国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Cs4-SeNPs對(duì)BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)作用及機(jī)制

2024-08-22 00:00:00楊妍卿王曉雯趙娜娜張梅陳文芳
關(guān)鍵詞:膠質(zhì)預(yù)處理誘導(dǎo)

[摘要]目的探討蟲草多糖功能化納米硒(Cs4-SeNPs)對(duì)脂多糖(LPS)誘導(dǎo)BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)的作用及其可能機(jī)制。方法以不同濃度(0.01、0.10、1.00 μmol/L)Cs4-SeNPs作用LPS誘導(dǎo)的BV2小膠質(zhì)細(xì)胞,采用四甲基偶氮唑藍(lán)(MTT)法檢測(cè)BV2小膠質(zhì)細(xì)胞活力,免疫印跡技術(shù)檢測(cè)BV2小膠質(zhì)細(xì)胞硒蛋白谷胱甘肽過氧化物酶4(GPX4)蛋白表達(dá),熒光定量PCR技術(shù)檢測(cè)不同時(shí)間(4、8、12 h)BV2小膠質(zhì)細(xì)胞促炎因子環(huán)氧化酶-2(COX-2)和誘導(dǎo)型一氧化氮合酶(iNOS)mRNA表達(dá)。結(jié)果0.01、0.10、1.00 μmol/L的Cs4-SeNPs對(duì)BV2細(xì)胞活力無明顯影響。與對(duì)照組相比,LPS組GPX4蛋白表達(dá)降低(F=25.47,q=6.43,Plt;0.01);0.01、0.10和1.00 μmol/L的Cs4-SeNPs處理組GPX4蛋白表達(dá)較LPS組明顯升高(q=5.72~14.07,Plt;0.01),且1.00 μmol/L Cs4-SeNPs作用效果最好(q=6.04~8.35,Plt;0.01)。LPS組COX-2與iNOS mRNA表達(dá)較對(duì)照組顯著上調(diào)(F=25.00、37.34,q=12.18、12.06,Plt;0.001)。1.00 μmol/L Cs4-SeNPs預(yù)處理12 h可顯著抑制COX-2基因表達(dá)(q=6.10,Plt;0.05);預(yù)處理8 和12 h可顯著抑制iNOS mRNA表達(dá)(q=4.71、6.97,Plt;0.05)。結(jié)論Cs4-SeNPs對(duì)LPS誘導(dǎo)的BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)具有抑制作用,其機(jī)制可能與硒蛋白GPX4的調(diào)控有關(guān)。

[關(guān)鍵詞]硒;納米結(jié)構(gòu);小神經(jīng)膠質(zhì)細(xì)胞;脂多糖類;炎癥;磷脂氫過氧化物谷胱甘肽過氧化物酶;環(huán)氧化酶2

[中圖分類號(hào)]R916.3;R322.8[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2024)03-0322-05

doi:10.11712/jms.2096-5532.2024.60.094[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240726.0914.001;2024-07-2617:24:21

Role and mechanism of action of cordyceps polysaccharide-functionalized selenium nanoparticles in inflammatory response of BV2 microglial cellsYANG Yanqing, WANG Xiaowen, ZHAO Nana, ZHANG Mei, CHEN Wenfang(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)

[Abstract]ObjectiveTo investigate the effect of cordyceps polysaccharide-functionalized selenium nanoparticles (Cs4-SeNPs) on lipopolysaccharide (LPS)-induced inflammatory response of BV2 microglial cells and its possible mechanism. MethodsLPS-induced BV2 microglial cells were treated with different concentrations (0.01, 0.10, 1.00 μmol/L) of Cs4-SeNPs. MTT assay was used to measure the viability of BV2 microglial cells; Western blotting was used to measure the protein expression level of the selenoprotein glutathioneperoxidase 4 (GPX4) in BV2 microglial cells, and quantitative real-time PCR was used to measure the mRNA expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in BV2 microglial cells at diffe-rent time points (4, 8, and 12 h).ResultsCs4-SeNPs with a concentration of 0.01, 0.10, and 1.00 μmol/L had no significant in-fluenceon the viability of BV2 cells. Compared with the control group, the LPS group had a significant reduction in the protein expression level of GPX4 (F=25.47,q=6.43,Plt;0.01), and compared with the LPS group, the 0.01, 0.10, and 1.00 μmol/L Cs4-SeNPs treatment groups had a significant increase in the protein expression level of GPX4 (q=5.72-14.07,Plt;0.01), with 1.00 μmol/L Cs4-SeNPs showingthe best effect (q=6.04-8.35,Plt;0.01). Compared with the control group, the LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS (F=25.00,37.34;q=12.18,12.06;Plt;0.001). Pretreatment with 1.00 μmol/L Cs4-SeNPs for 12 h could significantly inhibit the mRNA expression of COX-2 (q=6.10,Plt;0.05), and pretreatment for 8 and 12 h significantly inhibited the mRNA expression of iNOS (q=4.71,6.97;Plt;0.05).ConclusionCs4-SeNPs has an inhibitory effect on LPS-induced inflammatory response in BV2 microglial cells,possibly by regulating the selenoprotein GPX4.

