【摘要】 近年來,心血管疾?。╟ardiovascular disease,CVD)的發(fā)生率正逐年上升。心肌纖維化是一種以成纖維細(xì)胞異常增殖、膠原過渡沉積及異常分布為特征的病理變化。在病理條件下(如高血壓病、心肌病、冠心?。?,心肌功能受損,心肌細(xì)胞或細(xì)胞外部分基質(zhì)、膠原纖維結(jié)締組織均會發(fā)生一系列變化,該過程稱為心肌重構(gòu),而心肌纖維化是心肌重構(gòu)的基本病理過程,黃連素可改善心肌纖維化,現(xiàn)對心肌纖維化的致病機制及黃連素與心肌纖維化的研究進展進行系統(tǒng)綜述。
【關(guān)鍵詞】 黃連素 心肌纖維化 病理性
Research Progress of Correlation between Berberine and Myocardial Fibrosis/LIU Zhiqiang, SUN Jingwu. //Medical Innovation of China, 2024, 21(20): -178
[Abstract] In recent years, the incidence of cardiovascular disease (CVD) is increasing year by year. Myocardial fibrosis is a pathological change characterized by abnormal proliferation of fibroblasts, excessive deposition and abnormal distribution of collagen. Under pathological conditions (such as hypertension, cardiomyopathy and coronary heart disease), myocardial function is damaged, and a series of changes occur in cardiomyocytes or extracellular matrix and collagen fiber connective tissue. This process is called myocardial remodeling, and myocardial fibrosis is the basic pathological process of myocardial remodeling. Berberine can improve myocardial fibrosis. This article reviews the pathogenesis of myocardial fibrosis and the research progress of berberine and myocardial fibrosis.
[Key words] Berberine Myocardial fibrosis Pathological
First-author's address: Department of Cardiology, Binzhou Medical University Hospital, Binzhou 256603, China
doi:10.3969/j.issn.1674-4985.2024.20.040
心肌纖維化是多種心血管疾病發(fā)生、進展的關(guān)鍵,心肌纖維化被定義為細(xì)胞外基質(zhì)(extracellular matrix,ECM)的過度積累[1]。心臟ECM通過其結(jié)構(gòu)成分對心臟的機械性質(zhì)的影響和通過細(xì)胞反應(yīng)的調(diào)節(jié)是心臟重塑的關(guān)鍵調(diào)節(jié)劑[2]。在心血管疾病中,心肌發(fā)生損傷,從而激活成纖維細(xì)胞,產(chǎn)生大量的膠原纖維。心肌纖維化可造成心肌收縮與舒張功能障礙,是多種心血管疾病的共同病理生理過程[3-4],纖維化與心室功能障礙和心律失常的風(fēng)險增加有關(guān)[5]。心肌纖維化的發(fā)生發(fā)展涉及諸多細(xì)胞及神經(jīng)體液因子,并且過度纖維化會影響心功能,這也被認(rèn)為是晚期冠心病、高血壓和心肌病的共同特征[6]。因此,心肌纖維化會導(dǎo)致多種心臟病的發(fā)生發(fā)展。
