江,炎熱潮濕的老撾、斯里蘭卡,炎熱干旱的吐魯番盆地、利比亞等地區(qū)。生存在不同地域的雞經(jīng)過(guò)長(zhǎng)期適應(yīng),形成了環(huán)境適應(yīng)性良好且遺傳性穩(wěn)定的地方品種[13]。雞作為重要家畜之一,極大滿足了人們對(duì)蛋、肉等畜產(chǎn)品的需求,成為現(xiàn)代農(nóng)業(yè)中不可或缺的一部分[14]。低氧、高溫、寒冷等惡劣環(huán)境條件會(huì)降低雞的生產(chǎn)性能,造成嚴(yán)重的經(jīng)濟(jì)損失??梢酝ㄟ^(guò)開展雞環(huán)境適應(yīng)性研究,揭示雞有利性狀的遺傳機(jī)制,了解不同環(huán)境條件對(duì)雞生產(chǎn)性能的影響,進(jìn)而培育具有優(yōu)良性狀的雞品種,并科學(xué)地調(diào)整飼養(yǎng)管理方法,達(dá)到雞的生產(chǎn)性能與遺傳多樣性協(xié)調(diào)發(fā)展的目的,最終促進(jìn)雞產(chǎn)業(yè)的良性發(fā)展[15-16]。目前,主要聚焦于雞的高海拔環(huán)境、寒冷環(huán)境和高溫環(huán)境適應(yīng)性研究,而對(duì)于輻射適應(yīng)性、干旱適應(yīng)性的相關(guān)研究較少。本文主要從高海拔(低氧、輻射)、冷、熱及干旱適應(yīng)性等方面對(duì)雞的環(huán)境適應(yīng)性機(jī)制進(jìn)行闡述,概述環(huán)境適應(yīng)性的研究方法,綜述近年來(lái)基于組學(xué)分析方法取得的最新研究進(jìn)展,歸納了雞環(huán)境適應(yīng)性的分子遺傳機(jī)制。
1 環(huán)境類型簡(jiǎn)介
不同地區(qū)在氣壓、溫濕度、降水量、太陽(yáng)紫外輻射(ultraviolet radiation,UVR)等不同環(huán)境因素影響下形成了不同的環(huán)境類型,主要包括高海拔、強(qiáng)紫外輻射、寒冷、炎熱、干旱等環(huán)境類型。高原環(huán)境通常伴隨著低氧、低壓、低溫、強(qiáng)輻射等氣候條件[17]。輻射是繼水、空氣和噪音污染外第四大普遍的污染類型,會(huì)對(duì)正常的身體機(jī)能產(chǎn)生不利影響[18]。研究表明,UVR可誘導(dǎo)生物機(jī)體發(fā)生遺傳突變,形成豐富的生物多樣性[19]。然而過(guò)量的紫外輻射往往會(huì)對(duì)生物機(jī)體造成不可逆的傷害,例如黑色素瘤的發(fā)生、維生素合成異常、免疫力下降、行為異常等。青藏高原作為典型的高原環(huán)境,大氣稀薄、太陽(yáng)紫外輻射較為強(qiáng)烈,為高海拔動(dòng)物的輻射適應(yīng)性研究提供了較為豐富的試驗(yàn)資源,對(duì)人類醫(yī)學(xué)、生態(tài)環(huán)境等研究具有實(shí)用價(jià)值[20]。溫度是影響畜禽生產(chǎn)性能的關(guān)鍵氣候因素之一[21-22]。長(zhǎng)期生活在寒冷或炎熱環(huán)境中的雞群體主要通過(guò)調(diào)節(jié)機(jī)體產(chǎn)熱與散熱來(lái)應(yīng)對(duì)溫度的變化,并形成了穩(wěn)定的遺傳機(jī)制[23]。干旱地區(qū),如塔里木沙漠、撒哈拉沙漠、中東地區(qū),通常伴隨高溫,生活在該地區(qū)的動(dòng)物往往具有較好的耐熱性。
2 環(huán)境適應(yīng)性的研究方法
2.1 環(huán)境信息數(shù)據(jù)化
隨著工程技術(shù)發(fā)展和人們對(duì)生態(tài)環(huán)境的日益重視,多種采集環(huán)境信息的設(shè)備被研制出來(lái)用于全方位收集不同地區(qū)的環(huán)境數(shù)據(jù),如溫濕度、水質(zhì)、氧分壓等[24]。針對(duì)大量、復(fù)雜且與生活和生產(chǎn)活動(dòng)息息相關(guān)的環(huán)境數(shù)據(jù),不同地區(qū)相繼建立了各自的環(huán)境數(shù)據(jù)庫(kù)[25]。這為生物環(huán)境適應(yīng)性的研究提供了相對(duì)完善的環(huán)境信息。
2.2 群體遺傳學(xué)方法
群體遺傳學(xué)主要應(yīng)用數(shù)學(xué)和統(tǒng)計(jì)學(xué)的原理和方法分析群體中基因分布、頻率與遺傳結(jié)構(gòu),利用處于不同環(huán)境中的群體測(cè)序數(shù)據(jù),計(jì)算群體的遺傳分化指數(shù)(genetic differentiation index,F(xiàn)ST)、基因組純合片段(runs of homozygosity,ROH)[26]、核苷酸多樣性(nucleotide diversity,π)等指標(biāo),篩選出受選擇的特異性位點(diǎn)或基因組區(qū)域[27],為動(dòng)物環(huán)境適應(yīng)性研究提供理論基礎(chǔ)[28]。Petegrosso等[29]在對(duì)植物表型、基因型和地理氣候進(jìn)行關(guān)聯(lián)分析時(shí),提出層次規(guī)范相關(guān)分析方法(hierarchical canonical correlation analysis,HCCA)。該方法將基因突變、基因表達(dá)、DNA甲基化與地理氣候特征相結(jié)合,更深入地挖掘基因功能與環(huán)境之間的相互作用,有望為雞環(huán)境適應(yīng)性研究提供新發(fā)現(xiàn)。Gheyas等[30]應(yīng)用生態(tài)位模型(ecological niche modeling,ENM)與全基因組選擇特征分析、基因型-環(huán)境關(guān)聯(lián)分析相結(jié)合的方法,確定非洲本土雞品種的基因組特征,為闡明畜禽的環(huán)境適應(yīng)性機(jī)制提供了一種強(qiáng)有力的新方法。
2.3 景觀基因組學(xué)方法
景觀基因組學(xué)主要研究異質(zhì)性環(huán)境變量對(duì)群體結(jié)構(gòu)和基因流的影響[31]。環(huán)境數(shù)據(jù)庫(kù)的建立與高通量測(cè)序技術(shù)的成熟,極大地推動(dòng)了景觀基因組學(xué)的發(fā)展成熟。相較于群體遺傳學(xué),景觀基因組學(xué)通過(guò)對(duì)環(huán)境信息與遺傳信息進(jìn)行聯(lián)合分析,能夠更加精準(zhǔn)地篩選出相關(guān)候選基因,推動(dòng)動(dòng)物環(huán)境適應(yīng)性的研究。隨著人工智能的廣泛應(yīng)用,機(jī)器學(xué)習(xí)方法可以通過(guò)經(jīng)驗(yàn)學(xué)習(xí),不斷完善具體算法,比傳統(tǒng)統(tǒng)計(jì)模型具有更高靈敏度,結(jié)果更加準(zhǔn)確[32-33]。但是,目前尚無(wú)應(yīng)用機(jī)器學(xué)習(xí)算法分析動(dòng)物環(huán)境適應(yīng)性的相關(guān)研究。將機(jī)器學(xué)習(xí)算法與景觀基因組學(xué)等方法結(jié)合,應(yīng)用于動(dòng)物環(huán)境適應(yīng)性研究將會(huì)是一個(gè)富有潛力的研究方向。
2.4 三代基因組組裝及泛基因組策略
