国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

芻議大數(shù)學(xué)觀視域下小學(xué)數(shù)學(xué)深度教學(xué)課堂建構(gòu)策略

2024-08-08 00:00:00吳超張皎
教育界·A 2024年19期

【摘要】大數(shù)學(xué)觀強調(diào)在數(shù)學(xué)教學(xué)中讓學(xué)生“先見林,再見樹”,建構(gòu)知識體系,聚焦于對數(shù)學(xué)知識本質(zhì)的理解,實現(xiàn)深度學(xué)習(xí)。文章以蘇教版小學(xué)數(shù)學(xué)教材為例,基于大數(shù)學(xué)觀,就小學(xué)數(shù)學(xué)深度教學(xué)課堂建構(gòu)策略進行探究。

【關(guān)鍵詞】大數(shù)學(xué)觀;深度教學(xué);“大學(xué)生觀”;“大整體觀”;“大教學(xué)觀”

【基金項目】本文系無錫市教育科學(xué)“十四五”規(guī)劃2021年度課題“基于兒童理解的小學(xué)數(shù)學(xué)深度教學(xué)的實踐研究”(批準號:B/D/2021/03)的研究成果。

作者簡介:吳超(1988—),女,江蘇省宜興市湖濱實驗學(xué)校。

張皎(1978—),女,江蘇省宜興市湖濱實驗學(xué)校。

深度教學(xué),是指教師借助一定的活動或問題情境,帶領(lǐng)學(xué)生超越表層的知識符號學(xué)習(xí),深入知識內(nèi)在的邏輯和意義,挖掘知識豐富的內(nèi)涵,充分實現(xiàn)數(shù)學(xué)知識對學(xué)生發(fā)展的作用[1]。大數(shù)學(xué)觀視域下的深度教學(xué)需要教師樹立“大學(xué)生觀”“大整體觀”“大教學(xué)觀”,從關(guān)注具體的知識點轉(zhuǎn)向關(guān)注知識體系,幫助學(xué)生真正理解知識的本質(zhì),完善知識結(jié)構(gòu),從而有效落實培養(yǎng)學(xué)生數(shù)學(xué)核心素養(yǎng)的任務(wù)。

一、樹立“大學(xué)生觀”,引導(dǎo)學(xué)生深度探究

了解學(xué)生學(xué)情是建構(gòu)深度學(xué)習(xí)課堂的前提。教師應(yīng)樹立“大學(xué)生觀”,將學(xué)生視作發(fā)展中的人,改變以往以經(jīng)驗判斷學(xué)情的方式,代之以實證研究,以便準確地了解學(xué)生學(xué)情,科學(xué)地確立數(shù)學(xué)課堂的起點。教師應(yīng)重視學(xué)生在深度教學(xué)課堂建構(gòu)中的主體作用,發(fā)揮學(xué)生的主觀能動性,引導(dǎo)學(xué)生在學(xué)習(xí)中自主思考。

(一)開展有意義的數(shù)學(xué)交流,感悟知識價值

以學(xué)生為中心的課堂就是要鼓勵學(xué)生發(fā)揮主觀能動性,允許學(xué)生在數(shù)學(xué)課堂上大膽表達、相互啟發(fā),給學(xué)生提供多元發(fā)展的可能,在最大限度內(nèi)實現(xiàn)因材施教。

例如,在蘇教版小學(xué)數(shù)學(xué)教材二年級下冊“數(shù)據(jù)的收集與整理”的內(nèi)容教學(xué)中,教師除了要傳授給學(xué)生科學(xué)有效的數(shù)據(jù)收集與整理方法,還要尊重學(xué)生的主體性,鼓勵學(xué)生在解決生活實際問題時選擇自己更熟悉、更喜歡的數(shù)據(jù)收集與整理方法。在課堂中,教師可以鼓勵學(xué)生踴躍發(fā)言,讓學(xué)生到講臺上分享自己所用到的數(shù)據(jù)收集與整理方法,展示自己的成果。同時,教師還要鼓勵其他學(xué)生就同伴的成果提出建議,使學(xué)生間產(chǎn)生思維的碰撞,從而激發(fā)學(xué)生對數(shù)據(jù)收集與整理活動的興趣,使學(xué)生形成數(shù)據(jù)意識。

