国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

microRNA與皮膚衰老的研究進展

2024-06-01 04:30:18包樹明諾布央卓左蕊向小燕
中國美容醫(yī)學 2024年4期
關鍵詞:微小RNA衰老黑素細胞

包樹明 諾布央卓 左蕊 向小燕

[摘要]皮膚衰老是人體衰老最直觀的表現(xiàn),目前已發(fā)現(xiàn)皮膚衰老過程中伴著microRNA(miRNA)表達的改變。這表明miRNA可能參與了皮膚衰老過程的調控,可能有用于作為皮膚衰老的標志物和抗衰老治療策略。本文旨在探討miRNA如何通過影響皮膚角質形成細胞、成纖維細胞、免疫細胞及黑素細胞的增殖、分化、細胞穩(wěn)定、蛋白通路、細胞周期等方面導致皮膚的衰老。

[關鍵詞]微小RNA;衰老;角質形成細胞;成纖維細胞;黑素細胞;免疫細胞

[中圖分類號]R339.3+8? ? [文獻標志碼]A? ? [文章編號]1008-6455(2024)04-0186-05

Research Progress of microRNA and Skin Aging

BAO Shuming1,2, NUOBU Yangzhuo1,2, ZUO Rui1,2, XIANG Xiaoyan1,2

(1.Department of Plastic, Cosmetic and Burn Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China; 2.North Sichuan Medical College, Nanchong 637000, Sichuan, China)

Abstract: Skin aging is the most intuitive manifestation of human aging. Currently, it has been found that the skin aging process is accompanied by the change of microRNA (miRNA) expression. This suggests that miRNA may be involved in the regulation of skin aging. This article aims to explore how miRNA can cause skin aging by affecting the aging of keratinocytes, fibroblasts, immune cells and melanocytes.

Key words: miRNA; senescence; keratinocytes; fibroblasts; melanocytes; immune cells

皮膚的衰老主要分為遺傳基因調控的內在衰老和環(huán)境因素引起的外在衰老[1-3]。皮膚最直接的變化預示著人類衰老的進行,因此對皮膚衰老的研究于認識人類衰老而言至關重要。miRNA是一類小的非編碼內源性進化保守的RNA(長度約為19~24個核苷酸),通常通過調節(jié)信使RNA(mRNA)的水平影響蛋白質的翻譯。其主要功能與基因表達的轉錄后調控有關[4-5]。miRNA已被證明參與了人類多種病理生理過程,如細胞生物學行為、癌癥和年齡相關疾病等[6]。令人欣喜的是,隨著研究的積累,發(fā)現(xiàn)有miRNA參與了有衰老作用的信號通道和蛋白的調節(jié)[7]。此外,有研究表明,miRNA在調節(jié)細胞增殖和清除衰老因素之間的平衡中起著至關重要的作用[8]。綜合目前的研究miRNA的表達也可能被認為是衰老的標志物之一[9]。遺憾的是,尚缺乏明確的實驗數(shù)據(jù)證明miRNA參與衰老。本文重點關注近幾年有關miRNA與皮膚衰老之間的研究,現(xiàn)報道如下。

1? miRNA可能作為衰老的生物標志物

在高齡人群中,發(fā)現(xiàn)127個miRNA隨時間的積累差異表達,同時發(fā)現(xiàn)這些miRNA通過調節(jié)蛋白質翻譯、轉錄、免疫反應與衰老機制產生聯(lián)系[10]。Kinser HE等[11]發(fā)現(xiàn)lin-4、let-7、miR-17和miR-34在長壽人群中顯著表達,認為這些miRNA是長壽基因,促進壽命延長,對抗衰老。同時,眾多研究團隊對不同年齡段人群組織或血清中miRNA進行分析鑒定后發(fā)現(xiàn):miR-29b、miR-106b、miR-130b、miR-142-5p、miR-340、miR-340-3p,miR-374a-5p、miR-376c、miR-151a-5p、miR-181a-5p和miR-1248隨年齡增加表達顯著下調,miR-92a、miR-222、miR-375、miR-211-5p、miR-1225-3p、miR-5095、let-7a-5p、miR-30b-5p、miR-30c-5p、miR-126-3p、miR-142-3p和miR-210、miR-126-3p則隨年齡增加表達顯著上調[12-16]。此外,Storci G等[17]在百歲老人的外周血單核細胞和真皮成纖維細胞中發(fā)現(xiàn)了有抗衰老作用的miR-335-5p、miR-532-5p和miR-508-3p。紫外線的持續(xù)暴露是皮膚過早衰老的原因之一,長期UVB照射后皮膚中l(wèi)et-7家族、miR-23a、miR-22、miR-200b、miR-34a、miR-27a家族、miR-1246及miR-101表達上調[18-22]。綜上,在衰老皮膚中miRNA的表達差異可能表明其參與衰老的調控,并可能有用于作為衰老的標志物和抗衰老治療策略。然而,關于miRNA參與機體衰老的各種機制,尤其是皮膚衰老的調控,仍然不明確。