組裝高質(zhì)量參考基因組是生物信息學(xué)領(lǐng)域的核心問(wèn)題[34]。基于高質(zhì)量基因組序列,結(jié)合群體遺傳學(xué)分析、全基因組關(guān)聯(lián)分析(genome-wide association study,GWAS)等研究方法,可以深入剖析該物種與環(huán)境適應(yīng)性相關(guān)的基因組區(qū)域,發(fā)現(xiàn)在以往研究中被忽略的重要基因,更加全面地揭示物種的環(huán)境適應(yīng)性分子機(jī)制[35]。隨著研究的深入,人們發(fā)現(xiàn)在群體遺傳學(xué)水平上,同一物種的不同個(gè)體的基因組序列與其對(duì)應(yīng)的參考基因組存在偏差,參考基因組并不具有該物種的所有基因組信息。泛基因組(pan-genome)概念應(yīng)運(yùn)而生,它包含存在于某一物種幾乎所有個(gè)體中的核心基因組與由自然選擇造成的只存在于部分個(gè)體中的可變基因組[36]。相較于單一參考基因組,泛基因組包含更多的遺傳多樣性[37]。通過(guò)構(gòu)建雞泛基因組,完善現(xiàn)有的雞參考基因組并獲取整個(gè)物種的完整變異信息,將有助于深入研究雞遺傳多樣性與環(huán)境適應(yīng)性的分子機(jī)制[38]。
2.5 多組學(xué)聯(lián)合分析
聯(lián)合基因組、轉(zhuǎn)錄組、蛋白質(zhì)組等組學(xué)分析,可以幫助研究者們較為全面地了解動(dòng)物環(huán)境適應(yīng)性的分子遺傳機(jī)制。此外,代謝物是遺傳信息流動(dòng)線路中相關(guān)分子機(jī)制的底物和產(chǎn)物,可以誘導(dǎo)大分子活性并調(diào)控表型,是機(jī)體對(duì)環(huán)境、疾病以及遺傳變異等壓力因素影響的最終應(yīng)答和最直接表現(xiàn)[39]。同時(shí),人們通過(guò)標(biāo)記基因分析、宏基因組分析、宏轉(zhuǎn)錄組分析等方法進(jìn)行微生物組學(xué)研究,并在宿主對(duì)疾病的反應(yīng)、宿主環(huán)境適應(yīng)性、微生物-宿主共同進(jìn)化等領(lǐng)域取得了一系列進(jìn)展,完善了環(huán)境適應(yīng)性機(jī)制研究[40-41]。
3 雞環(huán)境適應(yīng)性機(jī)制
3.1 高海拔適應(yīng)性機(jī)制
在藏雞[42]、藏豬[43]、藏羊[44]、牦牛[45]等畜禽的高原適應(yīng)性研究中發(fā)現(xiàn),長(zhǎng)期生活在高海拔地區(qū)的畜禽,在組織器官形態(tài)、血液生理生化指標(biāo)、細(xì)胞分子水平變異、腸道微生物群落等方面產(chǎn)生了與高海拔地區(qū)適應(yīng)性相關(guān)的、穩(wěn)定的遺傳學(xué)特征[46]。
3.1.1 低氧適應(yīng)性機(jī)制
目前,雞的低氧適應(yīng)性研究主要集中于藏雞等高海拔群體,且研究?jī)?nèi)容較為全面、深入,但雞低氧適應(yīng)性分子機(jī)制仍不清晰[47]。
在基因組層面,已經(jīng)鑒定出大量與低氧適應(yīng)性相關(guān)的候選基因(表1)。EPAS1、HIF-1是被廣泛報(bào)道與高海拔適應(yīng)相關(guān)的因子。研究者利用全基因組變異信息在人[48]、馬[49]、牛[50]和豬[51]等高原土著動(dòng)物中發(fā)現(xiàn)EPAS1基因通常在缺氧環(huán)境中受到選擇,并在不同家養(yǎng)動(dòng)物中趨同進(jìn)化[52]。EPAS1基因編碼的HIF-2α與HIF1A基因編碼的HIF-1α,均是調(diào)節(jié)低氧誘導(dǎo)因子(HIF-1)活性的功能亞單位。在低氧條件下,HIF-1可以通過(guò)調(diào)節(jié)血管內(nèi)皮生長(zhǎng)因子(VEGF)、胰島素樣生長(zhǎng)因子Ⅱ、糖酵解酶、促紅細(xì)胞生成素(EPO)的編碼基因等,參與紅細(xì)胞生成、血管形成、核苷酸、氨基酸、糖的能量代謝等生物學(xué)過(guò)程,提高了機(jī)體氧的攝入和利用,進(jìn)而使機(jī)體內(nèi)環(huán)境維持穩(wěn)態(tài),最終使機(jī)體適應(yīng)低氧環(huán)境[53-54]。EGLN1基因在畜禽低氧適應(yīng)過(guò)程中同樣重要。該基因參與正常氧分壓下HIF-1α、EPAS1蛋白的降解,在低氧條件下,該基因的降解能力下降,HIF-1α、EPAS1蛋白表達(dá)量增加,進(jìn)而使畜禽適應(yīng)低氧環(huán)境[55](圖1)。
通過(guò)研究不同雞組織樣本的轉(zhuǎn)錄組數(shù)據(jù),鑒定出大量與雞低氧適應(yīng)性相關(guān)的基因(表1),同時(shí)發(fā)現(xiàn)雞的低氧適應(yīng)性機(jī)制不僅因品種而異[56],還會(huì)在雞的不同發(fā)育階段產(chǎn)生變化。Tang等[57]通過(guò)分析藏雞3個(gè)發(fā)育階段(5周、42周和4.5年)的肺臟轉(zhuǎn)錄組數(shù)據(jù),發(fā)現(xiàn)與4.5年齡的雞相比,5和42周齡個(gè)體中上調(diào)的差異表達(dá)基因富集在氧氣轉(zhuǎn)運(yùn)、氧氣結(jié)合、氧氣載體活性及鈣信號(hào)通路等與低氧適應(yīng)性相關(guān)的生理過(guò)程(圖1),該研究結(jié)果豐富了雞低氧適應(yīng)性機(jī)制研究。隨著研究深入,人們發(fā)現(xiàn)表觀遺傳修飾也參與調(diào)控動(dòng)物環(huán)境適應(yīng)性。Zhang等[58]利用甲基化DNA免疫沉淀高通量測(cè)序(MeDIP-seq)篩選出5個(gè)具有低甲基化的候選基因(EDNRA、EDNRB2、BMPR1B、BMPRII和ITGA2)。這些基因參與血管平滑肌收縮、VEGF信號(hào)通路、鈣信號(hào)通路等與低氧適應(yīng)性相關(guān)的通路,在藏雞胚胎適應(yīng)低氧過(guò)程中發(fā)揮關(guān)鍵調(diào)節(jié)作用(圖1)。
蛋白質(zhì)組學(xué)層面的低氧適應(yīng)性機(jī)制研究取得了一定進(jìn)展。Zhang等[59]在低氧和常氧條件下對(duì)藏雞和茶花雞的胚胎心臟組織進(jìn)行蛋白質(zhì)組學(xué)研究,發(fā)現(xiàn)ENLN1、ADAM9、MAP2K2、MYLK、NOTCH2、ANP等蛋白參與谷胱甘肽代謝、PPAR信號(hào)通路、血管平滑肌收縮等生物學(xué)過(guò)程。Meng等[60]對(duì)西藏和低地雞的受精卵進(jìn)行比較N-糖蛋白組學(xué)分析,從143種糖蛋白中共發(fā)現(xiàn)396個(gè)N-糖基化物。通過(guò)生物信息學(xué)分析,發(fā)現(xiàn)這些不同的糖蛋白可能與抗凍活性、低氧適應(yīng)性相關(guān),進(jìn)而提高藏雞適應(yīng)高原環(huán)境的能力(圖1)。
目前,已有研究證實(shí)雞腸道微生物組會(huì)影響雞的高海拔適應(yīng)能力。通過(guò)比較高海拔雞和平原雞的腸道微生物多樣性,發(fā)現(xiàn)高海拔雞盲腸和回腸的微生物多樣性顯著低于平原雞,并且高海拔雞腸道的微生物群落主要涉及能量代謝和聚糖生物合成,推測(cè)高海拔雞的腸道微生物群,可以通過(guò)促進(jìn)能量代謝和聚糖生物合成來(lái)提高藏雞適應(yīng)高海拔環(huán)境的能力[61-62]。目前,利用不同組學(xué)技術(shù)對(duì)雞的低氧適應(yīng)性研究已經(jīng)較為深入,整合不同組學(xué)研究結(jié)果進(jìn)行聯(lián)合分析,可以進(jìn)一步發(fā)現(xiàn)以往被我們所忽略的關(guān)鍵因子,提高深入探索雞低氧適應(yīng)性分子機(jī)制的能力。
3.1.2 輻射適應(yīng)性機(jī)制
目前,雞輻射適應(yīng)性機(jī)制的聚焦性研究較少。Elbeltagy等[63]在非洲和埃及雞品種中,發(fā)現(xiàn)SFRP2基因可以促進(jìn)黑色素生成,AP1G1基因在羽毛色素沉著中起主要作用,二者均有助于增強(qiáng)雞適應(yīng)高強(qiáng)度太陽(yáng)輻射的能力(圖1)。同時(shí),輻射適應(yīng)性機(jī)制在植物研究領(lǐng)域已取得較為深入的進(jìn)展。極地雪藻、擬南芥等植物均被報(bào)道是具有抗紫外作用的物質(zhì),可有效提升紫外修復(fù)能力[64-65]。在未來(lái)的研究中,可以借鑒其他生物的輻射適應(yīng)性研究方法,進(jìn)而完善雞的輻射適應(yīng)性機(jī)制。
