国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于地統(tǒng)計(jì)分析的核桃園土壤養(yǎng)分空間特征研究

2024-06-15 17:12徐雅雯吳文豐王其竹王代全徐朝煜陳萬勝徐永杰
果樹學(xué)報(bào) 2024年5期
關(guān)鍵詞:肥力土壤肥力核桃

徐雅雯 吳文豐 王其竹 王代全 徐朝煜 陳萬勝 徐永杰

DOI:10.13925/j.cnki.gsxb.20230562

摘??? 要:【目的】探究核桃園土壤養(yǎng)分的空間特征,了解土壤肥力狀況,為核桃園管理單位劃分提供依據(jù),從而實(shí)現(xiàn)精準(zhǔn)施肥。【方法】以湖北??岛颂覉@為研究對(duì)象,采用地統(tǒng)計(jì)學(xué)和內(nèi)梅羅法相結(jié)合的方法,分析了110塊樣地的土壤pH值、養(yǎng)分空間特征及肥力水平?!窘Y(jié)果】(1)保康縣核桃園土壤pH均值為6.68,以中性和微酸性土壤為主,具有弱變異性;有機(jī)質(zhì)、水解性氮、有效鉀、有效磷含量(w,后同)均值分別為27.63 g·kg-1、109.41 mg·kg-1、125.43 mg·kg-1和23.74 mg·kg-1,具中等變異。(2)中等肥力核桃園占78.3%,肥沃核桃園占20.7%,水解性氮是土壤肥力的主要限制因子;土壤肥力指數(shù)與核桃干果每666.7 m2產(chǎn)量呈顯著正相關(guān)。(3)水解性氮、有效鉀含量主要受自然結(jié)構(gòu)的影響,呈現(xiàn)顯著空間正向聚集性;有機(jī)質(zhì)、有效磷含量受自然結(jié)構(gòu)和人為因素的雙重影響,具有空間正相關(guān)性,但空間聚集效應(yīng)不顯著。(4)海拔與水解性氮含量、有效磷含量、土壤肥力指數(shù)呈極顯著正相關(guān),與有機(jī)質(zhì)含量呈顯著正相關(guān),而與有效鉀含量無顯著相關(guān)性?!窘Y(jié)論】該地區(qū)土壤pH值適宜核桃生長,現(xiàn)存核桃園整體肥力中等偏上,提高土壤肥力能夠增加核桃干果產(chǎn)量。土壤空間變異主要受自然結(jié)構(gòu)的影響,其中海拔是影響土壤肥力的關(guān)鍵因素,可以作為核桃園管理單元?jiǎng)澐值闹匾罁?jù)。在土壤管理中,需要增施氮肥以提高林地土壤綜合肥力。

關(guān)鍵詞:核桃;地統(tǒng)計(jì);土壤養(yǎng)分;空間分布特征

中圖分類號(hào):S664.1?????????? 文獻(xiàn)標(biāo)志碼:A??????????? 文章編號(hào):1009-9980(2024)05-0968-12

收稿日期:2024-01-09??????? 接受日期:2024-02-23

基金項(xiàng)目:國家林業(yè)和草原局林業(yè)植物新品種及專利保護(hù)應(yīng)用項(xiàng)目(KJZXXP202309);湖北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022BBA153);湖北省林業(yè)科技支撐重點(diǎn)項(xiàng)目([2022]LYKJ10);中央財(cái)政林業(yè)科技推廣示范項(xiàng)目(鄂[2024]TG18)

作者簡介:徐雅雯,助理研究員,碩士,主要從事林木遺傳育種研究。E-mail:469751394@qq.com

*通信作者 Author for correspondence. E-mail:498674563@qq.com

果 樹 學(xué) 報(bào) 2024,41(5): 968-979

Journal of Fruit Science

Spatial distribution characteristics of soil nutrients in walnut orchards based on geostatistical model

XU Yawen1, WU Wenfeng1, WANG Qizhu2, WANG Daiquan2, XU Chaoyu2, CHEN Wangsheng2, XU Yongjie1*

(1Hubei Academy of Forestry, Wuhan 430075, Hubei, China; 2Center for Walnut Technology of Baokang County, Xiangyang 441600, Hubei, China)

Abstract: 【Objective】 Despite the importance of soil nutrient management in walnut orchards, there is little research focusing on the spatial characterization of soil nutrients and the impact of topography on nutrient distribution and overall fertility. Consequently, the purpose of this study was to elucidate the current state of soil nutrient content and fertility, as well as to investigate the spatial characteristics of soil nutrients in walnut orchards. The findings are intended to inform the division of management units within these orchards, making it easier to establish focused and accurate fertilization strategies. Finally, the study aims to enhance soil nutrient management and contribute to the sustainable and efficient production of walnut orchards. 【Methods】 In this study, a 5 km grid was used to designate 110 plots of walnut orchards in Baokang County. Soil properties, including pH value, organic matter, hydrolyzable nitrogen, available potassium, and available phosphorus, were tested. Soil fertility was thoroughly evaluated using both statistical analysis and the Nemerow index method. Geostatistical analyses were performed using GS+9.0 software to fit the variogram and select the optimal model. Morans index was employed to assess the spatial autocorrelation of soil nutrients in the study area, with local spatial autocorrelation clusters identified using local Morans Ⅰ. Kriging method was applied for spatial optimal unbiased interpolation, and spatial distribution maps were created using ArcGIS software. 【Results】 In Baokang Countys walnut orchards, the average soil pH was 6.68, indicating predominantly neutral to slightly acidic conditions with weak variability. Mean values for hydrolyzable nitrogen (HN), available potassium (AK), organic matter (OM), and available phosphorus (AP) were 109.41 mg·kg-1, 125.43 mg·kg-1, 27.63 g·kg-1, and 23.74 mg·kg-1, respectively, each exhibiting moderate variability. According to the Nemerow index, the soil fertility index ranged from 0.90 to 2.26, with an average of 1.57. Approximately 78.3% of the land was categorized as moderately fertile, and 20.7% as fertile. In analyzing the facultative properties of soil nutrients, it was found that HN, AK, OM, and AP, as well as the comprehensive soil fertility, predominantly exhibited clustered distributions. Concerning the directional trends: HN concentrations were observed to be higher in the eastern and southern regions, with lower concentrations in the western and northern areas. AK displayed a localized polar distribution. AP concentrations were predominantly higher in the central and eastern regions compared to other areas. Finally, OM exhibited a trend of being higher in the eastern and western regions while lower in the northern and southern parts. These spatial and directional trends provide insights into the heterogeneous distribution of soil nutrients, which is critical for targeted soil management and fertilization strategies in walnut orchards. Notably, HN scores were significantly lower than other soil indices, indicating it as a primary limiting factor in soil fertility. Correlation analysis of soil fertility index and average acreage yield of walnut dry fruits showed that soil fertility was significantly positively correlated with dry fruit yield. The ranges of HN, AK, OM, and AP contents were 8.175, 5.421, 7.440, and 6.634 km, respectively, which were larger than the sampling distances, indicating that they could satisfy the needs of spatial analysis. The coefficients of determination were 0.894, 0.724, 0.742, and 0.844, respectively, which were larger than 0.5, indicating that the fitting effect was good under the corresponding theoretical model, and the spatial variability of soil nutrients was more accurately reflected by the spatial variability. Spatial autocorrelation analysis of the soil revealed that HN and AK block base ratios were 14.4% and 15.6%, respectively, with block base ratios below 25%, suggesting influence predominantly from natural structures. Conversely, OM and AK block base ratios were 35.2% and 39.2%, respectively, indicating influence from both natural structures and stochastic factors. All MoransⅠ values of soil nutrients in the study area were positive, denoting a significant spatial aggregation. Z-values of Morans index for HN and AK were 4.30 and 3.05, respectively, with p<0.05, which indicated that there were significant spatial aggregation effects for both of them; while z-values of AP and OM were 0.63 and 0.98, respectively, and the aggregation effect of the two was not significant (p>0.05). High-value nutrient aggregation areas were primarily in higher elevations like Longping Township, with lower values in lower elevations such as Maqiao and Dianya Townships. Elevation significantly influenced soil fertility, showing a strong positive correlation with HN and AP content, a significant correlation with OM content, and no significant correlation with AK content. 【Conclusion】 The soil pH in the area, predominantly neutral to slightly acidic, is conducive to walnut growth. Currently, the overall fertility of the walnut orchards ranges from medium to high, indicating a beneficial environment for walnut cultivation. Despite this, there is room for improvement in soil fertility to further enhance walnut yields. It is well-established that better soil fertility correlates with higher yields of walnut dry fruit. The management of walnut orchards at the county scale tends to be basic, with soil nutrient content primarily influenced by natural structures and secondarily by anthropogenic activities. Elevation is found to be an important natural factor that significantly correlates with soil fertility, HN, AK and OM, making it a critical parameter for delineating soil nutrient management units. To optimize the comprehensive fertility of orchard soil and, consequently, the yield of walnut orchards, it is necessary to adjust soil management practices. Specifically, increasing the application of nitrogen fertilizer is specifically recommended to address the identified deficiency in HN and boost overall soil fertility.

