国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鋅原卟啉對(duì)BV2小膠質(zhì)細(xì)胞凋亡相關(guān)蛋白表達(dá)影響

2024-08-22 00:00:00劉榮荊翠婷謝俊霞王俊
關(guān)鍵詞:血紅素膠質(zhì)線粒體

[摘要]目的探究血紅素加氧酶1(HO-1)抑制劑鋅原卟啉(ZnPP)對(duì)BV2小膠質(zhì)細(xì)胞抗凋亡相關(guān)蛋白表達(dá)水平的影響。方法以25 μmol/L的ZnPP處理BV2小膠質(zhì)細(xì)胞24 h后,使用CCK-8法檢測(cè)細(xì)胞活力,采用Western blot的方法檢測(cè)細(xì)胞內(nèi)ZnPP對(duì)BV2小膠質(zhì)細(xì)胞抗凋亡蛋白B淋巴細(xì)胞瘤-2蛋白(Bcl-2)與促凋亡蛋白Bcl2-Associated X蛋白(Bax)、剪切的天冬氨酸特異性半胱氨酸蛋白酶-3(Cleaved caspase 3)等蛋白表達(dá)的影響。結(jié)果與對(duì)照組相比,以10 μmol/L的 ZnPP處理BV2小膠質(zhì)細(xì)胞24 h后細(xì)胞活力無(wú)明顯變化(F=14.720,q=2.819,P>0.05)。而以25 μmol/L的 ZnPP作用于小膠質(zhì)細(xì)胞24 h后,細(xì)胞活力明顯下降(q=7.591,P<0.001);細(xì)胞內(nèi)HO-1和Bcl-2蛋白表達(dá)明顯降低,Cleaved caspase 3蛋白和Bax蛋白表達(dá)明顯增加,差異均有統(tǒng)計(jì)學(xué)意義(t=2.975~5.189,P<0.01)。結(jié)論ZnPP處理BV2小膠質(zhì)細(xì)胞后可通過(guò)線粒體凋亡途徑激活細(xì)胞凋亡,此過(guò)程可能與抑制HO-1的作用有關(guān)。

[關(guān)鍵詞]鋅;原卟啉類;血紅素加氧酶-1;小神經(jīng)膠質(zhì)細(xì)胞;細(xì)胞凋亡;線粒體蛋白質(zhì)類

[中圖分類號(hào)]R977.9;R322.8[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2024)03-0368-04

doi:10.11712/jms.2096-5532.2024.60.045[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.r.20240424.0942.001;2024-04-2417:13:28

Effect of zinc protoporphyrin on the expression of apoptosis-related proteins in BV2 microglial cellsLIU Rong, JING Cuiting, XIE Junxia, WANG Jun(Department of Physiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)

[Abstract]ObjectiveTo investigate the effect of zinc protoporphyrin (ZnPP), an inhibitor ofheme oxygenase 1 (HO-1), on the expression levels of the anti-apoptosis-related proteins in BV2 microglial cells. MethodsBV2 microglial cells were treated with 25 μmol/L ZnPP for 24 hours. CCK-8 assay was used to measure cell viability, and Western blot was used to measure the changes in the protein expression levels of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) and the pro-apoptotic proteins Bcl-2 related X protein (Bax) and Cleaved caspase-3 induced by ZnPP in BV2 microglial cells.ResultsCompared with the control group, the BV2 microglial cells treated with 10 μmol/L ZnPP for 24 hours showed no significant change in cell viability (F=14.720,q=2.819,Pgt;0.05), while the microglial cells treated with 25 μmol/L ZnPP for 24 hours showed a significant reduction in cell viability (q=7.591,Plt;0.01), as well as significant reductions in the protein expression levels of HO-1 and Bcl-2 and significant increases in the protein expression levels of Cleaved caspase-3 and Bax (t=2.975-5.189,Plt;0.01).ConclusionTreatment of BV2 microglial cells with ZnPP can activate cell apoptosis through the mitochondrial apoptosis pathway, possibly by inhibiting HO-1.