(二)設(shè)計高質(zhì)量的數(shù)學(xué)問題,強化概念理解

高質(zhì)量的數(shù)學(xué)問題能夠凸顯教學(xué)重點,為突破教學(xué)難點提供思維支架。教師課堂上給學(xué)生提出高質(zhì)量的數(shù)學(xué)問題,能讓學(xué)生明確探究活動的方向,抓住關(guān)鍵信息,深入理解數(shù)學(xué)概念。

例如,在蘇教版小學(xué)數(shù)學(xué)教材三年級下冊“分數(shù)”的內(nèi)容教學(xué)中,針對教材內(nèi)容“分桃”,教師提問:“將4個桃平均分成4份,每份是原來的幾分之幾?將8個桃平均分成4份,每份又是原來的幾分之幾?”在學(xué)生表示每份都是原來的 后,教師繼續(xù)提問:“把12個桃、20個桃、100個桃平均分成4份,每份是原來的幾分之一?”學(xué)生得出答案后,教師緊接著追問:“每盤桃的總個數(shù)不一樣,平均分成的每份的個數(shù)也不一樣,為什么每份都是原來的 呢?”幾個問題層層遞進,在關(guān)鍵處引導(dǎo),在重難點處點撥,引導(dǎo)學(xué)生聚焦于整體平均分的份數(shù),初步理解分數(shù)的意義。

(三)創(chuàng)設(shè)趣味性的情境,探究規(guī)律本質(zhì)

要想在課堂上調(diào)動學(xué)生的主觀能動性,就要激發(fā)學(xué)生的學(xué)習(xí)興趣。教師可以利用信息技術(shù)創(chuàng)設(shè)趣味性的教學(xué)情境,加強教學(xué)內(nèi)容的直觀性,促使學(xué)生主動探索數(shù)學(xué)知識。

例如,在蘇教版小學(xué)數(shù)學(xué)教材四年級下冊“三角形的三邊關(guān)系”的內(nèi)容教學(xué)中,教師可以借助幾何畫板輔助教學(xué),通過改變線段的長度和端點的位置,讓學(xué)生觀察三角形的變化。此外,教師還可以讓學(xué)生親自操作幾何畫板,將三條線段圍成三角形。學(xué)生從圖形操作中能夠更加形象地看出三角形三邊的關(guān)系,從而理解“三角形任意兩邊長度的和大于第三邊”的規(guī)律。

二、樹立“大整體觀”,促進知識深度建構(gòu)

傳統(tǒng)教學(xué)往往缺少對學(xué)科知識體系的整體架構(gòu),導(dǎo)致學(xué)生接觸到的只是碎片化知識,難以形成整體認知。針對這一問題,教師應(yīng)樹立“大整體觀”,從知識的統(tǒng)一性入手,在教學(xué)過程中逐步引導(dǎo)學(xué)生建構(gòu)知識體系。

(一)注重知識聯(lián)結(jié),助推經(jīng)驗遷移

在教學(xué)中實現(xiàn)知識聯(lián)結(jié),既要凸顯數(shù)學(xué)知識的本質(zhì),又要符合學(xué)生的心理特點。具體而言,教師要遵循學(xué)生認知結(jié)構(gòu)建立的規(guī)律,重視學(xué)生已有經(jīng)驗與后續(xù)發(fā)展,開展承上啟下的聯(lián)結(jié)性教學(xué),引導(dǎo)學(xué)生體會知識之間的邏輯關(guān)系。

例如,在蘇教版小學(xué)數(shù)學(xué)教材五年級上冊“多邊形”的內(nèi)容教學(xué)中,教師要站在大單元的角度上進行教學(xué)設(shè)計,讓學(xué)生在推導(dǎo)平行四邊形、三角形、梯形面積公式的過程中厘清各種圖形之間的聯(lián)系,初步建立多種平面圖形的知識結(jié)構(gòu)。如此一來,在學(xué)習(xí)“圓的面積”一課時,學(xué)生就能自然地遷移運用之前的經(jīng)驗,形成認知閉環(huán),構(gòu)建完整的平面圖形知識網(wǎng)絡(luò)。

(二)引入數(shù)學(xué)模型,促進整體建構(gòu)

數(shù)學(xué)模型是運用數(shù)理邏輯方法和數(shù)學(xué)語言建構(gòu)的科學(xué)或工程模型。構(gòu)建數(shù)學(xué)模型能將零散的知識點或知識塊聚合成較為完整的知識面,從而引導(dǎo)學(xué)生充分學(xué)習(xí),厘清知識脈絡(luò)。

例如,在蘇教版小學(xué)數(shù)學(xué)教材四年級下冊“運算律”的內(nèi)容教學(xué)中,教師可以借助多媒體設(shè)備出示問題情境,引導(dǎo)學(xué)生主動掌握乘除法模型,如下所示。

(1)紅紅和玲玲誰走得快?