Key words: Juglans; Geostatistics; Soil nutrients; Spatial distribution characteristics

徐雅雯

核桃(Juglans)在中國廣泛種植,覆蓋20多個(gè)省份。2020年,全國核桃種植面積達(dá)到800萬hm2,其中云南、四川、陜西、山西、新疆、貴州、甘肅、河南、湖北等11個(gè)?。▍^(qū))的種植面積均超過10萬hm?,栽培面積和產(chǎn)量均居世界第一位[1-2]。盡管如此,根據(jù)聯(lián)合國糧農(nóng)組織(FAO)統(tǒng)計(jì)數(shù)據(jù),2022年全國帶殼核桃平均單產(chǎn)為3.9 t·hm-2,低于美國平均單產(chǎn)為4.2 t·hm-2,意味著中國核桃園生產(chǎn)效率有較大提升潛能。

土壤肥力是決定干果產(chǎn)量和品質(zhì)的關(guān)鍵因素。土壤養(yǎng)分含量是反映土壤肥力水平的重要指標(biāo)[3]。土壤養(yǎng)分的缺失和不平衡可能導(dǎo)致樹勢生長減弱,而盲目和過量施肥不僅造成肥料大量流失和成本增加,還可能對(duì)生態(tài)環(huán)境造成不利影響[4]。因此,果園的高效管理需要精準(zhǔn)施肥,而土壤肥力的評(píng)價(jià)是實(shí)施精準(zhǔn)施肥的首要步驟[5]。從空間上看,土壤肥力在一定范圍內(nèi)具有相似性,但由于果園在地理位置、樹齡、栽培管理等方面存在較大差異,導(dǎo)致了土壤養(yǎng)分的空間變異。作為土壤特性的一個(gè)重要方面,土壤養(yǎng)分空間變異代表了土壤養(yǎng)分在空間位置的差異性和趨勢性,導(dǎo)致了對(duì)果園劃分管理單元的不同,而劃分管理單元是進(jìn)行精準(zhǔn)施肥前所要進(jìn)行的必要工作[5]。核桃生態(tài)適應(yīng)性強(qiáng),在海拔250~1800 m均能生長。海拔變化導(dǎo)致水熱資源在空間分布上存在差異,進(jìn)而影響土壤養(yǎng)分的礦化、降解、遷移和累積,導(dǎo)致土壤養(yǎng)分含量存在異質(zhì)性[6-7]。目前關(guān)于核桃產(chǎn)區(qū)土壤肥力評(píng)價(jià),在重慶、山西、貴州等核桃產(chǎn)區(qū)開展了一定的嘗試研究[8-10]。但對(duì)于核桃園的土壤養(yǎng)分空間特征,以及地形對(duì)土壤養(yǎng)分和綜合肥力的影響鮮有報(bào)道。

地統(tǒng)計(jì)學(xué)與ArcGIS軟件相結(jié)合是分析土壤養(yǎng)分空間分布特征的常用方法,在柑橘[11]、蘋果[12]、山核桃[13]等經(jīng)濟(jì)林研究中已有運(yùn)用。筆者在本研究中以鄂西北重要核桃產(chǎn)區(qū)保康縣為研究對(duì)象,采用網(wǎng)格化取樣策略,研究該縣核桃園土壤pH值以及有機(jī)質(zhì)(organic matter,OM)、水解性氮(hydrolyzable nitrogen,HN)、有效鉀(available potassium,AK)、有效磷(available phosphorus,AP)含量,明確核桃園土壤肥力狀況,并對(duì)土壤養(yǎng)分空間特性進(jìn)行分析,為核桃園土壤養(yǎng)分管理和安全生產(chǎn)合理布局提供理論依據(jù)。

1 材料和方法

1.1 研究區(qū)概況

保康縣位于湖北省襄陽市,地處荊山山脈,東經(jīng)110°45′~111°31′,北緯31°21′~32°06′,總面積3225 km2。該地區(qū)地勢起伏多變,屬于亞熱帶季風(fēng)氣候,土壤母質(zhì)以泥質(zhì)巖類和碳酸鹽類為主,全縣平均海拔910 m,年均降雨量為921 mm,年均日照時(shí)數(shù)1801 h。核桃在該縣11個(gè)鄉(xiāng)鎮(zhèn)均有分布,種植面積達(dá)2.33萬hm2,是該縣鄉(xiāng)村振興的重要產(chǎn)業(yè)之一。