[Key words]zinc; protoporphyrins; heme oxygenase-1; microglia; apoptosis; mitochondrial proteins

帕金森?。≒D)是一類復(fù)雜的神經(jīng)退行性疾病,其主要臨床癥狀表現(xiàn)為靜止性震顫、肌僵直、運(yùn)動(dòng)遲緩和姿勢(shì)不穩(wěn)等[1-2]。PD的病理特征主要與黑質(zhì)致密部多巴胺能神經(jīng)元的進(jìn)行性丟失有關(guān)[3-4]。近年來(lái),有大量的體外、體內(nèi)和人體研究表明,細(xì)胞凋亡與PD的發(fā)病機(jī)制密切相關(guān)[5]。鋅原卟啉(ZnPP)是血紅素合成過(guò)程中產(chǎn)生的一種中間體,是血紅素加氧酶1(HO-1)的抑制劑[6]。HO-1是血紅素降解途徑中的限速酶,它可以與NADPH細(xì)胞色素P450還原酶裂解血紅素生成一氧化碳、二價(jià)鐵和膽綠素。膽綠素可被其還原酶還原生成膽紅素[7]。在腦缺血再灌注模型中,ZnPP能通過(guò)抑制HO-1來(lái)調(diào)節(jié)血紅素分解代謝,從而促進(jìn)大鼠海馬細(xì)胞凋亡并加重?fù)p傷[8]。在小鼠原代肝細(xì)胞中,用ZnPP處理后可以通過(guò)誘導(dǎo)細(xì)胞凋亡來(lái)加重肝損傷[9]。但是,對(duì)于用ZnPP處理小膠質(zhì)細(xì)胞后,細(xì)胞是否會(huì)發(fā)生凋亡目前尚不清楚。因此,本研究使用ZnPP抑制HO-1的表達(dá),檢測(cè)ZnPP對(duì)BV2小膠質(zhì)細(xì)胞中抗凋亡蛋白B淋巴細(xì)胞瘤-2蛋白(Bcl-2)與促凋亡蛋白Bcl2-Associated X蛋白(Bax)、剪切的天冬氨酸特異性半胱氨酸蛋白酶-3(Cleaved caspase 3)等蛋白表達(dá)的影響,為后續(xù)研究神經(jīng)退行性疾病提供新的實(shí)驗(yàn)理論依據(jù)。

1材料和方法

1.1實(shí)驗(yàn)材料

BV2小膠質(zhì)細(xì)胞購(gòu)置于北京協(xié)和醫(yī)學(xué)院細(xì)胞資源中心,DMEM培養(yǎng)液(美國(guó)Hyclone公司),胎牛血清(中國(guó)依科賽生物科技有限公司),青霉素-鏈霉素溶液(北京索萊寶科技有限公司),D-多聚賴氨酸、ZnPP(美國(guó)Sigma公司),Cleaved caspase 3抗體、Bcl-2抗體、Bax抗體和β-actin抗體(Abcam公司),HRP-IgG抗體(中國(guó)博奧森公司)。

1.2細(xì)胞培養(yǎng)與處理

將BV2小膠質(zhì)細(xì)胞培養(yǎng)在含有體積分?jǐn)?shù)為0.10的胎牛血清和加有青霉素(100 kU/L)-鏈霉素(0.1 g/L)的DMEM高糖培養(yǎng)液中,置于37 ℃、體積分?jǐn)?shù)為0.05的CO2培養(yǎng)箱中培養(yǎng)。將細(xì)胞以2×108/L的密度接種于預(yù)先鋪有D-多聚賴氨酸的6孔板中,待細(xì)胞生長(zhǎng)到70%~80%融合時(shí),采用ZnPP(25 μmol/L)處理BV2小膠質(zhì)細(xì)胞,并置于37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中培養(yǎng)24 h。

1.3BV2小膠質(zhì)細(xì)胞活力的CCK-8法檢測(cè)

分別向BV2細(xì)胞中加入濃度為0、10、25 μmol/L的ZnPP溶液,于培養(yǎng)箱中培養(yǎng)24 h。吸出原培養(yǎng)液,加入100 μL的基礎(chǔ)培養(yǎng)液、10 μL的CCK-8溶液,將培養(yǎng)板在培養(yǎng)箱中避光孵育1~4 h。使用酶標(biāo)儀測(cè)定450 nm波長(zhǎng)處的吸光度,并按照公式計(jì)算細(xì)胞活力。

1.4Cleaved caspase 3、Bcl-2和Bax蛋白表達(dá)檢測(cè)

用ZnPP處理BV2小膠質(zhì)細(xì)胞24 h后,按照文獻(xiàn)方法[10]處理細(xì)胞,分別用Cleaved caspase 3(1∶1 000)、Bcl-2(1∶1 000)、Bax(1∶1 000)和β-actin(1∶10 000)一抗4 ℃孵育過(guò)夜,TBST清洗3次后用羊抗兔HRP-IgG(1∶10 000)二抗室溫孵育1 h。使用ECL發(fā)光液進(jìn)行顯影,掃描后用Image J軟件分析結(jié)果。