1 黃連素的概述
黃連素(berberine)又稱小檗堿,是一種從中草藥黃連中提取的生物活性物質(zhì)。藥理學(xué)證實黃連素除了可以治療胃腸道感染、腹瀉外,也具有顯著的抗心律失常、高血壓、心力衰竭的作用[7],因其在治療心血管疾病方面有獨特的優(yōu)勢而逐漸引起關(guān)注。
2 心肌纖維化分類
成人心肌的主要成分是原纖維膠原Ⅰ型(約85%)和Ⅲ型膠原(約11%)[8]。不同類別的纖維化膠原纖維的占比不同,膠原纖維的沉積造成纖維化。纖維化可以表現(xiàn)出不同程度的密度,從局灶性和致密(在瘢痕的情況下)到斑片狀和彌漫性[9]。據(jù)報道,膠原蛋白的不斷積累最終會導(dǎo)致纖維化瘢痕[8],瘢痕缺乏收縮能力。心臟成纖維細(xì)胞不產(chǎn)生動作電位,心臟成纖維細(xì)胞和肌細(xì)胞之間以電緊張性偶聯(lián)存在,以跨越肌細(xì)胞連續(xù)性中的間隙進行激活[9]。
根據(jù)病因和外觀,心肌纖維化可分為3種不同的亞型:反應(yīng)性間質(zhì)纖維化、浸潤性血管周圍纖維化和替代纖維化[1-2,10]。反應(yīng)性間質(zhì)纖維化是在不伴有心肌細(xì)胞損失的前提下,細(xì)胞間ECM和膠原沉積增加[11-12],主要見于壓力超負(fù)荷、糖尿病、炎癥;血管周圍纖維化的特征是血管周圍的纖維沉積物;間質(zhì)纖維化與血管纖維化是彌漫連續(xù)的病理過程[13]。替代纖維化與心肌細(xì)胞損失和膠原纖維重排有關(guān)[10,12],表現(xiàn)在心肌細(xì)胞死亡后,例如心肌梗死。
3 心肌纖維化的致病機制
心肌纖維化與多種因素相關(guān),激素(腎素、血管緊張素Ⅱ、醛固酮等)水平升高、信號通路中細(xì)胞因子的過表達(dá)[轉(zhuǎn)化生長因子-β(TGF-β)、白介素等]、免疫細(xì)胞增殖、均能導(dǎo)致心臟纖維化并最終導(dǎo)致心血管疾病,由此我們展開敘述纖維化致病機制。
3.1 激素
腎素-血管緊張素-醛固酮系統(tǒng)(renin angiotensin aldosterone system,RAAS)在維持正常血液循環(huán)中起關(guān)鍵作用,但同樣也作為心血管疾?。ㄈ绺哐獕翰。┑囊环N致病因子。許多研究證實,RAAS介導(dǎo)許多細(xì)胞和組織類型中的纖維化[14],并伴隨其發(fā)生發(fā)展。
腎素是由腎臟近曲小管分泌的一種酶,腎血流減少或鈉離子濃度過低等原因可促使腎素分泌,從而激活血管緊張素Ⅰ(angiotensin Ⅰ,AngⅠ),AngⅠ在血管緊張素轉(zhuǎn)換酶的作用下生成血管緊張素Ⅱ(angiotensin Ⅱ,AngⅡ),并激活整個RAAS。直接抑制腎素不僅可以減弱腎素的促纖維化作用,還可以減輕RASS下游物質(zhì)發(fā)揮作用[15]。
AngⅡ是目前已知的最強的血管收縮物質(zhì)之一,在調(diào)節(jié)血管功能中起到了重要作用。AngⅡ可顯著提高收縮壓、且可導(dǎo)致纖維化,并伴有心臟巨噬細(xì)胞浸潤增加[16]。研究顯示,局部生成的AngⅡ影響收縮與舒張平衡并可導(dǎo)致血管重塑和炎癥[17-18]。AngⅡ的輸注增加了纖維化組織的產(chǎn)生[19]。AngⅡ可誘導(dǎo)纖維化相關(guān)蛋白的表達(dá),且該表達(dá)可被纈沙坦抑制[20]。也有研究表明,卡托普利作為RAAS抑制劑,可通過改善氧化應(yīng)激來減輕心臟纖維化并且可以降低心臟組織中的膠原蛋白[21]。
醛固酮(ALD)作為RAAS的組成部分,可與鹽皮質(zhì)激素受體(mineralocorticoid receptor,MR)相結(jié)合。ALD可促進ECM蛋白表達(dá),從而促使心肌纖維化[22]。研究表明,MR激活可通過增加氧化應(yīng)激,激活A(yù)ngⅡ-AT1受體信號傳導(dǎo)的促纖維化作用,并且MR拮抗劑螺內(nèi)酯,可以改善心臟成纖維細(xì)胞轉(zhuǎn)分化為肌成纖維細(xì)胞[23]。
3.2 免疫機制