3.2 溫度變化適應(yīng)性機(jī)制
大量研究表明,雞溫度適應(yīng)性相關(guān)基因多數(shù)在神經(jīng)-體液調(diào)節(jié)途徑與脂肪酸代謝中發(fā)揮作用[66-68]。
3.2.1 冷適應(yīng)性機(jī)制
目前,在基因組水平對(duì)雞冷適應(yīng)性機(jī)制的研究較為深入,發(fā)現(xiàn)了許多與冷適應(yīng)相關(guān)的候選基因(表1)。Fedorova等[69]利用基因組數(shù)據(jù)計(jì)算橫斑洛克雞群體和俄羅斯白雞群體的ROH來(lái)檢測(cè)受到選擇的基因組區(qū)域,并通過(guò)Ensembl等數(shù)據(jù)庫(kù)進(jìn)行篩選,最終鑒定到與脂質(zhì)代謝(SOCS3、NDUFA4、TXNRD2、IGFBP1、IGFBP3)、體溫維持(ADIPOQ、GCGR、TRPM2)、非顫抖性產(chǎn)熱(RYR2、CAM2G、STK25)和肌肉發(fā)育(METTL21C)相關(guān)的12個(gè)關(guān)鍵基因,認(rèn)為它們可能參與雛雞適應(yīng)寒冷環(huán)境的過(guò)程(圖2)。研究表明,基因組學(xué)和轉(zhuǎn)錄組學(xué)的聯(lián)合分析可以更好地揭示雞冷適應(yīng)性機(jī)制。Zhao等[70]通過(guò)整合基因組和轉(zhuǎn)錄組數(shù)據(jù)鑒定出6個(gè)與雞冷適應(yīng)性相關(guān)的候選基因(DNAH5、PTGS2、INHBA、IRX2、ENSGALG00000054917和ENSGALG00000046652)。在寒冷條件下,PTGS2基因上調(diào),參與脂肪酸、花生四烯酸代謝等多種代謝反應(yīng),并在調(diào)節(jié)血壓、脂肪細(xì)胞分化、產(chǎn)熱等生理過(guò)程中發(fā)揮重要作用;IRX2基因上調(diào),在動(dòng)物發(fā)育過(guò)程中的組織和器官區(qū)域化中發(fā)揮關(guān)鍵作用;INHBA基因下調(diào),參與調(diào)控毛囊發(fā)育、血管生成等生理過(guò)程,推測(cè)該基因可能對(duì)寒冷環(huán)境的適應(yīng)能力有抑制作用(圖2)。
在蛋白質(zhì)組學(xué)層面,發(fā)現(xiàn)許多蛋白質(zhì)參與動(dòng)物冷適應(yīng)調(diào)控。位于線粒體內(nèi)的解偶聯(lián)蛋白(UCP)是產(chǎn)熱的關(guān)鍵因子。UCP通過(guò)解除正常呼吸鏈中的電子傳遞,阻礙ATP生成,使生成ATP的自由能轉(zhuǎn)化為熱量,其中解偶聯(lián)蛋白1(UCP1)的產(chǎn)熱效果最為顯著[21]。鳥類不具備UCP1、UCP2基因,但在禽類基因組中發(fā)現(xiàn)了哺乳動(dòng)物UCP2和UCP3的直系同源物—禽解偶聯(lián)蛋白基因(avUCP)[22]。通過(guò)將雞暴露于寒冷環(huán)境中,結(jié)合其生理反應(yīng)與轉(zhuǎn)錄組分析發(fā)現(xiàn)av-UCP基因表達(dá)上調(diào),正向調(diào)節(jié)下丘腦-垂體-甲狀腺軸,促進(jìn)脂肪酸代謝,增強(qiáng)雞的非顫抖產(chǎn)熱能力,進(jìn)而維持溫度穩(wěn)態(tài)[71](圖2)。
表觀遺傳學(xué)研究表明,長(zhǎng)久生存在寒冷環(huán)境中的雞,其某些基因的甲基化水平發(fā)生了變化,最終導(dǎo)致基因表達(dá)發(fā)生改變,從而影響了雞的冷適應(yīng)性[72]。但是,目前關(guān)于影響雞冷適應(yīng)性機(jī)制的甲基化基因組區(qū)域或甲基化基因尚未報(bào)道。未來(lái),需要加強(qiáng)表觀遺傳學(xué)研究,以更好地了解雞冷適應(yīng)性機(jī)制。
在代謝組學(xué)層面的研究聚焦于激素調(diào)節(jié)機(jī)制。激素是影響機(jī)體代謝的主要因素之一,機(jī)體可通過(guò)下丘腦-垂體-甲狀腺軸(hypothalamus-pituitary-thyroid axis,HPT axis)、下丘腦-垂體-腎上腺軸(hypothalamic-pituitary-adrenal axis,HPA axis)等神經(jīng)-體液途徑調(diào)節(jié)體內(nèi)甲狀腺激素、促甲狀腺激素受體(TSHR)、類固醇激素等激素水平,促進(jìn)細(xì)胞代謝活動(dòng),增加產(chǎn)熱,從而適應(yīng)寒冷刺激[73]?;A(chǔ)代謝率(basal metabolic rate,BMR)是機(jī)體正常狀態(tài)下維持基本生命活動(dòng)的最低代謝速度,隨環(huán)境溫度降低而顯著增加[74-75]。目前通過(guò)BMR分析雞冷適應(yīng)性的研究相對(duì)較少。深入解析家禽BMR機(jī)制將有助于調(diào)節(jié)雞舍溫度,提高家禽生產(chǎn)性能。
3.2.2 熱適應(yīng)性機(jī)制
禽類無(wú)法出汗,當(dāng)氣溫高于雞體溫時(shí),主要通過(guò)蒸發(fā)散熱的方式實(shí)現(xiàn)熱平衡[76-78]。這種散熱方式是經(jīng)過(guò)長(zhǎng)期內(nèi)環(huán)境與外部環(huán)境的互作效應(yīng)形成的,主要涉及到以下幾個(gè)方面。
在基因組層面,鑒定出大量候選基因(表1)。Walugembe等[79]通過(guò)對(duì)來(lái)自巴西、斯里蘭卡和埃及的雞基因組進(jìn)行分析,發(fā)現(xiàn)SOCS2基因與埃及雞熱適應(yīng)性相關(guān),NFKB1基因與斯里蘭卡雞熱適應(yīng)性相關(guān),SLC6A2、HSFl、HSF2、HSF3、HSF4基因與非洲雞的熱適應(yīng)性相關(guān)。Tian等[80]在斯里蘭卡雞和沙特阿拉伯雞基因組中鑒定到與黑色素生成(WNT7B、WNT8B、GNAO1、GSK3B、KIT、RAF1、MAP2K1、LIG3、SIRT1、MC1R)、血管收縮舒張(PRKCH、ADCYI、CACNA1C)、線粒體呼吸作用(SDHD、VPS13C、PARK2、PACRG)、免疫(TLR7、ZC3HAV1)相關(guān)的基因(圖3),進(jìn)一步補(bǔ)充了Walugembe等[79]的研究結(jié)果。以上研究并沒有排除異質(zhì)性環(huán)境因素的影響,如海拔高度。Srikanth等[81]通過(guò)比較低地雞和高地雞的差異表達(dá)基因及其在不同通路中的富集情況,發(fā)現(xiàn)低地雞對(duì)熱應(yīng)激的耐受性比高海拔雞更強(qiáng)烈,并推測(cè)這種現(xiàn)象可能是由于低地雞已經(jīng)在低地環(huán)境中提前適應(yīng)過(guò)高溫環(huán)境造成的。所以,在生產(chǎn)實(shí)踐中通過(guò)對(duì)雞進(jìn)行熱處理來(lái)提高雞的耐熱性,是一個(gè)很有價(jià)值的研究方向。Borhan等[82]與Ramiah等[83]的研究回答了這一問(wèn)題,對(duì)雞預(yù)先進(jìn)行熱處理可以使脾臟和肝臟的促炎細(xì)胞因子白細(xì)胞介素6基因(IL-6)的表達(dá)增強(qiáng),并調(diào)節(jié)其誘導(dǎo)途徑中重要基因的表達(dá)來(lái)改善雞對(duì)熱應(yīng)激的保護(hù)性免疫反應(yīng),從而增強(qiáng)其耐熱能力。