時間 路程

紅紅 2分鐘 100米

玲玲 6分鐘 400米

(2)貨車和客車哪輛車開得快?

時間 路程

貨車 3小時 180千米

客車 4小時 320千米

在討論中,學(xué)生意識到要知道誰走得快,就要算出兩人每分鐘各走多少米,要知道哪輛車開得快,就要知道它們每小時各開多少千米,由此得出速度的概念,即速度就是每小時、每分鐘、每秒等單位時間內(nèi)行駛的路程。接著,教師讓學(xué)生進行計算和比較,從中梳理出路程、時間、速度的關(guān)系。學(xué)生進一步得出:速度×?xí)r間=路程,路程÷速度=時間,路程÷時間=速度。教師總結(jié):在路程、速度、時間這三個量中,只要知道其中任意兩個量,就可以求出第三個量。最后,教師讓學(xué)生根據(jù)“速度、時間、路程”的模型梳理出其他同類模型。學(xué)生結(jié)合學(xué)過的知識,得出“單價、數(shù)量、總價”和“每份數(shù)、份數(shù)、總數(shù)”等也屬于這類模型,從而強化了模型應(yīng)用意識。

(三)完善評價體系,形成教學(xué)閉環(huán)

教學(xué)評價是教學(xué)的最后一個環(huán)節(jié),有助于教師診斷和改進教學(xué)過程中的問題,提升教學(xué)質(zhì)量。教學(xué)評價的實行者可以是教師,也可以是學(xué)生。

例如,在蘇教版小學(xué)數(shù)學(xué)教材六年級下冊“分數(shù)的四則混合運算”的內(nèi)容教學(xué)中,教學(xué)結(jié)束后,教師可以為學(xué)生提供自評量表,引導(dǎo)學(xué)生對自己的學(xué)習(xí)情況進行打分。在評價量表的設(shè)計上,教師可以加入“我能夠理解并掌握分數(shù)四則混合運算的正確順序”“我可以使用分數(shù)加法、乘法等去解決一些比較復(fù)雜的實際問題”等評價內(nèi)容。要注意的是,教學(xué)評價的設(shè)計要與教學(xué)目標及教學(xué)過程相契合,從而使教學(xué)形成一個閉環(huán)。

三、樹立“大教學(xué)觀”,實現(xiàn)思維深度進階

“大教學(xué)觀”要求教師在教學(xué)中敢于破舊立新,以數(shù)學(xué)核心素養(yǎng)的培育為第一要義,尤其注重培養(yǎng)學(xué)生的數(shù)學(xué)思維,幫助學(xué)生實現(xiàn)思維的深度進階。

(一)在操作中發(fā)展思維的靈活性

為充分在數(shù)學(xué)教學(xué)中發(fā)展學(xué)生的數(shù)學(xué)思維,教師可以設(shè)計具有操作性的題目,讓學(xué)生在操作探索中解決問題。

例如,在蘇教版小學(xué)數(shù)學(xué)教材五年級下冊“解決問題的策略”的內(nèi)容教學(xué)中,教師呈現(xiàn)改編后的例題:“ + + + + + + = ?”學(xué)生通過觀察,發(fā)現(xiàn)分母的規(guī)律,提出先通分,再計算,但認為計算過程比較麻煩。教師提問:“有沒有更簡便的計算方法呢?比如我們可不可以通過畫圖來計算?”在教師的提醒下,學(xué)生把算式表征到圖上(如圖1所示)。如此,學(xué)生能直觀看到這個算式可以用減法的思路來完成: + + + + + + = 1- = 。

(二)在比較中發(fā)展思維的深刻性

在“大教學(xué)觀”下,數(shù)學(xué)教師要實現(xiàn)深度學(xué)習(xí),還要培養(yǎng)學(xué)生思維的深刻性,通過設(shè)計一系列的對比練習(xí),讓學(xué)生厘清思路,打破思維定式,學(xué)會舉一反三、觸類旁通。