心肌損傷時,在心臟間質(zhì)中發(fā)現(xiàn)大量免疫細(xì)胞,如巨噬細(xì)胞、肥大細(xì)胞和樹突狀細(xì)胞,并且與纖維化過程密切相關(guān)[24]。有研究顯示,心臟中含有功能不同的巨噬細(xì)胞,其對心血管疾病發(fā)病機制具有顯著影響[25-26],當(dāng)心肌受損后,趨化因子受體2-(C-C chemokine receptor 2,CCR 2-)與趨化因子受體2+(C-C chemokine receptor 2,CCR 2+)巨噬細(xì)胞表達(dá)增多,并與炎癥、纖維化及不良重塑相關(guān)。Wang等[19]研究表明,心臟巨噬細(xì)胞可能對高血壓心臟肥大和重塑至關(guān)重要。也有研究顯示,心肌損傷時,脾臟中巨噬細(xì)胞的遷移,可能是AngⅡ誘導(dǎo)的心臟纖維化和高血壓的原因之一。
研究表明,心肌重構(gòu)除心肌細(xì)胞外,心室內(nèi)成纖維細(xì)胞、血管平滑肌細(xì)胞、血管內(nèi)皮細(xì)胞也參與其中,可以促進纖維化、內(nèi)皮功能障礙和炎癥的發(fā)生,長期會造成心血管事件發(fā)生率的升高[24]。
心梗后血液灌注中斷,會造成心肌細(xì)胞損傷甚至死亡,在梗死的愈合期,細(xì)胞內(nèi)蛋白會從心肌細(xì)胞釋放到血液循環(huán)中觸發(fā)炎癥反應(yīng),繼而產(chǎn)生大量炎性免疫細(xì)胞。在炎癥反應(yīng)消退后,損傷的心肌細(xì)胞不能由新生的心肌細(xì)胞所代替,因此心臟成纖維細(xì)胞大量增殖并分泌細(xì)胞外基質(zhì)蛋白,從而取代死亡的心肌細(xì)胞,形成纖維化瘢痕。有文獻(xiàn)研究證實,在心肌梗死后早期,阻斷單核細(xì)胞使巨噬細(xì)胞增多,可促進心肌愈合并可減輕心肌重塑[27]。
3.3 TGF-β
組織損傷后會刺激不同的效應(yīng)細(xì)胞,來激活細(xì)胞內(nèi)信號傳導(dǎo)途徑,例如TGF-β途徑。TGF-β信號通路涉及Smads的激活,促進肌成纖維細(xì)胞形成和ECM產(chǎn)生,最終導(dǎo)致心肌纖維化。相關(guān)研究已經(jīng)確定Smad3是導(dǎo)致組織纖維化的常見下游信號傳導(dǎo)分子和轉(zhuǎn)錄因子[28],并且TGF-β被認(rèn)為是AngⅡ刺激后心肌病變的關(guān)鍵因素之一[20]。
有研究證實了慢性AngⅡ可激活TGF-β/Smad3信號傳導(dǎo),從而介導(dǎo)伴有心功能受損的進行性心肌纖維化[10,29-30]。Meng等[30]研究,TGF-β/Smad3信號傳導(dǎo)通路在慢性心臟病中起重要作用,并且在已確診的高血壓心臟病中,用Smad3抑制劑可靶向抑制TGF-β/Smad3信號通路傳導(dǎo),從而防止心肌纖維化的進展,來防止進行性心臟損傷。心臟損傷通過刺激蛋白酶和ECM蛋白釋放,觸發(fā)TGF-β的產(chǎn)生[31],且TGF-β表達(dá)隨著心臟負(fù)荷和心肌纖維化的增加而增加,并通過成纖維細(xì)胞活化等方式發(fā)揮促纖維化作用,并且成纖維細(xì)胞的穩(wěn)定表達(dá)與TGF-β密切相關(guān)。
研究證明,組織非特異性堿性磷酸酶(TNAP)可促進膠原蛋白的合成,并且TNAP可促進心臟纖維鈣化[4]。抑制TNAP主要通過AMPK-TGF-β1/Smads發(fā)揮抗纖維化作用,而AMPK作為TGF-β1/Smad2的上游,并且AMPK已被證明在心臟重塑中發(fā)揮作用[32]。慢性壓力超負(fù)荷疾?。ㄈ绺哐獕翰。?dǎo)致TGF-β激活,隨后出現(xiàn)間質(zhì)纖維化和心臟功能障礙[5,31],TGF-β拮抗劑在對抗壓力負(fù)荷的心力衰竭中是有效的,并且使用中和抗體阻斷TGF-β可防止膠原mRNA的誘導(dǎo)、心肌纖維化和舒張功能障礙[5]。
3.4 炎癥細(xì)胞因子
心血管事件發(fā)生時,心肌細(xì)胞發(fā)生損傷及死亡,從而引發(fā)炎癥反應(yīng),并伴隨其整個過程。炎癥早期,巨噬細(xì)胞的擴增有助于吞噬和清除心肌受損及壞死的細(xì)胞,以及伴隨細(xì)胞因子和生長因子的釋放[33-34]。這將導(dǎo)致肌成纖維細(xì)胞增殖和損傷心肌組織的修復(fù)及病理重塑。