[Key words]selenium; nanostructures; microglia; lipopolysaccharides; inflammation; phospholipid hydroperoxide glutathione peroxidase; cyclooxygenase 2

神經(jīng)退行性疾病的病理特征是神經(jīng)元變性死亡,而神經(jīng)元損傷通常與中樞神經(jīng)系統(tǒng)的炎癥反應(yīng)密切相關(guān)[1-2]。作為中樞神經(jīng)系統(tǒng)中的常駐細(xì)胞,小膠質(zhì)細(xì)胞具有監(jiān)測(cè)突觸功能狀態(tài)及維持中樞神經(jīng)系統(tǒng)內(nèi)環(huán)境穩(wěn)態(tài)的功能。但是,過度激活的小膠質(zhì)細(xì)胞會(huì)產(chǎn)生大量的促炎因子,例如環(huán)氧化酶-2(COX-2)、誘導(dǎo)型一氧化氮合酶(iNOS)、腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素-1β(IL-1β)等,加重神經(jīng)炎癥反應(yīng)并損傷神經(jīng)元[2-5]。因此,通過抑制小膠質(zhì)細(xì)胞的炎癥反應(yīng)治療神經(jīng)炎癥是一種有效的神經(jīng)保護(hù)策略。硒在中樞神經(jīng)系統(tǒng)參與了運(yùn)動(dòng)調(diào)節(jié)和學(xué)習(xí)記憶等功能[6]。硒主要通過硒蛋白發(fā)揮生物功能,硒蛋白可參與免疫細(xì)胞的激活、增殖和分化,進(jìn)而進(jìn)行免疫調(diào)節(jié)[7-8]。納米硒(SeNPs)因?yàn)榈投?、可降解性以及高生物利用度等?yōu)點(diǎn)逐漸受到人們關(guān)注,而連接多糖基團(tuán)的SeNPs具有更廣的應(yīng)用范圍[9-11]。目前已有研究證實(shí),SeNPs可通過調(diào)節(jié)炎癥和代謝信號(hào)發(fā)揮神經(jīng)元保護(hù)作用,但對(duì)于多糖基團(tuán)納米硒在神經(jīng)炎癥中的抗炎作用尚未見報(bào)道[12-13]。本研究采用香港理工大學(xué)團(tuán)隊(duì)研發(fā)的蟲草多糖功能化納米硒(Cs4-SeNPs),探究其對(duì)脂多糖(LPS)誘導(dǎo)的BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)的影響及其可能機(jī)制。

1材料和方法

1.1實(shí)驗(yàn)材料

Cs4-SeNPs(專利號(hào):CN201911215358.5)由香港理工大學(xué)黃家興教授團(tuán)隊(duì)提供,以雙蒸水溶解為1.5 mmol/L的儲(chǔ)存液,4 ℃保存。LPS購自美國(guó)Sigma公司,以生理鹽水溶解為2.5 g/L的儲(chǔ)存液,-20 ℃保存。3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽(MTT)購自國(guó)風(fēng)生物科技公司,應(yīng)用0.01 mmol/L的PBS配成5 g/L母液,避光保存。二甲基亞砜(DMSO)購自Solarbio公司。谷胱甘肽過氧化物酶4(GPX4)抗體購自abcam公司,β-actin抗體購自Bioss公司。PAGE凝膠快速制備試劑盒、IgG-HRP二抗、ECL發(fā)光液均購自雅酶公司。PCR逆轉(zhuǎn)錄試劑盒購自美國(guó)TaKaRa公司,SYBRGreen(MasterMix)購自諾唯贊醫(yī)療科技有限公司,PCR擴(kuò)增引物由青島蔚來生物科技有限公司提供。BV2細(xì)胞購自北京市協(xié)和醫(yī)學(xué)院細(xì)胞資源中心。