在雞熱適應(yīng)性研究中往往聯(lián)合轉(zhuǎn)錄組和表觀遺傳學(xué)分析。Te Pas等[84]通過(guò)分析埃塞俄比亞低地雞的心臟、胸肌和脾臟組織的轉(zhuǎn)錄組信息,發(fā)現(xiàn)染色質(zhì)甲基化、組蛋白乙酰化和組蛋白去乙?;谋碛^遺傳變化可能是埃塞俄比亞低地雞中所有組織的中心調(diào)節(jié)機(jī)制。這些精細(xì)的反應(yīng)在動(dòng)物機(jī)體適應(yīng)高溫環(huán)境的過(guò)程中可以維持染色質(zhì)與蛋白質(zhì)穩(wěn)態(tài),保護(hù)細(xì)胞。動(dòng)物適應(yīng)高溫環(huán)境的過(guò)程不僅涉及長(zhǎng)期進(jìn)化形成的分子遺傳機(jī)制,還包括短暫的應(yīng)激性適應(yīng)。多項(xiàng)研究表明[33,66,76],暴露于熱應(yīng)激條件下的雞肝臟中HSP70、HSP90的轉(zhuǎn)錄水平僅在短時(shí)間內(nèi)升高,后又恢復(fù)正常值。這一發(fā)現(xiàn)有助于挑選耐熱應(yīng)激雞品種,例如以色列的裸頸雞,以培育適應(yīng)炎熱環(huán)境的新品種或新品系。
在蛋白質(zhì)組學(xué)層面分析雞熱適應(yīng)性的過(guò)程中發(fā)現(xiàn),在應(yīng)激條件下,細(xì)胞為了存活會(huì)通過(guò)許多誘導(dǎo)因子建立緊急反應(yīng)機(jī)制。熱休克蛋白(heat shock proteins,HSPs)是主要調(diào)節(jié)因子之一。在熱應(yīng)激對(duì)雞呼吸系統(tǒng)造成損傷時(shí),肺臟HSPs表達(dá)量增高[85],通過(guò)調(diào)節(jié)凋亡和抗凋亡信號(hào)、細(xì)胞氧化還原條件等不同的機(jī)制以提高細(xì)胞的應(yīng)激能力,進(jìn)而提高雞的耐熱能力[86-87]。高溫條件還會(huì)導(dǎo)致氧化損傷,而過(guò)氧化氫酶(catalase,CAT)是抗氧化損傷的第一道防線。Rimoldi等[88]的研究結(jié)果表明,在經(jīng)過(guò)長(zhǎng)達(dá)4周的高溫條件下,肉雞體內(nèi)CAT基因表達(dá)增加,其轉(zhuǎn)錄水平隨之增加,最終導(dǎo)致CAT酶活性增加,提高雞的熱適應(yīng)性(圖3)。
在代謝組學(xué)層面,雞可通過(guò)神經(jīng)發(fā)育、激素調(diào)節(jié)等代謝途徑共同作用,減少機(jī)體產(chǎn)熱,增加散熱來(lái)適應(yīng)高溫環(huán)境。Mackei等[89]利用一種由雞不同類型肝細(xì)胞組成的新型細(xì)胞培養(yǎng)物,作為研究急性熱應(yīng)激的模型。結(jié)果表明,短期強(qiáng)烈的熱應(yīng)激會(huì)促進(jìn)新陳代謝。但這些改變?cè)跓釕?yīng)激2h后恢復(fù),推測(cè)雞肝細(xì)胞在應(yīng)對(duì)急性熱應(yīng)激時(shí)具有快速適應(yīng)的潛力。該研究從代謝組學(xué)層面進(jìn)一步驗(yàn)證了Nawaz等[76]的結(jié)論。在雞應(yīng)對(duì)慢性熱應(yīng)激的研究中,發(fā)現(xiàn)慢性熱應(yīng)激會(huì)激活肉雞體內(nèi)的HPA軸,使腎上腺皮質(zhì)快速釋放皮質(zhì)醇(CORT),最終導(dǎo)致血漿CORT水平增高以應(yīng)對(duì)熱應(yīng)激條件[88]。此外,Yin等[90]發(fā)現(xiàn)在雞日糧中添加維生素C可以誘導(dǎo)CRYAB和HSP70表達(dá),提高機(jī)體抵抗熱應(yīng)激損傷的能力。
3.3 干旱適應(yīng)性機(jī)制
雞的干旱適應(yīng)性機(jī)制與熱適應(yīng)性機(jī)制聯(lián)合分析,可以完善我們對(duì)雞環(huán)境適應(yīng)性的認(rèn)知。目前關(guān)于畜禽干旱適應(yīng)性機(jī)制的研究較少。在雞干旱適應(yīng)性機(jī)制研究中,大部分與雞的熱適應(yīng)性機(jī)制、輻射適應(yīng)性機(jī)制相關(guān)。Walugembe等[79]在來(lái)自巴西、斯里蘭卡和埃及的雞基因組中,鑒定到TLR3、SOCS2、EOMES和NFAT5等基因與雞的干旱和熱帶環(huán)境適應(yīng)性機(jī)制有關(guān)。Gu等[91]利用中國(guó)尼雅雞的全基因組數(shù)據(jù),挖掘到與循環(huán)系統(tǒng)和血管發(fā)育(BVES、SMYD1、IL18、PDGFRA、NRP1和CORIN)、中樞神經(jīng)系統(tǒng)發(fā)育(SIM2和NALCN)、細(xì)胞凋亡(CLPTM1L、APP、CRADD和PARK2)和脂肪酸代謝(FABP1)相關(guān)的基因,并認(rèn)為這些基因與雞對(duì)炎熱干旱環(huán)境的適應(yīng)性有關(guān)。
Rocha等[92]總結(jié)近年來(lái)關(guān)于沙漠哺乳動(dòng)物干旱適應(yīng)性遺傳機(jī)制的基因組、轉(zhuǎn)錄組、代謝組等方面的研究進(jìn)展,發(fā)現(xiàn)沙漠哺乳動(dòng)物在脂肪代謝、甲狀腺誘導(dǎo)代謝、胰島素信號(hào)轉(zhuǎn)導(dǎo)、鹽代謝、氧化應(yīng)激、DNA損傷修復(fù)、輻射反應(yīng)等生命活動(dòng)過(guò)程中具有趨同進(jìn)化現(xiàn)象。這些沙漠哺乳動(dòng)物共用的生物反應(yīng)途徑可能同樣適用于長(zhǎng)期生存于干旱環(huán)境的禽類,這為雞干旱適應(yīng)性機(jī)制研究提供了新的研究方向。
3.4 綜合環(huán)境適應(yīng)性機(jī)制
氣候類型指一個(gè)地區(qū)的自然條件,受到太陽(yáng)輻射、海拔高度、地勢(shì)地形、大氣洋流等多種因素影響[93]。一個(gè)氣候類型往往具有多種環(huán)境變量,如熱帶沙漠氣候,具有高溫、干旱兩種主要的環(huán)境變量,所以動(dòng)物對(duì)某一環(huán)境變量的適應(yīng)性機(jī)制往往與同一氣候類型中其他環(huán)境變量有所關(guān)聯(lián)。由于同一區(qū)域的環(huán)境變量在不同時(shí)間尺度下會(huì)有所不同,所以在研究雞環(huán)境適應(yīng)性時(shí)還應(yīng)該注意環(huán)境變量所屬的歷史時(shí)間。針對(duì)綜合氣候適應(yīng)性的研究,可以利用主成分分析法(PCA)降維處理多變量環(huán)境數(shù)據(jù),并與遺傳數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析。Gheyas等[30]在利用環(huán)境數(shù)據(jù)和基因組數(shù)據(jù)分析非洲本土雞環(huán)境適應(yīng)性時(shí),通過(guò)建立生態(tài)位模型(ENM)確定了6個(gè)關(guān)鍵環(huán)境變量:一個(gè)與海拔密切相關(guān)的溫度變量,三個(gè)降水量變量,兩個(gè)土壤變量,并確定了一些與應(yīng)對(duì)海拔、溫度、水資源短缺相關(guān)的基因組區(qū)域。通過(guò)比較不同環(huán)境類型中的畜禽環(huán)境適應(yīng)性機(jī)制,會(huì)發(fā)現(xiàn)某些因子或機(jī)制在多種環(huán)境適應(yīng)性機(jī)制中均可發(fā)揮作用,例如,在雞對(duì)溫度變化的適應(yīng)過(guò)程中,HSPs蛋白家族、甲狀腺激素、TSHR基因等通過(guò)不同途徑調(diào)節(jié)雞的冷適應(yīng)性與熱適應(yīng)性。結(jié)合復(fù)雜多變的環(huán)境數(shù)據(jù)與組學(xué)研究,有利于在探索雞環(huán)境適應(yīng)性分子遺傳機(jī)制的過(guò)程中篩選出有利性狀,為雞遺傳育種工作提供理論支持[94]。