Xiao等[35]研究表明,當(dāng)處于應(yīng)激條件下,β腎上腺素能受體(β-AR)被激活,從而導(dǎo)致急性炎癥,誘導(dǎo)白細(xì)胞介素(IL)-1、IL-6和IL-18、腫瘤壞死因子(TNF)-α等炎癥細(xì)胞因子的表達(dá),且這些炎癥因子有助于心肌纖維化的發(fā)展,引發(fā)心肌重塑。Saxena等[36]研究,IL-1參與心肌梗死后的炎癥反應(yīng),并介導(dǎo)病理重塑,而通過抑制IL-1的生成,可減少促炎白細(xì)胞募集減少及心臟成纖維細(xì)胞的表達(dá),從而減輕心肌纖維化。IL-1α和IL-1β均可抑制成纖維細(xì)胞轉(zhuǎn)化為肌成纖維細(xì)胞[37]。TNF-α治療導(dǎo)致促炎細(xì)胞因子表達(dá),心肌成纖維細(xì)胞的細(xì)胞因子分泌,但不會導(dǎo)致直接的纖維化作用[37]。
Ghigo等[38]證明,當(dāng)發(fā)生缺血性損傷時,白細(xì)胞發(fā)生募集,且分泌眾多細(xì)胞因子,其中應(yīng)激心肌細(xì)胞可產(chǎn)生大量IL-6,可以啟動IL-6/gp130/JAK/STAT3級聯(lián)反應(yīng)正反饋回路[39],這表示IL-6可促進細(xì)胞因子擴增和慢性炎癥狀態(tài)的建立。實驗證明,異丙腎上腺素(ISO)誘導(dǎo)的心臟炎癥小體激活是通過β1-AR-ROS途徑介導(dǎo)的,并且在ISO治療后早期單獨阻斷IL-18可有效減輕心臟炎癥和纖維化[35]。研究顯示,炎癥信號可導(dǎo)致免疫細(xì)胞大量聚集,且早期抑制炎癥分子在預(yù)防及治療心血管疾病中起到重要作用[40]。
3.5 活性氧(reactive oxygen species,ROS)
每一個細(xì)胞內(nèi)均存在氧化還原反應(yīng),且維持在一種平衡狀態(tài),當(dāng)這種平衡被打破時,氧化應(yīng)激反應(yīng)也隨之產(chǎn)生。氧化應(yīng)激,定義為氧化或抗氧化的失衡或者ROS生成與降解的失衡,ROS不能被防御系統(tǒng)所清除,并且在心臟重塑和心力衰竭(HF)的病理過程中起重要作用[41]。
適當(dāng)水平的ROS在細(xì)胞增殖中起著關(guān)鍵作用,但過量的ROS會導(dǎo)致蛋白質(zhì)和脂質(zhì)過氧化、細(xì)胞死亡,可誘導(dǎo)心肌纖維化的發(fā)生[42]。衰竭的心臟在線粒體內(nèi)ROS的產(chǎn)生增加。此外,ROS可通過激活多種轉(zhuǎn)錄因子來介導(dǎo)細(xì)胞凋亡,并且可刺激心肌成纖維細(xì)胞的增殖,導(dǎo)致細(xì)胞外基質(zhì)重塑[43]。有研究表明,多柔比星(DOX)誘導(dǎo)的心肌重塑時通過氧化應(yīng)激途徑實現(xiàn)[44]。
有研究證實,黃芪甲苷Ⅳ(AS-Ⅳ)通過抑制ROS/半胱天冬酶-1/GSDMD信號通路可緩解心肌梗死(myocardial infarction,MI)誘導(dǎo)的心肌纖維化和心臟重塑[45]。Lin等[46]研究,聚苯乙烯納米塑料(PS-NPs)可加劇脂多糖(LPS)暴露從而破壞心肌結(jié)構(gòu),顯著增加ROS,觸發(fā)氧化應(yīng)激,促進TGF-β1/Smad途徑激活,并導(dǎo)致纖維化蛋白和膠原蛋白水平升高,致使心肌纖維化。
4 黃連素抑制心肌纖維化
目前來說,還沒有特定的直接抗心肌纖維化的藥物,現(xiàn)血管緊張素受體-腦啡肽酶抑制劑(如沙庫巴曲纈沙坦鈉)、鈉-葡萄糖協(xié)同轉(zhuǎn)運蛋白2(如達(dá)格列凈)、腎素抑制劑(如阿利吉侖)、血管緊張素轉(zhuǎn)換酶抑制劑、血管緊張素受體阻斷劑、醛固酮受體抑制劑是目前治療心衰、心肌纖維化及不良心臟重塑的首選療法。
近年來,有研究表明黃連素在心血管疾病的治療中發(fā)揮著重要作用[47]。研究表明,黃連素可通過調(diào)節(jié)ECM01668fb68a2cf9989e68180621246731相關(guān)酶和因子來抑制IL-1β誘導(dǎo)的ECM降解[48]。此外,黃連素顯著激活被IL-1β抑制的自噬。Wang等[49]研究證實黃連素可以通過調(diào)節(jié)Nrf-2途徑來預(yù)防氧化應(yīng)激和線粒體損傷,從而減輕DOX誘導(dǎo)的心肌損傷和纖維化。并且小檗堿可通過影響心肌梗死后心力衰竭心肌組織中的內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)和C/EBP同源蛋白(C/EBP homologous protein,CHOP)和半胱天冬酶-12凋亡信號通路,上調(diào)Bcl-2/Bax表達(dá),下調(diào)caspase-3表達(dá),來抑制心肌細(xì)胞凋亡,從而抑制心臟重塑,保護心臟功能[50]。