1.2實(shí)驗(yàn)方法

1.2.1細(xì)胞培養(yǎng)BV2細(xì)胞置于含體積分?jǐn)?shù)0.10胎牛血清、100 U/L青霉素和100 mg/L鏈霉素高糖DMEM培養(yǎng)液,在含體積分?jǐn)?shù)0.05 CO2的37 ℃細(xì)胞培養(yǎng)箱中常規(guī)培養(yǎng)。當(dāng)細(xì)胞生長(zhǎng)至80%~90%融合時(shí),接種細(xì)胞。

1.2.2MTT法檢測(cè)細(xì)胞活力將BV2細(xì)胞從培養(yǎng)瓶中吹打下來,離心后加入培養(yǎng)液進(jìn)行細(xì)胞計(jì)數(shù)。當(dāng)細(xì)胞密度達(dá)到8×107/L時(shí),以每孔100 μL接種至96孔板進(jìn)行培養(yǎng)。待板中細(xì)胞達(dá)70%融合時(shí)加入不同濃度(0.01、0.10、1.00 μmol/L)的Cs4-SeNPs培養(yǎng)24 h。棄掉96孔板中的液體后,每孔加入質(zhì)量濃度為5 g/L的MTT溶液20 μL,避光培養(yǎng)4 h。隨后棄掉MTT溶液,每孔加入100 μL的 DMSO,放置搖床避光緩慢振蕩10 min使晶體溶解。使用酶標(biāo)儀檢測(cè)490 nm波長(zhǎng)處的吸光度值(OD值)。

1.2.3免疫印跡法(Western blot)檢測(cè)蛋白表達(dá)將BV2細(xì)胞接種于12孔板進(jìn)行培養(yǎng),待細(xì)胞生長(zhǎng)達(dá)到80%融合時(shí)進(jìn)行加藥處理。將細(xì)胞分為對(duì)照組(A組)、LPS誘導(dǎo)組(B組)、Cs4-SeNPs不同濃度(0.01、0.10、1.00 μmol/L)預(yù)處理與LPS共處理組(C組、D組、E組)。LPS誘導(dǎo)24 h后棄去培養(yǎng)液,加裂解液(lysis∶PMSF=99∶1,每孔100 μL)在冰上裂解30 min。將裂解后的細(xì)胞從孔板中刮下并收集至EP管中。提取細(xì)胞蛋白并用BCA法檢測(cè)蛋白濃度,每孔取15 μg蛋白進(jìn)行十二烷基硫酸鈉聚丙烯酰胺凝膠(SDS-PAGE)電泳,恒壓80 V,恒流300 mA,90 min冰浴轉(zhuǎn)膜。用1×快速封閉液在室溫下封閉30 min后,加入GPX4一抗,4 ℃搖床孵育過夜。在一抗孵育后使用TBST洗膜3次,每次10 min。加入二抗室溫?fù)u床孵育1 h,TBST洗膜3次,每次10 min。采用ECL化學(xué)發(fā)光試劑顯影,Image J軟件分析蛋白條帶,結(jié)果以目的蛋白條帶與β-actin條帶灰度值的比值表示。

1.2.4實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(RT-PCR)技術(shù)檢測(cè)基因mRNA表達(dá)接種BV2細(xì)胞于12孔板中,待培養(yǎng)達(dá)80%融合時(shí)進(jìn)行加藥處理。將細(xì)胞分為對(duì)照組(A組)、LPS誘導(dǎo)組(B組)、不同時(shí)間(4、8、12 h)Cs4-SeNPs(加入最佳濃度1.00 μmol/L)預(yù)處理后加LPS共處理6 h組(C組、D組、E組)。藥物處理各組細(xì)胞后,采用TRIzol法提取各分組細(xì)胞總RNA,使用PCR逆轉(zhuǎn)錄試劑盒將RNA逆轉(zhuǎn)錄為cDNA。按照要求配制20.0 μL的 PCR反應(yīng)體系,包括10.0 μL 2×QuantiFast SYBR Premix Ex Taq、8.2 μL RNase free water、正向和反向引物各0.4 μL以及cDNA 1.0 μL。反應(yīng)體系經(jīng)RT-PCR儀擴(kuò)增后得到CT值,通過2-△△CT法計(jì)算目的基因COX-2和iNOS的mRNA相對(duì)表達(dá)量。PCR擴(kuò)增引物種類及其序列見表1。