4 展 望
測(cè)序技術(shù)的快速發(fā)展,使我們能夠更低成本、更快速地獲得更高質(zhì)量、更多維度的組學(xué)數(shù)據(jù);全球環(huán)境數(shù)據(jù)的不斷完善,允許我們根據(jù)不同需要獲得更精準(zhǔn)、更全面的環(huán)境數(shù)據(jù),進(jìn)而將其與組學(xué)數(shù)據(jù)聯(lián)合分析,使通過(guò)景觀基因組學(xué)獲得的結(jié)果更加可靠;分析方法的不斷創(chuàng)新,使研究結(jié)果更加可靠。這些高精尖生物技術(shù)的發(fā)展和交叉融合,為我們挖掘動(dòng)物環(huán)境適應(yīng)性機(jī)制提供了良好的基礎(chǔ)。此外,生物在長(zhǎng)期適應(yīng)環(huán)境過(guò)程中,會(huì)表現(xiàn)出趨同與平行進(jìn)化。研究不同物種和品種間的趨同與平行進(jìn)化,可以有效地幫助我們找到與某一環(huán)境變量相關(guān)的、大多數(shù)動(dòng)物共有的有利候選基因和遺傳機(jī)制。在此基礎(chǔ)上可以采用基因編輯、基因組選擇、雜交等方式培育優(yōu)良品種,減少應(yīng)激對(duì)雞生產(chǎn)性能的影響。
地方雞品種經(jīng)過(guò)長(zhǎng)期微進(jìn)化后,攜帶著有利于適應(yīng)不同惡劣環(huán)境條件的特定基因,具有豐富的遺傳多樣性。但是,由于高產(chǎn)商品雞的規(guī)模化養(yǎng)殖和人為的自然環(huán)境破壞,一些地方雞品種的生存空間不斷被侵占,群體規(guī)模不斷減小,群體近交程度不斷升高,面臨滅絕風(fēng)險(xiǎn)。深入研究雞的環(huán)境適應(yīng)性,闡明地方雞品種適應(yīng)環(huán)境的分子機(jī)制,有利于提高我們對(duì)地方雞品種種質(zhì)資源的認(rèn)識(shí),進(jìn)而采取科學(xué)有效的管理方法,如建立種質(zhì)資源庫(kù),提升地方雞品種的保護(hù)效果,進(jìn)而維持雞的遺傳多樣性,同時(shí)對(duì)于培育具有良好生產(chǎn)性能的新品種,實(shí)現(xiàn)雞生產(chǎn)性能與遺傳多樣性的協(xié)調(diào)發(fā)展,具有重要的經(jīng)濟(jì)和社會(huì)意義。
參考文獻(xiàn)(References):
[1]張劍搏,丁學(xué)智,AHMAD AA,等.高原土著動(dòng)物適應(yīng)性進(jìn)化的研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報(bào),2019,50(9):1723-1736.
ZHANG JB,DING XZ,AHMAD AA,et al.Advances in research on adaptive evolution of native animals of tibetan plateau[J].Acta Veterinaria et Zootechnica Sinica,2019,50(9):1723-1736.(in Chinese)
[2]RAMíREZ-AYALA LC,ROCHA D,RAMOS-ONSINS SE,et al.Whole-genome sequencing reveals insights into the adaptation of French Charolais cattle to Cuban tropical conditions[J].Genet Sel Evol,2021,53(1):3.
[3]TIBARY A,EL ALLALI K.Dromedary camel:A model of heat resistant livestock animal[J].Theriogenology,2020,154:203-211.
[4]CASTELLANI JW,YOUNG AJ.Human physiological responses to cold exposure:Acute responses and acclimatization to prolonged exposure[J].Auton Neurosci,2016,196:63-74.
[5]BOOTHBY TC.Mechanisms and evolution of resistance to environmental extremes in animals[J].EvoDevo,2019,10:30.
[6]MOJICA EA,KüLTZ D.Physiological mechanisms of stress-induced evolution[J].J Exp Biol,2022,225(S1):jeb243264.
[7]SARREMEJANE R,TRUCHY A,MCKIE BG,et al.Stochastic processes and ecological connectivity drive stream invertebrate community responses to short-term drought[J].J Anim Ecol,2021,90(4):886-898.
[8]XIONG XW,LIU JX,RAO YS.Whole genome resequencing helps study important traits in chickens[J].Genes(Basel),2023,14(6):1198.
[9]SHAFFER HB,TOFFELMIER E,CORBETT-DETIG RB,et al.Landscape genomics to enable conservation actions:the California conservation genomics project[J].J Hered,2022,113(6):577-588.
[10]馮 勉,張 莉.多組學(xué)聯(lián)合分析在畜禽研究中的應(yīng)用[J].中國(guó)畜牧雜志,2022,58(3):1-6.
FENG M,ZHANG L.Application of multi-omics joint analysis in the research of livestock and poultry[J].Chinese Journal of Animal Science,2022,58(3):1-6.(in Chinese)
[11]WANG MS,THAKUR M,PENG MS,et al.863genomes reveal the origin and domestication of chicken[J].Cell Res,2020,30(8):693-701.
[12]SHAO D,YANG Y,SHI SR,et al.Three-dimensional organization of chicken genome provides insights into genetic adaptation to extreme environments[J].Genes(Basel),2022,13(12):2317.
[13]PHAM LD,GIANG TT N,NGUYEN VB,et al.The complete mitochondrial genome and phylogenetic analyses of to chicken in vietnam[J].Genes(Basel),2023,14(5):1088.
[14]SINGH M,PATTON RN,MOLLIER RT,et al.Indigenous chicken production system in different agro-ecology of Indian Himalayan Region:implication on food and economic security[J].Front Nutr,2023,10:1244413.