Che等[51]研究,通過黃連素給藥減少了巨噬細(xì)胞浸潤到ISO處理的大鼠心肌中,并抑制了TGF-β1/Smads信號通路。并通過體外研究得出,黃連素可降低ISO誘導(dǎo)的TGF-β1 mRNA在巨噬細(xì)胞中的表達(dá),且阻止了ISO刺激巨噬細(xì)胞所增加的成纖維細(xì)胞中纖維化標(biāo)志物的表達(dá)。小檗堿可以對壓力超負(fù)荷的心臟肥大和體內(nèi)衰竭及體外去甲腎上腺素(noradrenaline,NE)誘導(dǎo)的肥大發(fā)揮心臟保護作用[52]。
5 總結(jié)
心臟纖維化的嚴(yán)重程度與心臟病患者的不良結(jié)局之間存在明確的關(guān)聯(lián)。我們總結(jié)了心肌纖維化的分類,致病機制(RAAS、免疫機制、TGF-β、炎癥細(xì)胞因子、ROS)及黃連素對于心肌纖維化的抑制作用,但對于心肌纖維化尚未有直接的治療手段。盡管對于黃連素與心臟纖維化之間的研究取得了一定成果,仍有許多問題有待解決,未來仍需要深入探索。
參考文獻(xiàn)
[1] DE BOER R A,DE KEULENAER G,BAUERSACHS J,et al.
Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the committee of translational research of the heart failure association (HFA) of the European society of cardiology[J].European Journal of Heart Failure,2019,21(3):272-285.
[2] FRANGOGIANNIS N G.The extracellular matrix in ischemic and nonischemic heart failure[J].Circulation Research,2019,125(1):117-146.
[3]曾敏,王華.心肌纖維化的診治現(xiàn)狀及展望[J].中國醫(yī)學(xué)前沿雜志,2023,15(3):64-71.
[4] GAO L,WANG L Y,LIU Z Q,et al.TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways[J].Cell Death Dis,2020,11(1):44.
[5] CREEMERS E E,PINTO Y M.Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart[J].Cardiovascular Research,2011,89(2):265-272.
[6] FRANGOGIANNIS N G.Cardiac fibrosis[J].European Society of Cardiology,2021,117:1450-1488.
[7] KHOSHANDAM A,IMENSHAHIDI M,HOSSEINZADEH H.
Pharmacokinetic of berberine, the main constituent of berberis vulgaris L: a comprehensive review[J].Phytother Res,2022,36(11):4063-4079.
[8] HINDERER S,SCHENKE-LAYLAND K.Cardiac fibrosis-a short review of causes and therapeutic strategies[J].Advanced Drug Delivery Reviews,2019,146:77-82.
[9] ROG-ZIELINSKA E A,NORRIS R A,KOHL P,et al.The living scar-cardiac fibroblasts and the injured heart[J].Trends in Molecular Medicine,2016,22(2):99-114.