1.3統(tǒng)計(jì)學(xué)處理

采用Graph Pad Prism 8.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)處理。計(jì)量資料數(shù)據(jù)以±s形式表示,多組均數(shù)比較采用單因素方差分析(One-Way ANOVA),繼以Tukey法進(jìn)行兩兩比較。以Plt;0.05表示差異有統(tǒng)計(jì)學(xué)意義。

2結(jié)果

2.1不同濃度Cs4-SeNPs對(duì)BV2小膠質(zhì)細(xì)胞活力影響

MTT檢測(cè)結(jié)果表明,各處理組細(xì)胞存活率分別為對(duì)照組(100.0±0.5)%、0.01 μmol/L Cs4-SeNPs組(92.4±4.3)%、0.10 μmol/L Cs4-SeNPs組(92.4±4.7)%、1.00 μmol/L Cs4-SeNPs組(91.5±6.5)%。與對(duì)照組細(xì)胞相比較,0.01、0.10、1.00 μmol/L Cs4-SeNPs對(duì)細(xì)胞活力均無顯著影響(n=3,F(xiàn)=0.66,q=0.04~1.88,Pgt;0.05)。

2.2不同濃度的Cs4-SeNPs對(duì)BV2小膠質(zhì)細(xì)胞GPX4表達(dá)影響

Western blot檢測(cè)結(jié)果顯示,與對(duì)照組相比,LPS可顯著下調(diào)BV2小膠質(zhì)細(xì)胞GPX4蛋白的表達(dá)(F=25.47,q=6.43,Plt;0.01),不同濃度的Cs4-SeNPs預(yù)處理均可以對(duì)抗LPS此作用(q=5.72~14.07,Plt;0.01),而且1.00 μmol/L Cs4-SeNPs上調(diào)GPX4蛋白表達(dá)的效果明顯優(yōu)于其他濃度(q=6.04~8.35,Plt;0.01)。見圖1。

2.3不同作用時(shí)間對(duì)BV2小膠質(zhì)細(xì)胞COX-2和iNOS mRNA表達(dá)影響

RT-PCR檢測(cè)結(jié)果顯示,同對(duì)照組相比,LPS誘導(dǎo)6 h可以顯著提高促炎因子COX-2和iNOS的mRNA表達(dá)(F=25.00、37.34,q=12.18、12.06,Plt;0.001)。Cs4-SeNPs預(yù)處理4 和8 h,COX-2 mRNA的表達(dá)與LPS組相比較沒有明顯差異;而Cs4-SeNPs預(yù)處理12 h,COX-2 mRNA的表達(dá)較LPS組顯著降低(F=25.00,q=6.10,Plt;0.05)。Cs4-SeNPs預(yù)處理8 h,iNOS mRNA表達(dá)水平較LPS組有明顯降低,至12 h降至最低(q=4.71、6.97,Plt;0.05)。見表2。

3討論

隨著人類壽命的不斷延長(zhǎng),神經(jīng)退行性疾病對(duì)社會(huì)經(jīng)濟(jì)的影響逐漸增加[14-15]。目前神經(jīng)退行性疾病的病因尚未完全清楚,神經(jīng)炎癥被認(rèn)為是其常見的致病因素之一[15-17]。神經(jīng)炎癥可導(dǎo)致促炎因子水平升高、巨噬細(xì)胞激活、外周白細(xì)胞浸潤(rùn)和神經(jīng)組織損傷等變化[18-20]。小膠質(zhì)細(xì)胞的活化在持續(xù)的炎癥反應(yīng)中發(fā)揮重要作用[21-22]。在神經(jīng)炎癥期間,免疫原性分子可以激活小膠質(zhì)細(xì)胞,產(chǎn)生大量促炎因子,導(dǎo)致神經(jīng)元損傷,受損的神經(jīng)元又進(jìn)一步激活小膠質(zhì)細(xì)胞,由此在小膠質(zhì)細(xì)胞和神經(jīng)元之間形成惡性循環(huán)[18]。因此,探索并研發(fā)有效的抗神經(jīng)炎癥藥物成為防治神經(jīng)退行性疾病研究的熱點(diǎn)之一。