[15]ZHANG MM,WANG SW,XU R,et al.Managing genomic diversity in conservation programs of Chinese domestic chickens[J].Genet Sel Evol,2023,55(1):92.
[16]VEKIC′M,STROIL BK,TRIVUNOVIC′S,et al.Genetic diversity of Banat Naked Neck,indigenous chicken breed from Serbia,inferred from mitochondrial DNA D-loop sequence and microsatellite markers[J].Anim Biotechnol,2023,34(7):2197-2206.
[17]趙 禹,張文才,劉成武,等.動(dòng)物機(jī)體對(duì)高原低氧環(huán)境適應(yīng)性的研究進(jìn)展[J].畜牧與獸醫(yī),2021,53(12):128-133.
ZHAO Y,ZHANG WC,LIU CW,et al.Progress in research on adaptation of animals to high altitude hypoxia environment[J].Animal Husbandryamp;Veterinary Medicine,2021,53(12):128-133.(in Chinese)
[18]LI XY,YANG JX,QIAO YJ,et al.Effects of radiation on drug metabolism:a review[J].Curr Drug Metab,2019,20(5):350-360.
[19]JAYAPRAKASH P,VIGNALI PD A,DELGOFFE GM,et al.Hypoxia reduction sensitizes refractory cancers to immunotherapy[J].Annu Rev Med,2022,73:251-265.HU JF,F(xiàn)ANG HC,WANG J,et al.Ultraviolet B-induced MdWRKY72expression promotes anthocyanin syntnesis in apple[J].Plant Sci,2020,292:110377.
[20]VERGNEAU-GROSSET C,PéRON F.Effect of ultraviolet radiation on vertebrate animals:update from ethological and medical perspectives[J].Photochem Photobiol Sci,2020,19(6):752-762.
[21]LUO NJ,WANG J,HU Y,et al.Cold and heat climatic variations reduce indigenous goat birth weight and enhance pre-weaning mortality in subtropical monsoon region of China[J].Trop Anim Health Prod,2020,52(3):1385-1394.
[22]何 榮,張崇志,張春華,等.動(dòng)物冷應(yīng)激研究進(jìn)展[J].家畜生態(tài)學(xué)報(bào),2022,43(9):7-12.
HE R,ZHANG CZ,ZHANG CH,et al.Research progress on animal cold stress[J].Acta Ecologae Animalis Domastici,2022,43(9):7-12.(in Chinese)
[23]FERNANDES E,RAYMUNDO A,MARTINS LL,et al.The naked neck gene in the domestic chicken:a genetic strategy to mitigate the impact of heat stress in poultry production-a review[J].Animals(Basel),2023,13(6):1007.
[24]?,|岑,李雨萌,鐘秋萌,等.高空間分辨率環(huán)境數(shù)據(jù)庫(kù)及其應(yīng)用[J].環(huán)境工程,2022,40(6):1-11.
CHANG WC,LI YM,ZHONG QM,et al.High spatial resolution environmental dataset and its application[J].Environmental Engineering,2022,40(6):1-11.(in Chinese)
[25]鄧舒遲,廖陽(yáng)春.環(huán)境信息采集大數(shù)據(jù)統(tǒng)一控制平臺(tái)設(shè)計(jì)研究[J].環(huán)境科學(xué)與管理,2019,44(2):20-23,38.
DENG SC,LIAO YC.Design of unified control platform for big data of environmental information collection[J].Environmental Science and Management,2019,44(2):20-23,38.(in Chinese)
[26]GAO CQ,WANG KJ,HU XY,et al.Conservation priority and run of homozygosity pattern assessment of global chicken genetic resources[J].Poult Sci,2023,102(11):103030.
[27]SUMIDA TS,HAFLER DA.Population genetics meets single-cell sequencing[J].Science,2022,376(6589):134-135.
[28]OKAZAKI A,YAMAZAKI S,INOUE I,et al.Population genetics:past,present,and future[J].Hum Genet,2021,140(2):231-240.
[29]PETEGROSSO R,SONG TC,KUANG R.Hierarchical canonical correlation analysis reveals phenotype,genotype,and geoclimate associations in plants[J].Plant Phenomics,2020,2020:1969142.
[30]GHEYAS AA,VALLEJO-TRUJILLO A,KEBEDE A,et al.Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens[J].Mol Biol Evol,2021,38(10):4268-4285.
[31]DAUPHIN B,RELLSTAB C,WüEST RO,et al.Re-thinking the environment in landscape genomics[J].Trends Ecol Evol,2023,38(3):261-274.
[32]POLEWKO-KLIM A,LESIN′SKI W,GOLIN′SKA AK,et al.Sensitivity analysis based on the random forest machine learning algorithm identifies candidate genes for regulation of innate and adaptive immune response of chicken[J].Poult Sci,2020,99(12):6341-6354.
[33]HOSSEINZADEH S,HASANPUR K.Gene expression networks and functionally enriched pathways involved in the response of domestic chicken to acute heat stress[J].Front Genet,2023,14:1102136.
[34]呂 利,王曉利,張文娟,等.基于三代長(zhǎng)讀長(zhǎng)測(cè)序數(shù)據(jù)的基因組組裝算法分析[J].寶雞文理學(xué)院學(xué)報(bào):自然科學(xué)版,2023,43(1):54-61.
LV L,WANG XL,ZHANG WJ,et al.Analysis of genome assembly algorithms for long-read sequencing data[J].Journal of Baoji university of Arts and Sciences:Natural Science,2023,43(1):54-61.(in Chinese)
[35]LI C,WU YJ,CHEN BC,et al.Markhor-derived introgression of agenomic region encompassing PAPSS2confers high-altitude adaptability in Tibetan goats[J].Mol Biol Evol,2022,39(12):msac253.
[36]GONG Y,LI YF,LIU XX,et al.A review of the pangenome:how it affects our understanding of genomic variation,selection and breeding in domestic animals?[J].J Anim Sci Biotechnol,2023,14(1):73.
[37]LIANG L,ZHANG JW,XIAO JC,et al.Genome and pan-genome assembly of asparagus bean(Vigna unguiculata ssp.sesquipedialis)reveal the genetic basis of cold adaptation[J].Front Plant Sci,2022,13:1059804.
[38]邊培培,張 禹,姜 雨.泛基因組:高質(zhì)量參考基因組的新標(biāo)準(zhǔn)[J].遺傳,2021,43(11):1023-1037.
BIAN PP,ZHANG Y,JIANG Y.Pan-genome:setting anew standard for high-quality reference genomes[J].Hereditas,2021,43(11):1023-1037.(in Chinese)
[39]MELNIK BS,F(xiàn)INKELSTEIN AV.Physical basis of functioning of antifreeze protein[J].Mol Biol(Mosk),2022,56(2):297-305.
[40]BERG G,RYBAKOVA D,F(xiàn)ISCHER D,et al.Microbiome definition re-visited:old concepts and new challenges[J].Microbiome,2020,8(1):103.
[41]WEI JK,LIU PH,LIU FY,et al.EDomics:a comprehensive and comparative multi-omics database for animal evo-devo[J].Nucleic Acids Res,2023,51(D1):D913-D923.
[42]陳雪嬌,鐘海安,張 博,等.藏雞高原低氧適應(yīng)性微進(jìn)化機(jī)制研究進(jìn)展[J].中國(guó)畜牧雜志,2023,59(2):1-5.
CHEN XJ,ZHONG HA,ZHANG B,et al.Research progress on microevolution mechanism of high-altitude hypoxic adaptation in Tibetan chicken[J].Chinese Journal of Animal Science,2023,59(2):1-5.(in Chinese)
[43]ZHAO FF,YANG LL,ZHANG T,et al.Gut microbiome signatures of extreme environment adaption in Tibetan pig[J].NPJ Biofilms Microbiomes,2023,9(1):27.
[44]LIU JB,YUAN C,GUO TT,et al.Genetic signatures of high-altitude adaptation and geographic distribution in Tibetan sheep[J].Sci Rep,2020,10(1):18332.
[45]AYALEW W,CHU M,LIANG CN,et al.Adaptation mechanisms of yak(Bos grunniens)to high-altitude environmental stress[J].Animals(Basel),2021,11(8):2344.