1.5統(tǒng)計(jì)學(xué)處理

采用Graph Pad Prism 9.1軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。計(jì)量資料數(shù)據(jù)以±s形式表示,兩組均數(shù)比較采用獨(dú)立樣本t檢驗(yàn);多組均數(shù)比較采用單因素方差分析(One-Way ANOVA),組間兩兩比較采用Tukey法。以P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。2結(jié)果

2.1ZnPP對(duì)BV2小膠質(zhì)細(xì)胞活性影響

使用不同濃度ZnPP(0、10、25 μmol/L,n=5)作用于BV2小膠質(zhì)細(xì)胞24 h后,細(xì)胞活力分別為1.000±0.007、0.956±0.029和0.881±0.053,差異具有統(tǒng)計(jì)學(xué)意義(F=14.720,P<0.001)。其中濃度為10 μmol/L的ZnPP組與對(duì)照組(0 μmol/L的ZnPP)相比較,細(xì)胞活力無(wú)明顯變化(q=2.819,P>0.05);而25 μmol/L的ZnPP組細(xì)胞活力與對(duì)照組相比明顯下降,差異有統(tǒng)計(jì)學(xué)意義(q=7.591,P<0.001)。

2.2ZnPP對(duì)BV2小膠質(zhì)細(xì)胞HO-1蛋白表達(dá)的影響

對(duì)照組BV2小膠質(zhì)細(xì)胞HO-1蛋白表達(dá)量為1.758±0.302,25 μmol/L的ZnPP處理組(ZnPP組)為1.171±0.288。與對(duì)照組相比,ZnPP組HO-1蛋白表達(dá)明顯降低,差異有統(tǒng)計(jì)學(xué)意義(t=2.975,P<0.05)。

2.3ZnPP對(duì)BV2小膠質(zhì)細(xì)胞凋亡相關(guān)蛋白表達(dá)影響

與對(duì)照組相比較,25 μmol/L的ZnPP處理組(ZnPP組)BV2小膠質(zhì)細(xì)胞的Cleaved caspase 3與Bax蛋白表達(dá)水平明顯升高,Bcl-2蛋白表達(dá)水平下降,且Bcl-2/Bax表達(dá)比值降低,差異均具有統(tǒng)計(jì)學(xué)意義(t=3.753~17.450,P<0.05)。見(jiàn)表1。

3討論

細(xì)胞凋亡是細(xì)胞的一種死亡方式,主要表現(xiàn)為細(xì)胞皺縮、胞膜內(nèi)陷、核膜破裂以及染色質(zhì)凝集等變化[11-12]。一般來(lái)說(shuō),細(xì)胞凋亡可以大致分為兩種途徑:一種是內(nèi)在途徑,即線粒體凋亡途徑,該途徑主要受到Caspase 3、Bcl-2和Bax等凋亡相關(guān)蛋白的調(diào)節(jié);另一種是外在途徑,也稱為死亡受體介導(dǎo)的途徑,這條途徑主要依賴于腫瘤壞死因子受體家族的死亡受體調(diào)節(jié)[13-15]。已有研究結(jié)果表明,細(xì)胞過(guò)度凋亡或者凋亡不足與神經(jīng)退行性疾病的發(fā)生及發(fā)展密切相關(guān)[16-18]。