硒在免疫調(diào)節(jié)中發(fā)揮著重要作用[23-24]。研究證實(shí),硒不僅參與免疫啟動(dòng),同時(shí)還調(diào)節(jié)過度免疫反應(yīng)、對(duì)抗慢性炎癥[25-26]。然而,硒狹窄的安全使用范圍限制了硒類制品應(yīng)用[27-28]。SeNPs是基于納米級(jí)復(fù)合物的新型藥物,能夠極大增強(qiáng)硒的藥物功能,具有生物利用度高、毒性小等特點(diǎn),可在風(fēng)濕性骨關(guān)節(jié)炎、心肌炎、結(jié)腸炎、銀屑病等疾病中發(fā)揮抗炎保護(hù)作用[11,29-32]。本研究所采用的Cs4-SeNPs是由SeNPs連接蟲草多糖基團(tuán)而成,克服了SeNPs易聚集的缺點(diǎn)。實(shí)驗(yàn)結(jié)果顯示,0.01~1.00 μmol/L的Cs4-SeNPs對(duì)BV2小膠質(zhì)細(xì)胞無毒性作用,Cs4-SeNPs可有效抑制LPS誘導(dǎo)的BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)。本研究首次證實(shí)了Cs4-SeNPs具有抗小膠質(zhì)細(xì)胞炎癥反應(yīng)的作用。

硒在體內(nèi)主要通過轉(zhuǎn)化為硒蛋白發(fā)揮抗氧化、抗炎、抗癌等作用[33-35]。GPX是人體內(nèi)存在的主要硒蛋白,能夠抑制炎癥部位自由基的過度產(chǎn)生[36-38]。GPX4是GPX家族中的一員,有研究表明在脂質(zhì)過氧化介導(dǎo)的疾病中激活GPX4能夠抑制NF-κB信號(hào)通路,發(fā)揮抗炎作用[39-41]。多項(xiàng)藥物實(shí)驗(yàn)也證實(shí),調(diào)節(jié)GPX4通路可有效抑制促炎因子表達(dá)[42-43]。另一項(xiàng)研究結(jié)果顯示,Toll樣受體4(TLR4)可調(diào)控GPX4表達(dá),抑制TLR4可有效增加氧糖剝奪模型中GPX4表達(dá)[44]。本文的研究結(jié)果也顯示,LPS可以顯著降低GPX4的表達(dá),而Cs4-SeNPs可以對(duì)抗此作用,提示GPX4在Cs4-SeNPs的抗炎保護(hù)中具有重要作用。

綜上所述,本研究結(jié)果提示Cs4-SeNPs對(duì)LPS誘導(dǎo)的BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)具有抑制作用,其作用機(jī)制可能與GPX4的調(diào)控有關(guān)。本研究結(jié)果為Cs4-SeNPs防治神經(jīng)退行性疾病提供了新的實(shí)驗(yàn)依據(jù)。后續(xù)將對(duì)GPX4在Cs4-SeNPs抗炎作用中的調(diào)控機(jī)制進(jìn)行深入探討。

[參考文獻(xiàn)]

[1]STEPHENSON J, NUTMA E, VAN DER VALK P, et al. Inflammation in CNS neurodegenerative diseases[J]. Immuno-logy, 2018,154(2):204-219.

[2]FORLONI G. Alpha synuclein: neurodegeneration and inflammation[J]. International Journal of Molecular Sciences, 2023, 24(6):5914.

[3]CAI Y L, LIU J L, WANG B, et al. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets[J]. Frontiers in Immunology, 2022,13:856376.

[4]CLAUDINO DOS SANTOS J C, LIMA M P P, BRITO G A C, et al. Role of enteric glia and microbiota-gut-brain axis in Parkinson disease pathogenesis[J]. Ageing Research Reviews, 2023,84:101812.

[5]OLAH M, BIBER K, VINET J, et al. Microglia phenotype diversity[J]. CNS amp; Neurological Disorders Drug Targets, 2011,10(1):108-118.