[46]張?zhí)炝簦?雪,徐凌洋,等.高原家養(yǎng)動(dòng)物環(huán)境適應(yīng)性的研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報(bào),2020,51(7):1475-1487.
ZHANG TL,GAO X,XU LY,et al.Research progress on environment adaptation of plateau domestic animals[J].Acta Veterinaria et Zootechnica Sinica,2020,51(7):1475-1487.(in Chinese)
[47]LI SJ,ZHANG XJ,DONG XY,et al.Genetic structure and characteristics of Tibetan chickens[J].Poult Sci,2023,102(8):102767.
[48]GRAY OA,YOO J,SOBREIRA DR,et al.A pleiotropic hypoxia-sensitive EPAS1enhancer is disrupted by adaptive alleles in Tibetans[J].Sci Adv,2022,8(47):eade1942.
[49]LIU XX,ZHANG YL,LI YF,et al.EPAS1gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J].Mol Biol Evol,2019,36(11):2591-2603.
[50]GUAN XW,HANIF Q,LI FY,et al.The three missense mutations of EPAS1,IL37and EEF1D genes associated with high-altitude adaptation in Chinese cattle[J].Anim Genet,2020,51(6):987-988.
[51]YANG YN,GAO CX,YANG TL,et al.Characteristics of Tibetan pig lung tissue in response to ahypoxic environment on the Qinghai-Tibet Plateau[J].Arch Anim Breed,2021,64(1):283-292.
[52]WITT KE,HUERTA-SáNCHEZ E.Convergent evolution in human and domesticate adaptation to high-altitude environments[J].Philos Trans RSoc Lond BBiol Sci,2019,374(1777):20180235.
[53]KARAGHIANNIS V,MARIC D,GARREC C,et al.Comprehensive in silico and functional studies for classification of EPAS1/HIF2A genetic variants identified in patients with erythrocytosis[J].Haematologica,2023,108(6):1652-1666.
[54]TIRPE AA,GULEI D,CIORTEA SM,et al.Hypoxia:overview on hypoxia-mediated mechanisms with afocus on the role of HIF genes[J].Int JMol Sci,2019,20(24):6140.
[55]TANG JH,DENG HY,WANG ZX,et al.EGLN1prolyl hydroxylation of hypoxia-induced transcription factor HIF1α is repressed by SET7-catalyzed lysine methylation[J].J Biol Chem,2022,298(6):101961.
[56]CAO YQ,ZENG T,HAN W,et al.Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken[J].Anim Biosci,2024,37(1):28-38.
[57]TANG RX,WANG J,ZHOU M,et al.Comprehensive analysis of lncRNA and mRNA expression changes in Tibetan chicken lung tissue between three developmental stages[J].Anim Genet,2020,51(5):731-740.
[58]ZHANG YW,GOU WY,MA J,et al.Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos[J].PeerJ,2017,5:e3891.
[59]ZHANG YW,GOU WY,ZHANG Y,et al.Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics[J].Comp Biochem Physiol Part DGenomics Proteomics,2019,31:100602.
[60]MENG YQ,CHEN D,QIU N,et al.Comparative N-glycoproteomic analysis of Tibetan and lowland chicken fertilized eggs:Implications on proteins biofunction and species evolution[J].J Food Biochem,2022,46(1):e14006.
[61]DU XX,LI FG,KONG FL,et al.Altitude-adaption of gut microbiota in Tibetan chicken[J].Poult Sci,2022,101(9):101998.
[62]BHAGAT NR,CHAUHAN P,VERMA P,et al.High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity[J].Sci Rep,2023,13(1):20856.
[63]ELBELTAGY AR,BERTOLINI F,F(xiàn)LEMING DS,et al.Natural selection footprints among African chicken breeds and village ecotypes[J].Front Genet,2019,10:376.
[64]王晨寅,祁得勝,劉育昆,等.紫外輻射機(jī)制對(duì)生物生長(zhǎng)發(fā)育的影響及紫外損傷修復(fù)作用的研究進(jìn)展[J].農(nóng)家參謀,2022(18):34-36.
WANG CY,QI DS,LIU YK,et al.Progress in the influence of UV radiation mechanism on biological growth and development and the repair effect of UV damage[J].The Farmers Consultant,2022(18):34-36.(in Chinese)
[65]XIONG Y,XING Q,MüLLER-XING R.A novel UV-B priming system reveals an UVR8-depedent memory,which provides resistance against UV-B stress in Arabidopsis leaves[J].Plant Signal Behav,2021,16(4):1879533.
[66]PRITCHETT EM,VAN GOOR A,SCHNEIDER BK,et al.Chicken pituitary transcriptomic responses to acute heat stress[J].Mol Biol Rep,2023,50(6):5233-5246.
[67]LIM C,LIM B,KIL DY,et al.Hepatic transcriptome profiling according to growth rate reveals acclimation in metabolic regulatory mechanisms to cyclic heat stress in broiler chickens[J].Poult Sci,2022,101(12):102167.
[68]LIU YY,XING L,ZHANG Y,et al.Mild intermittent cold stimulation affects cardiac substance metabolism via the neuroendocrine pathway in broilers[J].Animals(Basel),2023,13(22):3577.
[69]FEDOROVA ES,DEMENTIEVA NV,SHCHERBAKOV YS,et al.Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds,associated with cold adaptation[J].Biology(Basel),2022,11(4):547.
[70]ZHAO XR,ZHANG JX,WANG HE,et al.Genomic and transcriptomic analyses reveal genetic adaptation to cold conditions in the chickens[J].Genomics,2022,114(6):110485.
[71]SOTOME R,HIRASAWA A,KIKUSATO M,et al.In vivo emergence of beige-like fat in chickens as physiological adaptation to cold environments[J].Amino Acids,2021,53(3):381-393.
[72]ZENG T,YIN JM,F(xiàn)ENG PS,et al.Analysis of genome and methylation changes in Chinese indigenous chickens over time provides insight into species conservation[J].Commun Biol,2022,5(1):952.
[73]FALLAHSHAHROUDI A,JOHNSSON M,SORATO E,et al.Effects of the domestic thyroid stimulating hormone receptor(TSHR)variant on the hypothalamic-pituitary-thyroid axis and behavior in chicken[J].Genetics,2021,217(1):iyaa050.
[74]NAFSTAD ?M,R?NNING B,AASE K,et al.Spatial variation in the evolutionary potential and constraints of basal metabolic rate and body mass in awild bird[J].J Evol Biol,2023,36(4):650-662.
[75]王風(fēng)琴,韓亞鵬,許姝娟,等.籠養(yǎng)普通朱雀適應(yīng)北方冬季氣候的體溫調(diào)節(jié)特征[J].動(dòng)物學(xué)雜志,2021,56(4):591-596.
WANG FQ,HAN YP,XU SJ,et al.Thermoregulatory characteristics in winter-acclimatized common rosefinch Carpodacus erythrinus[J].Chinese Journal of Zoology,2021,56(4):591-596.(in Chinese)
[76]NAWAZ AH,LIN SD,WANG FJ,et al.Investigating the heat tolerance and production performance in local chicken breed having normal and dwarf size[J].Animal,2023,17(3):100707.
[77]ABIOJA MO,OMOTARA OP,IYASERE OS,et al.Comparative study of adaptation in three chicken genotypes under humid tropical conditions of Nigeria[J].J Anim Physiol Anim Nutr(Berl),2020,104(5):1401-1409.
[78]FATHI MM,GALAL A,RADWAN LM,et al.Using major genes to mitigate the deleterious effects of heat stress in poultry:an updated review[J].Poult Sci,2022,101(11):102157.
[79]WALUGEMBE M,BERTOLINI F,DEMATAWEWA CM B,et al.Detection of selection signatures among Brazilian,Sri Lankan,and egyptian chicken populations under different environmental conditions[J].Front Genet,2019,9:737.
[80]TIAN SL,ZHOU XM,PHUNTSOK T,et al.Genomic analyses reveal genetic adaptations to tropical climates in chickens[J].iScience,2020,23(11):101644.