1.2 樣品采集與測定方法

采用網(wǎng)格化技術(shù)選取???1個(gè)鄉(xiāng)鎮(zhèn)(寺坪鎮(zhèn)、過渡灣鎮(zhèn)、城關(guān)鎮(zhèn)、黃堡鎮(zhèn)、馬橋鎮(zhèn)、后坪鎮(zhèn)、龍坪鎮(zhèn)、歇馬鎮(zhèn)、兩峪鄉(xiāng)、馬良鎮(zhèn)、店埡鎮(zhèn))核桃產(chǎn)區(qū)為研究區(qū)(圖1),根據(jù)??悼h地圖和各鄉(xiāng)鎮(zhèn)普查核桃保存面積結(jié)果,按照5 km標(biāo)準(zhǔn)繪制網(wǎng)格,確定取樣點(diǎn),每個(gè)樣點(diǎn)為近10 a(年)管理穩(wěn)定的核桃林,共110個(gè)。在核桃休眠期(未施冬肥)采集土壤樣品,時(shí)間為2021年2月15日至3月25日。按照“S”形確定5個(gè)采樣點(diǎn),采集樹冠滴水線以內(nèi)0~30 cm土壤進(jìn)行充分混合,除去石塊、枝葉、生物殘?bào)w等雜物,帶回室內(nèi)晾干、磨碎、裝袋,用于土壤養(yǎng)分測定。

土壤樣品理化性質(zhì)的測定均采用常規(guī)分析方法,土壤 pH值采用土水質(zhì)量比1.0∶2.5微電極法進(jìn)行測定;OM含量采用重鉻酸鉀外加熱法測定;HN含量采用堿解擴(kuò)散法測定;AP含量采用鹽酸-氟化銨(HCL-NH4F)浸提,鉬銻抗比色法測定;AK含量采用醋酸銨浸提,火焰光度計(jì)測定[14]。

核桃產(chǎn)量數(shù)據(jù)來自保康縣核桃技術(shù)推廣中心2021年和2022年對(duì)各鄉(xiāng)鎮(zhèn)核桃總產(chǎn)量的統(tǒng)計(jì)。

1.3 數(shù)據(jù)采集與分析

1.3.1 土壤肥力綜合分析 采用Excel 2013進(jìn)行數(shù)據(jù)統(tǒng)計(jì),對(duì)測定的pH值、OM含量、HN含量、AP含量、AK含量進(jìn)行描述分析,采用改進(jìn)的內(nèi)梅羅法計(jì)算土壤綜合肥力指數(shù)[15],對(duì)各采樣點(diǎn)核桃林土壤進(jìn)行肥力綜合評(píng)價(jià)。參考全國第2次土壤普查的結(jié)果和分級(jí)標(biāo)準(zhǔn)[16],對(duì)土壤因子的數(shù)值進(jìn)行標(biāo)準(zhǔn)化處理[17],以消除各因子之間的量綱差別(表1、表2)。

當(dāng)因子屬于差一級(jí):Ci≤Xa時(shí),Pi=Ci/Xa,Pi≤1;

(1)

當(dāng)因子屬于中等一級(jí):Xa<Ci≤Xc時(shí),Pi=1+(Ci-Xa)/(Xc-Xa),1<Pi≤2;???????????????????????????????????????? (2)

當(dāng)因子屬于較好一級(jí):Xc<Ci≤Xp時(shí),Pi=2+(Ci-Xc)/(Xp-Xc),2<Pi<3;??????????????????????????????????????? (3)

當(dāng)因子屬于好一級(jí):Ci>Xp時(shí),Pi=3;????????? (4)

采用改進(jìn)的內(nèi)梅羅公式計(jì)算土壤綜合肥力指數(shù):

F肥力=[(n-1n)(P2if+P2imin)/2]。??????????????????????????? (5)

式中,Ci為各土壤因子測定值;Xi為分級(jí)指標(biāo),因子的分級(jí)標(biāo)準(zhǔn)(Xa、Xc、Xp)主要參照第二次全國土壤普查標(biāo)準(zhǔn);Pi為各土壤因子肥力系數(shù)計(jì)算值;F肥力為土壤綜合肥力指數(shù);[Pif]為各土壤因子肥力系數(shù)的平均值;[Pimin]為各土壤因子肥力系數(shù)中最小值。

1.3.2 空間自相關(guān)分析 采用SPSS 26.0軟件進(jìn)行數(shù)據(jù)的異常值分析、描述統(tǒng)計(jì)分析、相關(guān)性分析以及綜合指數(shù)的計(jì)算等。地統(tǒng)計(jì)學(xué)中,半方差變異函數(shù)分析和Kriging插值都要求數(shù)據(jù)符合正態(tài)分布,否則可能產(chǎn)生比例效應(yīng)影響基臺(tái)值和塊金值[18],因此通過偏度峰度聯(lián)合檢驗(yàn)法對(duì)異常值處理后的數(shù)據(jù)進(jìn)行驗(yàn)證,對(duì)不符合正態(tài)分布的數(shù)據(jù)進(jìn)行對(duì)數(shù)轉(zhuǎn)化。利用GS+9.0地統(tǒng)計(jì)軟件完成地統(tǒng)計(jì)分析、進(jìn)行方差變異函數(shù)擬合,分別選用最優(yōu)模型。常用的半方差變異函數(shù)模型有球狀(spherical)、高斯(Gaussian)、指數(shù)(exponential)模型[19]。采用全局莫蘭指數(shù)(MoransⅠ)來體現(xiàn)研究區(qū)域土壤養(yǎng)分空間自相關(guān)水平,并根據(jù)局部莫蘭指數(shù)繪制局部空間自相關(guān)聚類圖[20],MoransⅠ>0時(shí),表示空間正相關(guān)性,其值越大,空間相關(guān)性越明顯;當(dāng)MoransⅠ<0時(shí),表示空間負(fù)相關(guān)性,其值越小,空間差異越大;當(dāng)Morans Ⅰ=0時(shí),空間呈現(xiàn)出隨機(jī)性。通過標(biāo)準(zhǔn)化Z值對(duì)空間相關(guān)顯著性及正負(fù)性進(jìn)行統(tǒng)計(jì)學(xué)檢驗(yàn),判斷空間自相關(guān)是否顯著,檢驗(yàn)結(jié)果僅在p<0.05時(shí)具有意義,若p≥0.05,則結(jié)果無意義,無法判斷是否存在空間相關(guān)性。利用ArcGIS 10.8地理信息系統(tǒng)軟件進(jìn)行Kriging空間最優(yōu)無偏插值、空間分布圖的繪制。海拔數(shù)據(jù)來源于地理空間數(shù)據(jù)云(http://www.gscloud.cn)下載的Aster 30m精度數(shù)字高程模型(digital elevation model,DEM)數(shù)據(jù)。

2 結(jié)果與分析

2.1 土壤肥力綜合評(píng)價(jià)