例如,在蘇教版小學(xué)數(shù)學(xué)教材五年級下冊“倍數(shù)和因數(shù)”的內(nèi)容教學(xué)中,教師可以設(shè)計這樣的題組練習(xí):“(1)把長160厘米、寬100厘米的長方形紙張剪成若干個相等的小正方形,并且無剩余,最少可以剪多少個?(2)如小長方形紙片長16厘米、寬10厘米,則至少需要多少張這樣的小長方形紙片才能拼成一個正方形?”[2]這兩道題極易讓學(xué)生感到困惑,分辨不清到底應(yīng)該使用公倍數(shù)還是公因數(shù)的知識來解決。教師引導(dǎo)學(xué)生關(guān)注題目中的關(guān)鍵詞“剪”和“拼”,動手畫一畫,相互比一比。學(xué)生發(fā)現(xiàn),在第一道題中,剪出的小正方形的邊長是160和100的最大公因數(shù);在第二道題中,拼出的大正方形的邊長是16和10的最小公倍數(shù)。學(xué)生在比較中明白原理,進一步發(fā)展了思維的深刻性。

(三)在辨析中發(fā)展思維的批判性

“大數(shù)學(xué)觀”下的深度教學(xué)還要求學(xué)生能夠批判性地分析數(shù)學(xué)問題,在質(zhì)疑—思辨—探究的過程中,對數(shù)學(xué)知識的本質(zhì)有更為深刻和全面的認識。

例如,在蘇教版小學(xué)數(shù)學(xué)教材五年級下冊“分數(shù)加減法”的內(nèi)容教學(xué)中,教師出示不同的算式讓學(xué)生辨析,從而發(fā)展學(xué)生思維的批判性。首先,教師根據(jù)圖2讓學(xué)生討論三個算式的算法是否一致。有的學(xué)生認為分數(shù)、整數(shù)與小數(shù)的計算方法肯定不一樣,各自有相應(yīng)的計算法則;有的學(xué)生認為三個算式或許是有聯(lián)系的,因為計算結(jié)果中的“4”都是由“1+3”得到的。學(xué)生進行辨析后,教師給學(xué)生提供思維支架:“每個算式中的‘1’‘3’‘4’分別表示什么呢?”如此,教師把學(xué)生辨析的聚焦點引導(dǎo)到計數(shù)單位上。學(xué)生將三個算式的計算思維可視化(如圖3所示),意識到雖然這三個加法算式形式不同,計數(shù)單位也不同,但計算時都需要把相同計數(shù)單位的個數(shù)進行累加,因此其計算原理是相通的。學(xué)生通過觀察、對比、質(zhì)疑、討論,感悟到數(shù)的運算的一致性,增強了批判性思維,也發(fā)展了推理意識。

結(jié)語

總之,教師有深度的教是學(xué)生有深度的學(xué)的必要條件和可靠保障 ,教師要立足于大數(shù)學(xué)觀,把深度教學(xué)根植于課堂教學(xué)中,設(shè)計有助于學(xué)生深度思考的數(shù)學(xué)活動,讓學(xué)生在深度探究中理解數(shù)學(xué)知識的本質(zhì),推動數(shù)學(xué)核心素養(yǎng)的發(fā)展。

【參考文獻】

[1]余小芬.知識教育立場下的深度教學(xué):以特級教師張健《分數(shù)的意義》一課為例[J].教育研究與評論(小學(xué)教育教學(xué)),2019(1):55-62.

[2]丁曉丹.題組,提高數(shù)學(xué)解題能力的階梯[J].小學(xué)教學(xué)研究,2021(21):64-65,86.

平塘县| 甘南县| 仙桃市| 襄城县| 正镶白旗| 东源县| 金平| 高密市| 资中县| 明星| 红安县| 施秉县| 乌兰县| 鞍山市| 嘉祥县| 舞钢市| 沅江市| 沈丘县| 伊川县| 福建省| 静海县| 垫江县| 乐平市| 木里| 丰顺县| 莱州市| 宁河县| 东兴市| 繁昌县| 大荔县| 龙泉市| 开阳县| 伊金霍洛旗| 九台市| 防城港市| 历史| 游戏| 铁岭县| 开原市| 天祝| 隆安县|