[81]SRIKANTH K,KUMAR H,PARK W,et al.Corrigendum:cardiac and skeletal muscle transcriptome response to heat stress in Kenyan chicken ecotypes adapted to low and high altitudes reveal differences in thermal tolerance and stress response[J].Front Genet,2020,11:197.
[82]BORHAN AZ M,MUSA SK,KHEER AM M.Effects of pre-hatch thermal manipulation and post-hatch acute heat stress on the mRNA expression of interleukin-6and genes involved in its induction pathways in2broiler chicken breeds[J].Poult Sci,2019,98(4):1805-1819.
[83]RAMIAH SK,BALAKRISHNAN KN,SUBRAMANIAM Y,et al.Effects of thermal manipulation on mRNA regulation of response genes regarding improvement of thermotolerance adaptation in chickens during embryogenesis[J].Animals(Basel),2022,12(23):3354.
[84]TE PAS MF W,PARK W,SRIKANTH K,et al.Transcriptomic profiles of muscle,heart,and spleen in reaction to circadian heat stress in Ethiopian highland and lowland male chicken[J].Cell Stress Chaperones,2019,24(1):175-194.
[85]段滇寧,陳 超,楊潤(rùn)澤,等.急性熱應(yīng)激對(duì)雞呼吸系統(tǒng)損傷及肺臟熱休克蛋白表達(dá)的影響[J].畜牧與獸醫(yī),2021,53(3):65-70.
DUAN DN,CHEN C,YANG RZ,et al.Effects of heat stress on lung tissue damage and heat shock protein expression in chicken[J].Animal Husbandryamp;Veterinary Medicine,2021,53(3):65-70.(in Chinese)
[86]SHEHATA AM,SAADELDIN IM,TUKUR HA,et al.Modulation of heat-shock proteins mediates chicken cell survival against thermal stress[J].Animals(Basel),2020,10(12):2407.
[87]ABARE MY,RAHAYU S,TUGIYANTI E.Review:The role of heat shock proteins in chicken:Insights into stress adaptation and health[J].Res Vet Sci,2023,165:105057.
[88]RIMOLDI S,LASAGNA E,SARTI FM,et al.Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions[J].Meta Gene,2015,6:17-25.
[89]MACKEI M,MOLNáR A,NAGY S,et al.Effects of acute heat stress on anewly established chicken hepatocyte-nonparenchymal cell co-culture model[J].Animals(Basel),2020,10(3):409.
[90]YIN B,DI LJ,TANG S,et al.Vitamin C-Na enhances the antioxidant ability of chicken myocardium cells and induces heat shock proteins to relieve heat stress injury[J].Res Vet Sci,2020,133:124-130.
[91]GU JJ,LIANG QQ,LIU C,et al.Genomic analyses reveal adaptation to hot arid and harsh environments in native chickens of China[J].Front Genet,2020,11:582355.
[92]ROCHA JL,GODINHO R,BRITO JC,et al.Life in deserts:the genetic basis of mammalian desert adaptation[J].Trends Ecol Evol,2021,36(7):637-650.
[93]張政凱,李業(yè)芳,葉紹輝,等.山羊環(huán)境適應(yīng)性的研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(7):2035-2046.
ZHANG ZK,LI YF,YE SH,et al.Research progress of environmental adaptability in goats[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2035-2046.(in Chinese)
[94]KRISTENSEN TN,KETOLA T,KRONHOLM I.Adaptation to environmental stress at different timescales[J].Ann NY Acad Sci,2020,1476(1):5-22.
[95]FENG J,ZHU W,SHI HR,et al.Analysis of the selection signal of the tibetan black chicken genome based on whole-genome sequencing[J].Genes(Basel),2023,14(9):1672.
[96]LI DY,LI Y,LI M,et al.Population genomics identifies patterns of genetic diversity and selection in chicken[J].BMC Genomics,2019,20(1):263.
[97]NAN JH,YANG SD,ZHANG XJ,et al.Identification of candidate genes related to highland adaptation from multiple Chinese local chicken breeds by whole genome sequencing analysis[J].Anim Genet,2023,54(1):55-67.
[98]ZHANG Q,GOU WY,WANG XT,et al.Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments[J].Genome Biol Evol,2016,8(3):765-776.
[99]YUAN JW,LI SJ,SHENG ZY,et al.Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens[J].BMC Genomics,2022,23(1):91.
[100]ZHONG HA,KONG XY,ZHANG YW,et al.Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient[J].Evol Appl,2022,15(12):2100-2112.
[101]LIU XY,WANG XC,LIU J,et al.Identifying candidate genes for hypoxia adaptation of Tibet chicken embryos by selection signature analyses and RNA sequencing[J].Genes(Basel),2020,11(7):823.
[102]WANG Q,LI D,GUO A,et al.Whole-genome resequencing of Dulong Chicken reveal signatures of selection[J].Br Poult Sci,2020,61(6):624-631.
[103]ZHANG Z,QIU M,DU H,et al.Small RNA sequencing reveals miRNAs important for hypoxic adaptation in the Tibetan chicken[J].Br Poult Sci,2020,61(6):632-639.
[104]ZHANG Y,ZHANG HL,ZHANG B,et al.Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos[J].Gene,2020,729:144321.
[105]CHEN XJ,ZHANG Y,ZHANG WH,et al.Regulatory effects of circular RNA on hypoxia adaptation in chicken embryos[J].J Anim Sci,2023,101:skad344.
[106]陳雪嬌,劉會(huì)杰,臧 蕾,等.雞胚心臟組織轉(zhuǎn)錄組數(shù)據(jù)鑒定雪域白雞高原低氧適應(yīng)性關(guān)鍵基因[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(10):4154-4163.
CHEN XJ,LIU HJ,ZANG L,et al.Transcriptome data from chicken embryo heart tissue identified key genes for altitude hypoxia adaptation in Xueyu white chickens[J].Acta Veterinaria et Zootechnica Sinica,2023,54(10):4154-4163.(in Chinese)
[107]YU RJ,XIE FY,TANG QG.Insight into adaption to hypoxia in Tibetan chicken embryonic brains using lipidomics[J].Biochem Biophys Res Commun,2023,671:183-191.
[108]ROMANOV MN,ABDELMANOVA AS,F(xiàn)ISININ VI,et al.Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds[J].J Anim Sci Biotechnol,2023,14(1):35.
[109]徐乃一.家雞冷熱適應(yīng)性研究及其多組學(xué)數(shù)據(jù)庫(kù)構(gòu)建[D].楊凌:西北農(nóng)林科技大學(xué),2022.
XU NY.Study on cold and hot adaptation and construction of multi-omics database for domestic chicken[D].Yangling:Northwest Aamp;F University,2022.(in Chinese)
[110]SHI SR,SHAO D,YANG LY,et al.Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments[J].J Adv Res,2023,47:13-25.
[111]NANAEI HA,KHARRATI-KOOPAEE H,ESMAILIZADEH A.Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens[J].BMC Genomics,2022,23(1):224.
[112]WEI HD,LI TT,ZHANG Y,et al.Cold stimulation causes oxidative stress,inflammatory response and apoptosis in broiler heart via regulating Nrf2/HO-1and NF-κB pathway[J].J Therm Biol,2023,116:103658.
[113]GONG RX,XING L,YIN JW,et al.Appropriate cold stimulation changes energy distribution to improve stress resistance in broilers[J].J Anim Sci,2023,101:skad185.
[114]LI S,LI XQ,WANG K,et al.Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic5-HT pathway[J].J Anim Sci Biotechnol,2023,14(1):159.
[115]MALILA Y,UENGWETWANIT T,SANPINIT P,et al.Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers,Thai native chickens and its crossbreeds[J].Anim Biosci,2024,37(1):61-73.
[116]XU NY,LIU ZY,YANG QM,et al.Genomic analyses for selective signatures and genes involved in hot adaptation among indigenous chickens from different tropical climate regions[J].Front Genet,2022,13:906447.
[117]GUO X,XING CH,WEI W,et al.Genome-wide scan for selection signatures and genes related to heat tolerance in domestic chickens in the tropical and temperate regions in Asia[J].Poult Sci,2022,101(7):101821.
(編輯 郭云雁)