PD是繼阿爾茨海默病后被發(fā)現(xiàn)的第二大類常見(jiàn)的神經(jīng)退行性疾病,其運(yùn)動(dòng)特征表現(xiàn)為運(yùn)動(dòng)遲緩、肌僵直、靜止性震顫和姿勢(shì)異常等。除此之外,還有許多非運(yùn)動(dòng)癥狀,如嗅覺(jué)異常、睡眠異常、焦慮和抑郁等[19-21]。PD的病理特征主要為黑質(zhì)致密部多巴胺能神經(jīng)元的進(jìn)行性丟失以及路易體的形成[22]。而中腦黑質(zhì)是腦內(nèi)小膠質(zhì)細(xì)胞分布密度最高的區(qū)域,該細(xì)胞激活可以產(chǎn)生大量的自由基進(jìn)而損傷多巴胺能神經(jīng)元[23]。盡管PD的病因尚不清楚,但是有研究結(jié)果表明,衰老是其主要的危險(xiǎn)因素[24]。目前針對(duì)PD的治療多為藥物療法、基因療法和細(xì)胞療法等[25-27]。這些方法有一個(gè)共同的特點(diǎn),它們僅僅只能起到緩解病情的作用,并不能治愈疾病。因此,現(xiàn)在迫切需要尋找和開(kāi)發(fā)新的治療策略。近年來(lái)有研究發(fā)現(xiàn),當(dāng)轉(zhuǎn)基因小鼠的星形膠質(zhì)細(xì)胞過(guò)表達(dá)HO-1時(shí),會(huì)出現(xiàn)一系列PD相關(guān)改變,如明顯的運(yùn)動(dòng)不協(xié)調(diào)、黑質(zhì)紋狀體多巴胺能神經(jīng)元減少、基底神經(jīng)節(jié)鐵沉積、線粒體損傷/線粒體自噬等與PD相符的異常[28]。此外對(duì)小鼠腦出血模型研究發(fā)現(xiàn),HO-1表達(dá)主要出現(xiàn)在血腫區(qū)域周圍的小膠質(zhì)細(xì)胞中[29]。并且在凝血酶誘導(dǎo)的腦損傷中也觀察到,HO-1的缺失與活化的小膠質(zhì)細(xì)胞的數(shù)量減少有關(guān)[30]。所以從PD的致病因素來(lái)看,HO-1的表達(dá)水平將會(huì)是一個(gè)值得研究的新方向。

HO-1是一種由人類的HMOX1基因編碼的應(yīng)激誘導(dǎo)同工酶[31]。它可以被多種刺激因素如脂多糖、炎性因子、重金屬以及紫外線等誘導(dǎo)產(chǎn)生高水平表達(dá)[32-35]。ZnPP是一種天然存在的金屬原卟啉,在體內(nèi)缺鐵或鐵的利用率低時(shí)就會(huì)導(dǎo)致ZnPP合成增加,進(jìn)而抑制HO-1的表達(dá)水平[6,36]。既往的研究表明,ZnPP通過(guò)抑制HO-1可以阻斷白楊素對(duì)膿毒癥引起的心功能障礙的保護(hù)作用[37]。在用ZnPP處理人晶狀體上皮細(xì)胞后則發(fā)現(xiàn),角質(zhì)形成細(xì)胞生長(zhǎng)因子-2的保護(hù)作用發(fā)生顯著降低,并且細(xì)胞發(fā)生凋亡[38]。這與我們的實(shí)驗(yàn)結(jié)果相一致。本文的研究結(jié)果表明,與對(duì)照組相比較,用抑制劑ZnPP處理的小膠質(zhì)細(xì)胞內(nèi)HO-1與Bcl-2蛋白表達(dá)明顯降低,Cleaved caspase 3與Bax蛋白表達(dá)明顯升高,而且Bcl-2/Bax比值明顯下降。這表明用ZnPP抑制HO-1的表達(dá)可以通過(guò)激活線粒體凋亡途徑來(lái)增加小膠質(zhì)細(xì)胞的損傷,此過(guò)程可能與HO-1的調(diào)控有關(guān)。正如前所述,HO-1的表達(dá)水平在PD的進(jìn)展過(guò)程中十分重要,而小膠質(zhì)細(xì)胞的過(guò)度激活會(huì)導(dǎo)致細(xì)胞凋亡,并最終加劇PD的病理進(jìn)展。所以,盡管HO-1與細(xì)胞凋亡的確切機(jī)制還尚不完全清楚,但是靶向HO-1或者調(diào)控HO-1的活性可能會(huì)為后續(xù)研究神經(jīng)退行性疾病提供一個(gè)新的有意義的方向。

當(dāng)然,本文實(shí)驗(yàn)?zāi)壳斑€有很多不足。我們僅在小膠質(zhì)細(xì)胞系中進(jìn)行了實(shí)驗(yàn),后續(xù)將會(huì)進(jìn)一步在動(dòng)物模型中進(jìn)行驗(yàn)證,繼續(xù)探究HO-1與線粒體凋亡途徑之間的關(guān)聯(lián),以及其調(diào)控細(xì)胞凋亡的具體機(jī)制,以期為神經(jīng)退行性疾病新療法的開(kāi)發(fā),以及新治療策略和生物標(biāo)志物的開(kāi)發(fā)提供新的思路。

[參考文獻(xiàn)]

[1]劉靜,司景梅. 神經(jīng)炎癥介導(dǎo)的帕金森病運(yùn)動(dòng)防治研究進(jìn)展[J]. 中國(guó)老年學(xué)雜志, 2023,43(6):1510-1515.