采用內(nèi)梅羅法對(duì)110個(gè)核桃園采樣點(diǎn)土壤肥力進(jìn)行綜合評(píng)價(jià),其中中等肥力果園86個(gè),占78.3%;肥沃果園24個(gè),占20.7%,表明核桃園土壤肥力整體上屬于中等水平。各鄉(xiāng)鎮(zhèn)土壤肥力指數(shù)(表3)表明,土壤平均肥力指數(shù)變幅為1.386~1.930,肥力由大到小為龍坪鎮(zhèn)>后坪鎮(zhèn)>兩峪鄉(xiāng)>黃堡鎮(zhèn)>歇馬鎮(zhèn)>馬良鎮(zhèn)>過渡灣鎮(zhèn)>店埡鎮(zhèn)>城關(guān)鎮(zhèn)>馬橋鎮(zhèn)>寺坪鎮(zhèn)。其中HN指數(shù)評(píng)分明顯低于其他土壤指標(biāo),說明HN含量可能是核桃園肥力的主要影響因子。

將土壤肥力指數(shù)和核桃干果平均畝產(chǎn)進(jìn)行Pearson相關(guān)性分析,兩者相關(guān)系數(shù)為0.616,p值為0.044<0.05,表明土壤肥力與干果產(chǎn)量為顯著正相關(guān),說明良好的土壤肥力是影響核桃產(chǎn)量的重要因素。

2.2 土壤pH值和養(yǎng)分含量的描述性統(tǒng)計(jì)

??悼h核桃林總體土壤養(yǎng)分特征如表4所示,變異系數(shù)<10%為弱變異,10%~100%為中等變異,變異系數(shù)>100%為強(qiáng)變異[21]。核桃林土壤pH值平均為6.68,變異系數(shù)為9.89%,屬于弱變異;土壤中HN含量均值為109.41 mg·kg-1,變異系數(shù)為39.62%;AK含量均值為125.43 mg·kg-1,變異系數(shù)為52.03%;OM含量均值為27.63 g·kg-1,變異系數(shù)為41.96%,AP含量均值為23.74 mg·kg-1,變異系數(shù)為81.31%,均小于100%,屬于中等變異。

2.3 土壤養(yǎng)分空間分布特征

2.3.1 土壤養(yǎng)分變異特征和空間自相關(guān)性 對(duì)土壤pH值和養(yǎng)分含量進(jìn)行異常值處理及對(duì)數(shù)轉(zhuǎn)化,發(fā)現(xiàn)除土壤pH值外,土壤養(yǎng)分含量均符合正態(tài)分布(表5)。

對(duì)4種土壤養(yǎng)分含量空間異質(zhì)性(表6)進(jìn)行分析,HN、AK、OM、AP含量變程分別為8.175、5.421、7.44、6.634 km,均大于采樣距離,表明能夠滿足空間分析的需要;決定系數(shù)分別為0.894、0.724、0.742、0.844,均大于0.5,表明在相應(yīng)理論模型下擬合效果較好,能夠較精確地反映土壤養(yǎng)分的空間變異性。當(dāng)塊基比<25%時(shí),表明變量具有強(qiáng)烈的空間自相關(guān),即主要受到結(jié)構(gòu)性變異的影響;當(dāng)塊基比為25%~75%時(shí),變量屬于中等程度空間自相關(guān);當(dāng)塊基比>75%時(shí),變量空間自相關(guān)程度較弱,主要受隨機(jī)因素影響[22-23]。HN含量、AK含量塊基比分別為14.4%、15.6%,均<25%,表明具有較強(qiáng)的空間自相關(guān),說明主要受到自然結(jié)構(gòu)的影響;OM含量、AK含量塊基比分別為35.2%、39.2%,表現(xiàn)中等程度空間自相關(guān),說明受到了自然結(jié)構(gòu)和隨機(jī)因素的雙重影響。

研究區(qū)土壤養(yǎng)分MoransⅠ值均>0,這說明土壤養(yǎng)分具有空間正相關(guān)性,即具有一定的空間正向聚集關(guān)系。HN含量和AK含量莫蘭指數(shù)的Z值分別為4.30和3.05,p<0.05,說明兩者存在顯著的空間聚集效應(yīng);而AP含量和OM含量的Z值分別為0.63和0.98,p>0.05,說明兩者聚集效應(yīng)不顯著。高低聚集圖(圖2)可以看出,龍坪鎮(zhèn)為HN、AP、OM含量的主要高值聚集區(qū);馬良鎮(zhèn)、兩峪鄉(xiāng)和歇馬鎮(zhèn)交界區(qū)域是HN、OM含量的低值聚集區(qū),店埡鎮(zhèn)是AP含量的低值聚集區(qū),過渡灣鎮(zhèn)和城關(guān)鎮(zhèn)是AK含量的低值聚集區(qū)。土壤養(yǎng)分含量的高值聚集區(qū)主要集中在龍坪鎮(zhèn),低值聚集區(qū)則分布在馬橋鎮(zhèn)、店埡鎮(zhèn)等地,這與內(nèi)梅羅綜合指數(shù)的結(jié)果較一致。

2.3.2 土壤養(yǎng)分空間分布特征 利用ArcGIS作出土壤養(yǎng)分空間分布圖(圖3-A~D),從面狀性上看,HN、OM、AP、AK含量和土壤綜合肥力呈團(tuán)塊狀分布。從方向性上看,HN含量大致呈東高西低、南高北低的趨勢,龍坪鎮(zhèn)HN含量較其他地區(qū)高,分布范圍在153.0~370.0 mg·kg-1,而馬橋鎮(zhèn)、兩峪鄉(xiāng)整體含量較低,分布范圍分別在41.5~108.0 mg·kg-1、45.4~143 mg·kg-1。AK含量局部有極性分布趨勢,其中馬橋鎮(zhèn)整體含量較其他地區(qū)低,分布范圍在33.0~148.0 mg·kg-1。AP含量大致呈中部、東部高,其余偏低的趨勢,龍坪鎮(zhèn)、兩峪鄉(xiāng)、黃堡鎮(zhèn)、后坪鎮(zhèn)整體含量均較高,店埡鎮(zhèn)AP含量較其他地區(qū)低。OM含量大致呈東西高、南北低的趨勢,后坪鎮(zhèn)和龍坪鎮(zhèn)整體含量較高,分布范圍分別在24.0~90.3 g·kg-1、29.2~50.5 g·kg-1,店埡鎮(zhèn)和兩峪鄉(xiāng)整體含量則較其他地區(qū)低,分布范圍分別在17.7~28.7 g·kg-1、9.0~34.6 g·kg-1。