[6]SOLOVYEV N D. Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling[J]. Journal of Inorganic Biochemistry, 2015,153:1-12.

[7]KIELISZEK M, BAEJAK S. Selenium: significance, and outlook for supplementation[J]. Nutrition, 2013, 29(5):713-718.

[8]NAVARRO-ALARCON M, CABRERA-VIQUE C. Selenium in food and the human body: a review[J]. The Science of the Total Environment, 2008,400(1-3):115-141.

[9]VINCETI M, MANDRIOLI J, BORELLA P, et al. Selenium neurotoxicity in humans: bridging laboratory and epidemiolo-gic studies[J]. Toxicology Letters, 2014, 230(2):295-303.

[10]CHEN N, YAO P, ZHANG W, et al. Selenium nanoparticles: enhanced nutrition and beyond[J]. Critical Reviews in Food Science and Nutrition, 2023,63(33):12360-12371.

[11]RAZA A, JOHNSON H, SINGH A, et al. Impact of sele-nium nanoparticles in the regulation of inflammation[J]. Archives of Biochemistry and Biophysics, 2022,732:109466.

[12]AMANI H, HABIBEY R, SHOKRI F, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling[J]. Scientific Reports, 2019,9(1):6044.

[13]CARLSON B A, YOO M H, SHRIMALI R K, et al. Role of selenium-containing proteins in T-cell and macrophage function[J]. The Proceedings of the Nutrition Society, 2010,69(3):300-310.

[14]COVA I, MARKOVA A, CAMPINI I, et al. Worldwide trends in the prevalence of dementia[J]. Journal of the Neurological Sciences, 2017,379:259-260.

[15]WAREHAM L K, LIDDELOW S A, TEMPLE S, et al. Solving neurodegeneration: common mechanisms and strategies for new treatments[J]." Molecular Neurodegeneration, 2022,17(1):23.

[16]JELLINGER K A. Basic mechanisms of neurodegeneration: a critical update[J]. Journal of Cellular and Molecular Medicine, 2010,14(3):457-487.

[17]ZHANG W F, XIAO D, MAO Q W, et al. Role of neuroinflammation in neurodegeneration development[J]." Signal Transduction and Targeted Therapy, 2023,8(1):267.

[18]KEMPURAJ D, THANGAVEL R, NATTERU P A, et al. Neuroinflammation induces neurodegeneration[J]. Journal of Neurology, Neurosurgery and Spine, 2016,1(1):1003.

[19]RUSSO M V, MCGAVERN D B. Inflammatory neuroprotec-

326青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)60卷

tion following traumatic brain injury[J]. Science, 2016,353(6301):783-785.

[20]ESTES M L, MCALLISTER A K. Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation[J]! Brain Pathology, 2014, 24(6):623-630.

[21]WOODBURN S C, BOLLINGER J L, WOHLEB E S. The semantics of microglia activation: neuroinflammation, homeostasis, and stress[J]." Journal of Neuroinflammation, 2021,18(1):258.

[22]GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]." Signal Transduction and Targeted Therapy, 2023,8(1):359.

[23]XIA X J, ZHANG X L, LIU M C, et al. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level[J]." Food amp; Function, 2021,12(3):976-989.

[24]RAZAGHI A, POOREBRAHIM M, SARHAN D, et al. Selenium stimulates the antitumour immunity: Insights to future research[J]." European Journal of Cancer, 2021,155:256-267.

[25]HUANG Z, ROSE A H, HOFFMANN P R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities[J]. Antioxidants amp; Redox Signaling, 2012,16(7):705-743.

[26]ZHENG Y H, XIE T, LI S L, et al. Effects of selenium as a dietary source on performance, inflammation, cell damage, and reproduction of livestock induced by heat stress: a review[J]." Frontiers in Immunology, 2021,12:820853.

[27]AMES B N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(47):17589-17594.

[28]SONKUSRE P. Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study[J]. Frontiers in Oncology, 2019,9:1541.

[29]KASSAB R B, ELBAZ M, OYOUNI A A A, et al. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid-induced colitis in rats[J]. Environmental Science and Pollution Research International, 2022, 29(37):55790-55802.