[10] EIJGENRAAM T R,SILLJé H,DE BOER R A.Current understanding of fibrosis in genetic cardiomyopathies[J].Trends Cardiovasc Med,2020,30(6):353-361.
[11] DISERTORI M M M,RAVELLI F.Myocardial fibrosis predicts ventricular tachyarrhythmias[J].Trends Cardiovasc Med,2017,27(5):363-372.
[12] GRAHAM-BROWN M P M,PATEL A S,STENSEL D J,et al.
Imaging of myocardial fibrosis in patients with end-stage renal disease: current limitations and future possibilities[J].BioMed Research International,2017,2017:1-14.
[13] MARUYAMA K,IMANAKA-YOSHIDA nli20X3DKFTnjnHB7gDqvn+RRrKGcpd114mOeSeJe6Y=K.The pathogenesis of cardiac fibrosis: a review of recent progress[J].International Journal of Molecular Sciences,2022,23(5):2617.
[14] ALQUDAH M,HALE T M,CZUBRYT M P.Targeting the renin-angiotensin-aldosterone system in fibrosis[J].Matrix Biol,2020,91-92:92-108.
[15] ZHI H,LUPTAK I,ALREJA G,et al.Effects of direct renin inhibition on myocardial fibrosis and cardiac fibroblast function[J].PLoS One,2013,8(12):e81612.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859492/.
[16] TIAN Y,LUO J,XU Q,et al.Macrophage depletion protects against endothelial dysfunction and cardiac remodeling in angiotensin Ⅱ hypertensive mice[J].Clin Exp Hypertens,2021,43(8):699-706.
[17] TE R L,VAN ESCH J H,ROKS A J,et al.Hypertension: renin-angiotensin-aldosterone system alterations[J].Circ Res,2015,116(6):960-975.
[18] WU L,IWAI M,NAKAGAMI H,et al.Effect of angiotensin Ⅱ type 1 receptor blockade on cardiac remodeling in angiotensin Ⅱ type 2 receptor null mice[J].Arterioscler Thromb Vasc Biol,2002,22(1):49-54.
[19] WANG N P,ERSKINE J,ZHANG W W,et al.Recruitment of macrophages from the spleen contributes to myocardial fibrosis and hypertension induced by angiotensin[J].J Renin Angiotensin Aldosterone Syst,2017,18(2):1606536803.
[20] SUI X,WEI H,WANG D.Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang Ⅱ-mediated fibrosis after myocardial infarction[J].
J Cell Mol Med,2015,19(8):1773-1782.
[21] ABARESHI A,NOROUZI F,ASGHARZADEH F,et al.
Effect of angiotensin-converting enzyme inhibitor on cardiac fibrosis and oxidative stress status in lipopolysaccharide-induced inflammation model in rats[J].Int J Prev Med,2017,8:69.
[22] SAKAMURI S S,VALENTE A J,SIDDESHA J M,et al.
TRAF3IP2 mediates aldosterone/salt-induced cardiac hypertrophy and fibrosis[J].Mol Cell Endocrinol,2016,429:84-92.
[23] NMU?OZ-OZ-DURANGO N,VECCHIOLA A,GONZALEZ-GOMEZ L M,et al.Modulation of immunity and inflammation by the mineralocorticoid receptor and aldosterone[J].Biomed Res Int,2015,2015:652738.
[24] BURCHFIELD J S,XIE M,HILL J A.Pathological ventricular remodeling: mechanisms: part 1 of 2[J].Circulation,2013,128(4):388-400.
[25] HULSMANS M,CLAUSS S,XIAO L,et al.Macrophages facilitate electrical conduction in the heart[J].Cell,2017,169(3):510-522.
[26] MILLS K T,STEFANESCU A, HE J.The global epidemiology of hypertension[J].Nature Reviews Nephrology,2020.
[27] VAN AMERONGEN M J,HARMSEN M C,VAN ROOIJEN N,et al.Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice[J].The American Journal of Pathology,2007,170(3):818-829.
[28] MENG X M,NIKOLIC-PATERSON D J,LAN H Y.TGF-β: the master regulator of fibrosis[J].Nat Rev Nephrol,2016,12(6):325-338.
[29] WEI L H,HUANG X R,ZHANG Y,et al.Smad7 inhibits angiotensin Ⅱ-induced hypertensive cardiac remodelling[J].Cardiovasc Res,2013,99(4):665-673.