內(nèi)梅羅指數(shù)是土壤養(yǎng)分豐富度的綜合反映,將??悼h內(nèi)梅羅指數(shù)空間分布圖和地形圖相比較(圖3-E、F)可以發(fā)現(xiàn),從??悼h西南部到東北部的低肥力區(qū)域與保康縣低地勢區(qū)域重合,而龍坪鎮(zhèn)、后坪鎮(zhèn)、歇馬鎮(zhèn)正東部和正南部、黃堡鎮(zhèn)正北部的高肥力區(qū)域與高地勢區(qū)域高度重合,這說明地勢可能影響核桃園土壤肥力。

2.3.3 海拔因子對(duì)土壤養(yǎng)分的影響 將海拔和土壤養(yǎng)分含量進(jìn)行Pearson相關(guān)分析(表7),結(jié)果表明,海拔與HN、AP含量、土壤綜合肥力指數(shù)呈極顯著正相關(guān)(p<0.01),與OM含量呈顯著正相關(guān)(p<0.05),與AK無顯著相關(guān)性,這表明隨著海拔的升高,土壤營養(yǎng)元素含量增多,保肥性更好。

3 討 論

土壤中的HN、AK、OM和AP含量是土壤肥力評(píng)價(jià)的關(guān)鍵指標(biāo)。許多研究表明,通過合理施肥后土壤養(yǎng)分含量增加,核桃的產(chǎn)量和品質(zhì)均有明顯提升[24-25]。將陜西、重慶、貴州、新疆、山西、廣西各地已報(bào)道核桃園土壤養(yǎng)分指標(biāo)進(jìn)行比較,發(fā)現(xiàn)??悼h4種土壤養(yǎng)分含量均位于前列,說明當(dāng)?shù)睾颂覉@土壤養(yǎng)分含量相對(duì)較豐富[8-10,26-28]。但是,和麗萍等[29]對(duì)云南省永平縣76株漾濞泡核桃高產(chǎn)穩(wěn)產(chǎn)優(yōu)樹土壤養(yǎng)分進(jìn)行檢測,發(fā)現(xiàn)土壤中HN、AK、OM和AP平均含量分別是154.41 mg·kg-1、330.13 mg·kg-1、36.01 g·kg-1、37.52 mg·kg-1。??悼h核桃園HN、AK、OM和AP含量均值分別為109.41 mg·kg-1、125.43 mg·kg-1、27.63 g·kg-1、23.74 mg·kg-1,高于云南維西縣核桃園土壤養(yǎng)分含量[30],但相較于永平縣高產(chǎn)優(yōu)株存在明顯差距,這說明核桃要達(dá)到高產(chǎn)穩(wěn)產(chǎn)需要進(jìn)一步提升土壤養(yǎng)分含量。

內(nèi)梅羅肥力評(píng)價(jià)結(jié)果表明,龍坪鎮(zhèn)和后坪鎮(zhèn)核桃園評(píng)級(jí)為肥沃,其余為中等。這些結(jié)果說明??悼h核桃園的土壤養(yǎng)分整體水平在中等以上,這與相鄰地區(qū)果園土壤肥力情況相近[31]。推測一方面是因?yàn)樵摰貐^(qū)土壤母質(zhì)土壤整體肥力較高,土壤pH偏中性,土壤鹽基飽和度高、土壤保肥供肥能力、緩沖能力、環(huán)境容量相對(duì)較高[32-33];另一方面是因?yàn)榻?jīng)過初期的篩選,核桃造林點(diǎn)多選擇土層較厚、土質(zhì)較好的地塊,且長勢良好的核桃園更容易保留。在農(nóng)業(yè)生產(chǎn)中,培肥土壤是實(shí)現(xiàn)高產(chǎn)高效的基礎(chǔ)[34-35]。筆者在本研究中發(fā)現(xiàn),土壤肥力越好,核桃干果每666.7 m2產(chǎn)量越高,表明提升土壤肥力能夠有效增加核桃產(chǎn)量。土壤HN和AK是對(duì)核桃堅(jiān)果影響最明顯的礦物質(zhì),與核桃產(chǎn)量、橫徑和含油率等呈顯著正相關(guān)[36-38]。而筆者在本研究中發(fā)現(xiàn)相較于其他土壤養(yǎng)分,HN指數(shù)評(píng)分較低,說明在核桃園土壤肥力存在不足的條件下,更應(yīng)合理增施氮肥以提高核桃品質(zhì)和產(chǎn)量。

不同土壤理化性質(zhì)具有空間變化規(guī)律的差異性,空間異質(zhì)性與成土母質(zhì)、施肥、種植年限、環(huán)境氣候等因素相關(guān)[38-40]。通常在小尺度研究區(qū)土壤肥力因子的時(shí)空變異主要受人為因素影響,而大尺度研究區(qū)土壤肥力因子主要受自然因素影響。夏凡[41]對(duì)2007年和2020年小尺度茶園進(jìn)行土壤肥力變異分析,發(fā)現(xiàn)茶園的肥力因子由自然因素影響轉(zhuǎn)向自然因素和人為因素的共同作用,土壤空間自相關(guān)性減弱,表明人為因素作用的增強(qiáng)會(huì)影響土壤空間的自相關(guān)性。地統(tǒng)計(jì)分析的擬合模型和MoransⅠ指數(shù)表明,??悼h核桃園HN、AK含量主要受自然結(jié)構(gòu)的影響,且具有顯著空間正向聚集性;AP、OM含量受自然結(jié)構(gòu)和人為因素的雙重影響,具有空間正相關(guān)性但空間聚集效應(yīng)不顯著??赡苁且?yàn)楹颂曳N植在山地,管理較為粗放,受到人為影響相對(duì)較小,因此成土母質(zhì)和氣候條件是土壤肥力的主要影響因素,但人為施肥仍然影響了核桃園土壤肥力因子的分布。核桃對(duì)氮素需求旺盛,而成年核桃樹對(duì)鉀的需求僅次于氮[36,42],因此肥料中的氮和鉀可能僅供核桃生長發(fā)育,磷和有機(jī)質(zhì)能夠在土壤中有更多積累。

總體而言,土壤養(yǎng)分的高值聚集區(qū)主要集中在龍坪鎮(zhèn)等高山地區(qū),低值聚集區(qū)則分布在馬橋鎮(zhèn)、店埡鎮(zhèn)等低山地區(qū),海拔對(duì)土壤肥力有顯著影響。核桃在山區(qū)種植的海拔變化較大,可能在低海拔地區(qū),良好的水熱條件促進(jìn)了土壤中的物質(zhì)循環(huán),從而提高了養(yǎng)分的利用效率;隨著高度的增加,微生物分解速度和礦化作用減弱而凋落物增加,生物累積作用增強(qiáng),HN、OM含量較高,所以海拔高的區(qū)域土壤保肥、供肥和緩沖能力更好;鉀元素移動(dòng)性強(qiáng),易受徑流、淋溶影響而流失,因此與海拔相關(guān)性不顯著[43]。

4 結(jié) 論

保康縣核桃園以中性和微酸性土壤為主,土壤養(yǎng)分存在中等變異并具有空間異質(zhì)性,土壤肥力在中等以上水平。土壤肥力能夠影響核桃產(chǎn)量,土壤肥力越好,核桃干果畝產(chǎn)越高。在研究區(qū)域內(nèi),HN含量是土壤肥力的主要影響因子。核桃園管理較粗放,在縣域尺度下土壤養(yǎng)分含量以受自然結(jié)構(gòu)的影響為主,也會(huì)受到人為影響的干擾。海拔作為重要的自然因素,與土壤肥力以及HN、AK、OM含量呈顯著正相關(guān),可以作為劃分土壤養(yǎng)分管理單元的重要依據(jù)。

參考文獻(xiàn) References:

[1]?? 國家林業(yè)和草原局. 中國林業(yè)和草原統(tǒng)計(jì)年鑒[M]. 北京:中國林業(yè)出版社,2022:36-37.