[30]REHMAN A, JOHN P, BHATTI A. Biogenic selenium nanoparticles: potential solution to oxidative stress mediated inflammation in rheumatoid arthritis and associated complications[J]. Nanomaterials, 2021,11(8):2005.

[31]GANGADEVI V, THATIKONDA S, POOLADANDA V, et al. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation[J]. Journal of Nanobiotechnology, 2021,19(1):101.

[32]GE J, GUO K, ZHANG C, et al. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-κB/IκB pathway in heart[J]. The Science of the Total Environment, 2021,773:145442.

[33]XIE Y C, KANG R, KLIONSKY D J, et al. GPX4 in cell death, autophagy, and disease[J]." Autophagy, 2023,19(10):2621-2638.

[34]SCHOENMAKERS E, CHATTERJEE K. Human genetic disorders resulting in systemic selenoprotein deficiency[J]." International Journal of Molecular Sciences, 2021,22(23):12927.

[35]KHRLE J. Selenium in endocrinology-selenoprotein-related diseases, population studies, and epidemiological evidence[J]." Endocrinology, 2021,162(2):bqaa228.

[36]HARIHARAN S, DHARMARAJ S. Selenium and selenoproteins: it’s role in regulation of inflammation[J]. Inflammo-pharmacology, 2020,28(3):667-695.

[37]BRIGELIUS-FLOHE R F L. Regulatory phenomena in the glutathione peroxidase superfamily[J]." Antioxidants amp; Redox Signaling, 2020,33(7):498-516.

[38]PEI J, PAN X Y, WEI G H, et al. Research progress of glutathione peroxidase family (GPX) in redoxidation[J]." Frontiers in Pharmacology, 2023,14:1147414.

[39]WANG C Y, CHEN S S, GUO H Y, et al. Forsythoside A mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation[J]. International Journal of Biological Sciences, 2022,18(5):2075-2090.

[40]LI C, DENG X B, XIE X W, et al. Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy[J]. Frontiers in Pharmacology, 2018,9:1120.

[41]XIAO Z, KONG B, FANG J, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction[J]. Bioengi-neered, 2021,12(2):9367-9376.

[42]SUN J Y, ZHANG Y F, WANG C J, et al. Kukoamine A protects mice against osteoarthritis by inhibiting chondrocyte inflammation and ferroptosis via SIRT1/GPX4 signaling pathway[J]. Life Sciences, 2023,332:122117.

[43]WANG X M, LI S S, YU J Y, et al. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress[J]. Journal of Ethnopharmacology, 2023,316:116729.

[44]ZHU K Y, ZHU X, SUN S H, et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats[J]. Experimental Neurology, 2021,345:113828.

(本文編輯于國(guó)藝)

猜你喜歡
膠質(zhì)預(yù)處理誘導(dǎo)
齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
同角三角函數(shù)關(guān)系及誘導(dǎo)公式
人類星形膠質(zhì)細(xì)胞和NG2膠質(zhì)細(xì)胞的特性
續(xù)斷水提液誘導(dǎo)HeLa細(xì)胞的凋亡
中成藥(2017年12期)2018-01-19 02:06:52
基于預(yù)處理MUSIC算法的分布式陣列DOA估計(jì)
大型誘導(dǎo)標(biāo)在隧道夜間照明中的應(yīng)用
視網(wǎng)膜小膠質(zhì)細(xì)胞的研究進(jìn)展
淺談PLC在預(yù)處理生產(chǎn)線自動(dòng)化改造中的應(yīng)用
側(cè)腦室內(nèi)罕見膠質(zhì)肉瘤一例
磁共振成像(2015年1期)2015-12-23 08:52:21
絡(luò)合萃取法預(yù)處理H酸廢水
本溪市| 济南市| 河曲县| 娱乐| 娄烦县| 洪泽县| 佳木斯市| 抚远县| 黑龙江省| 永泰县| 涞水县| 林芝县| 普陀区| 松桃| 迁安市| 遵义市| 海门市| 绵竹市| 崇文区| 东城区| 鄂伦春自治旗| 历史| 明溪县| 三河市| 鹤庆县| 天柱县| 渭南市| 华宁县| 安康市| 富民县| 汝城县| 松桃| 垫江县| 岳池县| 二连浩特市| 睢宁县| 昌邑市| 西贡区| 金门县| 桃江县| 义乌市|