[2]BLOEM B R, OKUN M S, KLEIN C. Parkinson’s disease[J]." Lancet, 2021,397(10291):2284-2303.

[3]HAN Q W, YUAN Y H, CHEN N H. The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson’s disease[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020,96:109745.

[4]JANKOVIC J, TAN E K. Parkinson’s disease: etiopathoge-nesis and treatment[J]." Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(8):795-808.

[5]LEV N, MELAMED E, OFFEN D. Apoptosis and Parkin-son’s disease[J]. Progress in Neuro-Psychopharmacology amp; Biological Psychiatry, 2003,27(2):245-250.

[6]WANG Y, XIONG X X, GUO H, et al. ZnPP reduces autophagy and induces apoptosis, thus aggravating liver ischemia/reperfusion injury in vitro[J]. International Journal of Molecular Medicine, 2014,34(6):1555-1564.

[7]RYTER S W, TYRRELL R M. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxyge-nase has both pro- and antioxidant properties[J]. Free Radical Biology amp; Medicine, 2000,28(2):289-309.

[8]YANG Y D, LI X, ZHANG L M, et al. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARγ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury[J]. International Journal of Clinical and Experimental Pathology, 2015,8(3):2484-2494.

[9]CARCHMAN E H, RAO J, LOUGHRAN P A, et al. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice[J]. Hepatology, 2011,53(6):2053-2062.

[10]孟大鵬,謝俊霞,王俊. 枸櫞酸鐵銨對(duì)BV2小膠質(zhì)細(xì)胞DMT1和FPN1表達(dá)影響[J]. 青島大學(xué)醫(yī)學(xué)院學(xué)報(bào), 2017,53(1):12-13,17.

[11]WEERASINGHE P, BUJA L M. Oncosis: an important non-

3期劉榮,等. 鋅原卟啉對(duì)BV2小膠質(zhì)細(xì)胞凋亡相關(guān)蛋白表達(dá)影響371

apoptotic mode of cell death[J]." Experimental and Molecular Pathology, 2012,93(3):302-308.

[12]LI M, GAO P, ZHANG J P. Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases[J]." International Journal of Molecular Sciences, 2016,17(3):332.

[13]KETELUT-CARNEIRO N, FITZGERALD K A. Apoptosis, pyroptosis, and necroptosis—oh my! the many ways a cell can die[J]. Journal of Molecular Biology, 2022,434(4):167378.

[14]HU H, TIAN M X, DING C, et al. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection[J]." Frontiers in Immunology, 2018,9:3083.

[15]LIU A K, KUANG J, ZHOU Y M, et al. EPR-based in situ enzymatic activity detection of endogenous caspase-3 in apoptosis cell lysates[J]." Chemical Communications, 2022,58(61):8528-8531.

[16]LIU J, LIU W J, YANG H. Balancing apoptosis and auto-phagy for Parkinson’s disease therapy: targeting BCL-2[J]. ACS Chemical Neuroscience, 2019,10(2):792-802.

[17]JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases[J]." Archives of Biochemistry and Biophysics, 2021,702:108698.

[18]GUPTA R, AMBASTA R K, KUMAR P. Autophagy and apoptosis cascade: which is more prominent in neuronal death?[J]." Cellular and Molecular Life Sciences: CMLS, 2021,78(24):8001-8047.

[19]THE LANCET. Parkinson’s disease: a complex disease revi-sited[J]. Lancet, 2017,390(10093):430.

[20]CHIA S J, TAN E K, CHAO Y X. Historical perspective: models of Parkinson’s disease[J]." International Journal of Molecular Sciences, 2020,21(7):2464.

[21]MUSTAPHA M, MAT TAIB C N. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies[J]." Bosnian Journal of Basic Medical Sciences, 2021,21(4):422-433.

[22]COOKSON M R, HARDY J, LEWIS P A. Genetic neuropathology of Parkinson’s disease[J]." International Journal of Clinical and Experimental Pathology, 2008,1(3):217-231.

[23]WANG Q S, OYARZABAL E, WILSON B, et al. Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice[J]. Clinical Science, 2015,129(8):757-767.

[24]PRINGSHEIM T, JETTE N, FROLKIS A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2014,29(13):1583-1590.