National Forestry and Grassland Administration. China forestry and grassland statistical yearbook[M]. Beijing:China Forestry Publishing House,2022:36-37.

[2]?? 馬慶國,樂佳興,宋曉波,周曄,裴東. 新中國果樹科學(xué)研究70年:核桃[J]. 果樹學(xué)報(bào),2019,36(10):1360-1368.

MA Qingguo,LE Jiaxing,SONG Xiaobo,ZHOU Ye,PEI Dong. Fruit scientific research in New China in the past 70 years:Walnut[J]. Journal of Fruit Science,2019,36(10):1360-1368.

[3]?? 張紅桔,馬閃閃,趙科理,葉正錢,汪智勇,白珊. 山核桃林地土壤肥力狀況及其空間分布特征[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2018,35(4):664-673.

ZHANG Hongju,MA Shanshan,ZHAO Keli,YE Zhengqian,WANG Zhiyong,BAI Shan. Soil fertility and its spatial distribution for Carya cathayensis stands in Linan,Zhejiang Province[J]. Journal of Zhejiang A & F University,2018,35(4):664-673.

[4]?? MPONELA P,MANDA J,KINYUA M,KIHARA J. Correction to:Participatory action research,social networks,and gender influence soil fertility management in Tanzania[J]. Systemic Practice and Action Research,2023,36(1):165-166.

[5]?? 胡建文,王慶成,馬雙嬌. 人工林精準(zhǔn)施肥研究進(jìn)展[J]. 世界林業(yè)研究,2020,33(4):37-42.

HU Jianwen,WANG Qingcheng,MA Shuangjiao. Research advances in precision fertilization regime for plantation forests[J]. World Forestry Research,2020,33(4):37-42.

[6]?? 徐憲根,周焱,阮宏華,韓勇,於華,曹慧敏,汪家社,徐自坤. 武夷山不同海拔高度土壤氮礦化對(duì)溫度變化的響應(yīng)[J]. 生態(tài)學(xué)雜志,2009,28(7):1298-1302.

XU Xiangen,ZHOU Yan,RUAN Honghua,HAN Yong,YU Hua,CAO Huimin,WANG Jiashe,XU Zikun. Responses of soil nitrogen mineralization to temperature change along an elevation gradient in Wuyi Mountains,China[J]. Chinese Journal of Ecology,2009,28(7):1298-1302.

[7]?? NAGAMATSU D,HIRABUKI Y,MOCHIDA Y. Influence of micro-landforms on forest structure,tree death and recruitment in a Japanese temperate mixed forest[J]. Ecological Research,2003,18(5):533-547.

[8]?? 黃小輝,王玉書,魏立本,馮大蘭,李秀珍,夏鷹. 重慶核桃主要產(chǎn)區(qū)土壤養(yǎng)分狀況及肥力評(píng)價(jià)[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2023,51(1):88-93.

HUANG Xiaohui,WANG Yushu,WEI Liben,F(xiàn)ENG Dalan,LI Xiuzhen,XIA Ying. Soil nutrient status and fertility evaluation in major producing areas of walnut,Chongqing[J]. Journal of Northeast Forestry University,2023,51(1):88-93.

[9]?? 趙瑞芬,程濱,滑小贊,王森,王釗. 基于主成分分析的山西省核桃主產(chǎn)區(qū)土壤肥力評(píng)價(jià)[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,40(6):61-68.

ZHAO Ruifen,CHENG Bin,HUA Xiaozan,WANG Sen,WANG Zhao. Evaluation of soil fertility status in main walnut production areas in Shanxi based on principal component analysis[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2020,40(6):61-68.

[10] 宋斌,劉茂橋,張文娥,張睿,彭劍,王長雷,潘學(xué)軍. 貴州核桃主產(chǎn)區(qū)核桃園土壤養(yǎng)分豐缺狀況[J]. 中國土壤與肥料,2020(6):65-74.

SONG Bin,LIU Maoqiao,ZHANG Wene,ZHANG Rui,PENG Jian,WANG Changlei,PAN Xuejun. Status of soil fertility in walnut orchard areas of Guizhou[J]. Soil and Fertilizer Sciences in China,2020(6):65-74.

[11] 李松偉,鄧烈,何紹蘭,易時(shí)來,謝讓金,鄭永強(qiáng),呂強(qiáng),田喜. 基于小尺度的山地柑橘園土壤有效磷空間分布狀況研究[J]. 果樹學(xué)報(bào),2014,31(1):45-51.

LI Songwei,DENG Lie,HE Shaolan,YI Shilai,XIE Rangjin,ZHENG Yongqiang,L? Qiang,TIAN Xi. Spatial distribution of available soil phosphorus in the hilly citrus orchards based on small scale samples[J]. Journal of Fruit Science,2014,31(1):45-51.

[12] 付傳城,章海波,涂晨,李連禎,周倩,李遠(yuǎn),駱永明. 濱海蘋果園土壤碳氮空間分布及動(dòng)態(tài)變化研究[J]. 土壤學(xué)報(bào),2018,55(4):857-867.

FU Chuancheng,ZHANG Haibo,TU Chen,LI Lianzhen,ZHOU Qian,LI Yuan,LUO Yongming. Spatial distribution and dynamics of soil organic carbon and total nitrogen in apple orchards in coastal regions[J]. Acta Pedologica Sinica,2018,55(4):857-867.

[13] 謝林峰,凌曉曉,黃圣妍,高浩展,吳家森,陳俊輝,黃堅(jiān)欽,秦華. 臨安區(qū)山核桃林地土壤水解酶活性空間分布特征及土壤肥力評(píng)價(jià)[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2022,39(3):625-634.

XIE Linfeng,LING Xiaoxiao,HUANG Shengyan,GAO Haozhan,WU Jiasen,CHEN Junhui,HUANG Jianqin,QIN Hua. Spatial distribution characteristics of soil hydrolase activities and soil fertility evaluation of Carya cathayensis forests in Linan District[J]. Journal of Zhejiang A & F University,2022,39(3):625-634.