[30] MENG J,QIN Y,CHEN J,et al.Treatment of hypertensive heart disease by targeting Smad3 signaling in mice[J].Mol Ther Methods Clin Dev,2020,18:791-802.
[31] FRANGOGIANNIS N G.Transforming growth factor-β in myocardial disease[J].Nat Rev Cardiol,2022,19(7):435-455.
[32] FENG Y,ZHANG Y,XIAO H.AMPK and cardiac remodelling[J].Sci China Life Sci,2018,61(1):14-23.
[33] WAGNER M J,KHAN M,MOHSIN S.Healing the broken heart; the immunomodulatory effects of stem cell therapy[J].Front Immunol,2020,11:639.
[34] LAFUSE W P,WOZNIAK D J,RAJARAM M.Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair[J].Cells,2020,10(1):51.
[35] XIAO H,LI H,WANG J J,et al.IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult[J].Eur Heart J,2018,39(1):60-69.
[36] SAXENA A,CHEN W,SU Y,et al.IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium[J].J Immunol,2013,191(9):4838-4848.
[37] FRANGOGIANNIS N G.Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities[J].Molecular Aspects of Medicine,2019,65:70-99.
[38] GHIGO A,F(xiàn)RANCO I,MORELLO F,et al.Myocyte signalling in leucocyte recruitment to the heart[J].Cardiovascular Research,2014,102(2):270-280.
[39] HILFIKER-KLEINER D,SHUKLA P,KLEIN G,et al.
Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction[J].Circulation,2010,122(2):145-155.
[40] SUETOMI T,MIYAMOTO S,BROWN J H.Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling[J].Am J Physiol Heart Circ Physiol,2019,317(5):H877-H890.
[41] TSUTSUI H,KINUGAWA S,MATSUSHIMA S.Oxidative stress and heart failure[J].Am J Physiol Heart Circ Physiol,2011,301(6):H2181-H2190.
[42] RAY P D,HUANG B W,TSUJI Y.Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling[J].Cell Signal,2012,24(5):981-990.
[43] WANG X,ZHANG G,DASGUPTA S,et al.ATF4 protects the heart from failure by antagonizing oxidative stress[J].Circulation Research,2022,131(1):91-105.
[44] TANAKA R,UMEMURA M,NARIKAWA M,et al.Reactive fibrosis precedes doxorubicin-induced heart failure through sterile inflammation[J].ESC Heart Fail,2020,7(2):588-603.
[45] ZHANG X,QU H,YANG T,et al.Astragaloside Ⅳ attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway[J].Cell Cycle,2022,21(21):2309-2322.
[46] LIN P,TONG X,XUE F,et al.Polystyrene nanoplastics exacerbate lipopolysaccharide-induced myocardial fibrosis and autophagy in mice via ROS/TGF-β1/Smad[J].Toxicology,2022,480:153338.
[47] FENG X,SUREDA A,JAFARI S,et al.Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics[J].Theranostics,2019,9(7):1923-1951.
[48] HUANG L,CHEN J,WU D,et al.Berberine attenuates IL-1β-induced damage of nucleus pulposus cells via activating the AMPK/mTOR/Ulk1 pathway[J].Biomed Res Int,2022,2022:6133629.
[49] WANG Y,LIAO J,LUO Y,et al.Berberine alleviates doxorubicin-induced myocardial injury and fibrosis by eliminating oxidative stress and mitochondrial damage via promoting Nrf-2 pathway activation[J].Int J Mol Sci,2023,24(4):3257.
[50] LIAO Y,CHEN K,DONG X,et al.Berberine inhibits cardiac remodeling of heart failure after myocardial infarction by reducing myocardial cell apoptosis in rats[J].Experimental and Therapeutic Medicine,2018,16(3):2499-2505.
[51] CHE Y,SHEN D F,WANG Z P,et al.Protective role of berberine in isoprenaline-induced cardiac fibrosis in rats[J].BMC Cardiovasc Disord,2019,19(1):219.
[52] CHEN X,JIANG X,CHENG C,et al.Berberine attenuates cardiac hypertrophy through inhibition of mTOR signaling pathway[J].Cardiovasc Drugs Ther,2020,34(4):463-473.
(收稿日期:2023-11-22) (本文編輯:張爽)