[25]TANDON A, SINGH S J, CHATURVEDI R K. Nanomedicine against Alzheimer’s and Parkinson’s disease[J]." Current Pharmaceutical Design, 2021,27(12):1507-1545.

[26]ABELIOVICH A, HEFTI F, SEVIGNY J. Gene therapy for Parkinson’s disease associated with GBA1 mutations[J]." Journal of Parkinson’s Disease, 2021,11(s2):S183-S188.

[27]PARK T Y, JEON J, LEE N, et al. Co-transplantation of autologous Treg cells in a cell therapy for Parkinson’s disease[J]." Nature, 2023,619(7970):606-615.

[28]SONG W, CRESSATTI M, ZUKOR H, et al. Parkinsonian features in aging GFAP. HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment[J]. Neurobio-logy of Aging, 2017,58:163-179.

[29]段淑榮,王瀟然,王春燕,等. 人腦出血血腫周圍皮質(zhì)血紅素氧合酶-1和凋亡調(diào)節(jié)蛋白Bcl-2表達(dá)變化的研究[J]. 中華醫(yī)學(xué)雜志, 2007,87(27):1904-1907.

[30]OHNISHI M, KATSUKI H, UNEMURA K, et al. Heme oxygenase-1 contributes to pathology associated with thrombin-induced striatal and cortical injury in organotypic slice culture[J]. Brain Research, 2010,1347:170-178.

[31]BARAANO D E, SNYDER S H. Neural roles for heme oxygenase: contrasts to nitric oxide synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(20):10996-11002.

[32]LIU R, YANG J H, LI Y H, et al. Heme oxygenase-1: the roles of both good and evil in neurodegenerative diseases[J]. Journal of Neurochemistry, 2023,167(3):347-361.

[33]LI J C, LU K M, SUN F L, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]." Journal of Translational Medi-cine, 2021,19(1):96.

[34]LIU T, XIA Q M, LV Y S, et al. ErZhiFormula prevents UV-induced skin photoaging by Nrf2/HO-1/NQO1 signaling: an in vitro and in vivo studies[J]." Journal of Ethnopharmacology, 2023,309:115935.

[35]HUANG L, LU S Y, BIAN M X, et al. Punicalagin atte-nuates TNF-α-induced oxidative damage and promotes osteoge-nic differentiation of bone mesenchymal stem cells by activa-ting the Nrf2/HO-1 pathway[J]." Experimental Cell Research, 2023,430(1):113717.

[36]YANG G, NGUYEN X, OU J, et al. Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis[J]." Blood, 2001,97(5):1306-1313.

[37]LI X Y, LI S, WANG Q, et al. Chrysin ameliorates sepsis-induced cardiac dysfunction through upregulating Nfr2/heme oxy-genase 1 pathway[J]. Journal of Cardiovascular Pharmacology, 2021,77(4):491-500.

[38]LIU S Y, JIN Z, XIA R Y, et al. Protection of human lens epi-thelial cells from oxidative stress damage and cell apoptosis by KGF-2 through the akt/Nrf2/HO-1 pathway[J]. Oxidative Medicine and Cellular Longevity, 2022,2022:6933812.

(本文編輯于國(guó)藝)

猜你喜歡
血紅素膠質(zhì)線粒體
棘皮動(dòng)物線粒體基因組研究進(jìn)展
線粒體自噬與帕金森病的研究進(jìn)展
人類星形膠質(zhì)細(xì)胞和NG2膠質(zhì)細(xì)胞的特性
視網(wǎng)膜小膠質(zhì)細(xì)胞的研究進(jìn)展
側(cè)腦室內(nèi)罕見(jiàn)膠質(zhì)肉瘤一例
磁共振成像(2015年1期)2015-12-23 08:52:21
血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
富血紅素多肽研究進(jìn)展
少突膠質(zhì)細(xì)胞瘤的分子生物學(xué)改變及臨床意義
观塘区| 金阳县| 扎兰屯市| 东海县| 哈密市| 雷山县| 福州市| 成安县| 乳山市| 井陉县| 富川| 临安市| 金秀| 交城县| 安陆市| 大英县| 刚察县| 顺平县| 神池县| 蒙城县| 万安县| 泗洪县| 汪清县| 正蓝旗| 三河市| 中宁县| 普安县| 海南省| 彭泽县| 旅游| 安龙县| 绥棱县| 洛扎县| 河南省| 彰化县| 洞头县| 社旗县| 浦北县| 蓝田县| 前郭尔| 麟游县|