[14] 鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國農(nóng)業(yè)出版社,2000.

BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.

[15] 中華人民共和國農(nóng)業(yè)部. 南方地區(qū)耕地土壤肥力診斷與評(píng)價(jià):NY/T 1749—2009[S]. 北京:中國農(nóng)業(yè)出版社,2009.

Ministry of Agriculture of the Peoples Republic of China. Soil fertility diagnosis and evaluation method of farmland in Southern China:NY/T 1749—2009[S]. Beijing:China Agriculture Press,2009.

[16] 王爍衡,林電,張鵬,范聲濃,孟鑫,林一凡,王瑞,吳昊,程寧寧. 水肥一體化條件下化肥減施對(duì)杧果園土壤肥力的影響[J]. 中國果樹,2022(6):39-48.

WANG Shuoheng,LIN Dian,ZHANG Peng,F(xiàn)AN Shengnong,MENG Xin,LIN Yifan,WANG Rui,WU Hao,CHENG Ning-

ning. Effects of reduced chemical fertilizer application on soil fertility in mango orchards under integrated water and fertilizer conditions[J]. China Fruits,2022(6):39-48.

[17] 濮陽雪華,茍清平,王春春,朱清科. 陜北黃土區(qū)不同微地形土壤養(yǎng)分特征研究[J]. 西北林學(xué)院學(xué)報(bào),2019,34(3):37-42.

PUYANG Xuehua,GOU Qingping,WANG Chunchun,ZHU Qingke. Characteristics of soil nutrients in different micro-topography in loess region of northern Shaanxi Province[J]. Journal of Northwest Forestry University,2019,34(3):37-42.

[18] 高玉蓉,許紅衛(wèi),周斌. 稻田土壤養(yǎng)分的空間變異性研究[J]. 土壤通報(bào),2005,36(6):822-825.

GAO Yurong,XU Hongwei,ZHOU Bin. Investigation on spatial variability of soil nutrients in paddy field[J]. Chinese Journal of Soil Science,2005,36(6):822-825.

[19] 王新中. GIS支持下豫中典型煙田土壤養(yǎng)分空間變異及精準(zhǔn)管理[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2009.

WANG Xinzhong. GIS-based spatial variability and site-specific management of soil nutrients for tobacco field in central Henan Province[D]. Zhengzhou:Henan Agricultural University,2009.

[20] 王強(qiáng),鄭夢(mèng)蕾,葉治山,楊善蓮,馬友華. 基于Morans Ⅰ的菜地土壤屬性空間分布格局分析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(10):2297-2306.

WANG Qiang,ZHENG Menglei,YE Zhishan,YANG Shanlian,MA Youhua. Analysis of spatial distribution pattern of vegetable soil properties based on Morans Ⅰ[J]. Journal of Agro-Environment Science,2020,39(10):2297-2306.

[21] ZHANG X Y,SUI Y Y,ZHANG X D,MENG K,HERBERT S J. Spatial variability of nutrient properties in black soil of Northeast China[J]. Pedosphere,2007,17(1):19-29.

[22] KATSALIROU E,DENG S P,NOFZIGER D L,GERAKIS A,F(xiàn)UHLENDORF S D. Spatial structure of microbial biomass and activity in prairie soil ecosystems[J]. European Journal of Soil Biology,2010,46(3/4):181-189.

[23] ZHAO K L,F(xiàn)U W J,QIU Q Z,YE Z Q,LI Y F,TUNNEY H,DOU C Y,ZHOU K N,QIAN X B. Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics[J]. Geoderma,2019,337:453-462.

[24] 賀海耘. 長期施肥對(duì)核桃品質(zhì)和根際土壤微生物及酶活性的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2022.

HE Haiyun. Effects of long-term fertilization on walnut quality and rhizosphere soil microbial and enzyme activities[D]. Yangling:Northwest A & F University,2022.

[25] LI M,XU Y J,WANG H,YUAN L Y,WANG X R,LI J Z,ZHANG D J,HUANG F X. Study on soil quality characteristics and spatial difference of the walnut producing area in Hubei Province of China[J].? Journal of Animal and Plant Sciences,2022,32(6):1682-1690.

[26] 趙映翠,耿增超,陳金海,林云. 宜君縣核桃經(jīng)濟(jì)林地土壤養(yǎng)分調(diào)查與評(píng)價(jià)[J]. 干旱地區(qū)農(nóng)業(yè)研究,2015,33(3):85-89.

ZHAO Yingcui,GENG Zengchao,CHEN Jinhai,LIN Yun. Investigation and evaluation of soil nutrients of walnut nonwood forestland in Yijun County[J]. Agricultural Research in the Arid Areas,2015,33(3):85-89.

[27] 黃思遠(yuǎn). 廣西都安縣核桃林土壤養(yǎng)分狀況及其評(píng)價(jià)[D]. 南寧:廣西大學(xué),2019.

HUANG Siyuan. Soil nutrient status and evaluation of walnut forest in Duan County,Guangxi[D]. Nanning:Guangxi University,2019.

[28] 李青軍,耿慶龍,賴寧,陳署晃. 核桃土壤養(yǎng)分評(píng)價(jià)及其與核桃產(chǎn)量的相關(guān)性分析[J]. 新疆農(nóng)業(yè)科學(xué),2019,56(5):826-833.

LI Qingjun,GENG Qinglong,LAI Ning,CHEN Shuhuang. Evaluation of walnut soil nutrients and the correlation with its yield[J]. Xinjiang Agricultural Sciences,2019,56(5):826-833.

[29] 和麗萍,鄒偉烈,周來潮,馬杰,羅冬梅,蘇倩,范志遠(yuǎn). 永平縣漾濞泡核桃優(yōu)株立地土壤養(yǎng)分豐缺狀況[J]. 經(jīng)濟(jì)林研究,2023,41(2):11-20.

HE Liping,ZOU Weilie,ZHOU Laichao,MA Jie,LUO Dongmei,SU Qian,F(xiàn)AN Zhiyuan. Soil nutrients abundance and deficiency of Yangbi Bubble walnut superior plants originated in Yongping County[J]. Non-wood Forest Research,2023,41(2):11-20.

[30] 熊新武,李俊南,浦文靜,楊萬超,江期川,梁林波,郭玉紅. 基于Nemerow法的核桃林土壤肥力分析與評(píng)價(jià)[J]. 西北林學(xué)院學(xué)報(bào),2020,35(3):126-132.

XIONG Xinwu,LI Junnan,PU Wenjing,YANG Wanchao,JIANG Qichuan,LIANG Linbo,GUO Yuhong. Soil fertility analysis and evaluation of walnut grove based on nemerow method[J]. Journal of Northwest Forestry University,2020,35(3):126-132.

[31] 陳會(huì)玲,胡建文,勾蒙蒙,王娜,朱粟鋒,肖文發(fā),劉常富. 湖北秭歸柑橘園土壤養(yǎng)分特征和肥力評(píng)價(jià)[J]. 陸地生態(tài)系統(tǒng)與保護(hù)學(xué)報(bào),2022,2(4):21-31.

CHEN Huiling,HU Jianwen,GOU Mengmeng,WANG Na,ZHU Sufeng,XIAO Wenfa,LIU Changfu. Nutrient characteristics and fertility evaluation of Citrus orchard soil in Zigui,Hubei province[J]. Terrestrial Ecosystem and Conservation,2022,2(4):21-31.

[32] 李學(xué)垣,徐鳳琳. 湖北省丘崗、平原主要土壤的表面化學(xué)性質(zhì)與黏粒的礦物、化學(xué)組成[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),1999,18(5):420-426.

LI Xueyuan,XU Fenglin. Surface chemical properties,chemical and mineral composition of clay for main soils distributed in alluvial plain and hills mound in Hubei Province[J]. Journal of Huazhong Agricultural,1999,18(5):420-426.

[33] TORRES-OLIVAR V,VILLEGAS-TORRES O G,DOM?NGU-

EZ-PATI?O M L,SOTELO-NAVA H,RODR?GUEZ-MART?NEZ A,MELGOZA-ALEMAN R M,VALDEZ-AGUILAR L A,ALIA-TEJACAL I. Role of nitrogen and nutrients in crop nutrition[J]. Journal of Agricultural Science and Technology,2014,4(1B):29-37.

[34] 劉海濤,李保國,任圖生,胡克林. 不同肥力農(nóng)田玉米產(chǎn)量構(gòu)成差異及施肥彌補(bǔ)土壤肥力的可能性[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2016,22(4):897-904.

LIU Haitao,LI Baoguo,REN Tusheng,HU Kelin. Dissimilarity in yield components of maize grown in different fertility fields and effect of nitrogen application on maize in low fertility fields[J]. Journal of Plant Nutrition and Fertilizer,2016,22(4):897-904.

[35] 楊凱,杜延全,張西興,王明偉,李延鋒,朱建強(qiáng). 有機(jī)物料與化肥配施提升土壤肥力、養(yǎng)分利用和玉米產(chǎn)量研究[J/OL]. 中國土壤與肥料,2023:1-8. [2023-11-28]. https://kns.cnki.net/kcms/detail/11.5498.S.20231128.1529.004.html.

YANG Kai,DU Yanquan,ZHANG Xixing,WANG Mingwei,LI Yanfeng,ZHU Jianqiang. Eeperimental study on combined application of organic materials and chemical fertilizers to improve soil fertility,nutrient utilization and maize yield[J/OL]. Soil and Fertilizer Sciences in China,2023:1-8. [2023-11-28]. https://kns.cnki.net/kcms/detail/11.5498.S.20231128.1529.004.html.

[36] 宮崢嶸,王一峰,王瀚,李唯,耿明建,張文明,劉露. 核桃礦質(zhì)營養(yǎng)研究進(jìn)展[J]. 林業(yè)科學(xué),2021,57(1):178-190.

GONG Zhengrong,WANG Yifeng,WANG Han,LI Wei,GENG Mingjian,ZHANG Wenming,LIU Lu. Research progress on mineral nutrition of walnut[J]. Scientia Silvae Sinicae,2021,57(1):178-190.

[37] 徐麗,張海燕,辛國,朱建朝,秦楷,趙恒,周鵬飛,鄭小平. 核桃土壤養(yǎng)分水平與果實(shí)品質(zhì)相關(guān)性分析[J]. 經(jīng)濟(jì)林研究,2022,40(1):74-81.

XU Li,ZHANG Haiyan,XIN Guo,ZHU Jianchao,QIN Kai,ZHAO Heng,ZHOU Pengfei,ZHENG Xiaoping. Correlation analysis between soil nutrient and fruit quality of walnut[J]. Non-wood Forest Research,2022,40(1):74-81.

[38] 張倩. 不同施肥處理對(duì)土壤生物學(xué)特性及核桃產(chǎn)量品質(zhì)的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2021.

ZHANG Qian. Effects of different fertilization treatments on soi biological characteristics and walnut yield quality[D]. Yangling:Northwest A & F University,2021.

[39] 劉滿強(qiáng),胡鋒,陳小云. 土壤有機(jī)碳穩(wěn)定機(jī)制研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2007,27(6):2642-2650.

LIU Manqiang,HU Feng,CHEN Xiaoyun. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica,2007,27(6):2642-2650.

[40] 李春雨. 阜平縣土壤養(yǎng)分垂直地帶性變化研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2021.

LI Chunyu. Vertical zonal changes of soil nutrients in Fuping County[D]. Baoding:Hebei Agricultural University,2021.

[41] 夏凡. 川西低山丘陵區(qū)小尺度下茶園土壤肥力質(zhì)量時(shí)空變異特征研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2022.

XIA Fan. Study on spatial and temporal variation characteristics of soil fertility quality in tea plantation of hilly region at small scale in the western Sichuan[D]. Yaan:Sichuan Agricultural University,2022.

[42] 梁智,周勃,鄒耀湘. 核桃樹體生物量構(gòu)成及礦質(zhì)營養(yǎng)元素累積特性研究[J]. 果樹學(xué)報(bào),2012,29(1):139-142.

LIANG Zhi,ZHOU Bo,ZOU Yaoxiang. Compositional analysis of biomass and accumulation properties of mineral elements in walnut[J]. Journal of Fruit Science,2012,29(1):139-142.

[43] 石紅靜,馬閃閃,趙科理,葉立前,李皓,沈穎,趙偉明,葉正錢. 有機(jī)物料對(duì)酸化山核桃林地土壤的改良作用[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2017,34(4):670-678.

SHI Hongjing,MA Shanshan,ZHAO Keli,YE Liqian,LI Hao,SHEN Ying,ZHAO Weiming,YE Zhengqian. Effect of organic materials on improvement of Carya cathayensis forest acidic soil[J]. Journal of Zhejiang A & F University,2017,34(4):670-678.

猜你喜歡
肥力土壤肥力核桃
小核桃變身“致富果”
生物肥力將成為我國土壤修復(fù)的主要方式
可賞可食可入藥的核桃
拉薩市土壤肥力變化趨勢與改良策略
長期不同施肥對(duì)赤紅壤稻田區(qū)肥力的影響
基于墑權(quán)的屬性識(shí)別模型在采煤廢棄地肥力評(píng)價(jià)中的應(yīng)用
安吉白茶園土壤肥力現(xiàn)狀分析
長期不同施肥下紅壤性水稻土綜合肥力評(píng)價(jià)及其效應(yīng)
多功能漏斗型核桃夾
取仙核桃②