2? miRNA在皮膚衰老中的作用

隨著研究的積累,miRNA通過調節(jié)基因的表達調節(jié)皮膚發(fā)育已被證實。然而,miRNA在調節(jié)皮膚發(fā)育、成熟、功能和衰老中的作用尚未完全清楚。目前許多關于miRNA與衰老的研究仍然在進行。以下將總結近幾年來miRNA與參與皮膚結構的細胞(即角質形成細胞、真皮成纖維細胞、免疫細胞、黑素細胞等)調節(jié)皮膚衰老的分子機制。

2.1 miRNA影響角質形成細胞的衰老:角質形成細胞是組成皮膚表皮的主要細胞,主要為皮膚及其附件提供硬度和耐水能力,表皮硬度彈性降低是衰老直觀的表現(xiàn)[23]。UVB的暴露會導致皮膚的衰老這是現(xiàn)在已達成的共識。2012年,Zhou BR等[24]首次報道了UVB輻射后正常人角質形成細胞中的miRNA表達,總共有44個miRNA表達變化,其中15個下調,29個上調。這些miRNA中最高上調了33倍,最高下調了19倍,miR-30a是其中上調最顯著的miRNA之一。2019年,Muther C[25]的團隊對不同年齡段的人角質形成細胞60個與衰老調節(jié)有關的miRNA進行了鑒定,隨后從中選擇了6個miRNA(miR-30a-3p、miR-30a-5p、miR-30c-5p、miR-30c-3p、miR-365a-5p、miR-4443)進行實時PCR驗證,結果證實老化皮膚的角質形成細胞中除miR-4443表達顯著降低外其余miRNA均顯著過表達。隨后,作者選擇了高表達的miR-30a進行相關機制研究發(fā)現(xiàn),miR-30a與抗衰老相關的LOX(編碼賴氨酰氧化酶調節(jié)劑),IDH1(編碼異檸檬酸脫氫酶)和AVEN(編碼半胱天冬酶抑制劑)之間的強直接相關性。最新的研究發(fā)現(xiàn),miR-30a通過靶向有絲分裂受體BNIP3L,導致角質形成細胞終末分化過程中線粒體缺陷,使得細胞分化能力降低老化,因此,他們認為miR-30a隨著時間積累損害表皮穩(wěn)態(tài)使表皮衰老[26]。近期,Yang Z等[27]通過動物實驗發(fā)現(xiàn),經1 064 nm Nd:YAG激光作用后小鼠角質形成細胞系HaCaT中miR-24-3p表達下調,膠原蛋白合成和皮膚屏障的保護作用增強,而過表達miR-24-3p則會抑制激光照射對膠原蛋白合成和皮膚屏障的保護作用。此外,miR-24-3p也在內皮細胞中被發(fā)現(xiàn)有衰老誘導抑制增殖的作用[28]。

2.2 miRNA影響成纖維細胞的衰老:成纖維細胞是組成皮膚真皮層的主要細胞,具有產生膠原蛋白和彈性纖維蛋白的能力,是皮膚保持結構和拉伸運動的重要細胞。成纖維細胞的功能退化將會導致皮膚松弛、皺紋,皮膚傷口愈合減慢等皮膚衰老表現(xiàn)[2]。迄今為止,諸多文獻結果顯示miRNA也參與調節(jié)成纖維細胞的發(fā)育和功能。成纖維細胞的衰老與miRNA差異表達及細胞失去代謝和復制活性,導致細胞外基質的不平衡周轉、膠原蛋白、彈性蛋白和透明質酸含量降低有關。Tan J等[29]在老年小鼠皮膚中鑒定出29種異常表達的miRNA(如:miR-302b-3p、miR-291a-5p、miR-139-3p、miR-467c-3p、miR-186-3p),發(fā)現(xiàn)miR-302b-3p能誘導小鼠真皮成纖維細胞衰老,實際上miR-302-3p通過直接靶向N末端激酶2(JNK2)抑制長壽相關基因Sirtuin 1(Sirt1)表達加速皮膚成纖維細胞衰老。Sirtuin 1是參與細胞增殖調控的基因[30]。miR-34a能夠靶向抑制Sirtuin1大大加速皮膚的纖維化,皮膚纖維化是衰老的標志[31]。此外,最新的研究發(fā)現(xiàn)衰老細胞中上調的miR-146a也通過SIRT通路參與衰老的調節(jié)[32]。與轉化生長因子β(TGF-β)的作用相反,miR-30a在皮膚中下調成纖維細胞增殖,而miR-30a水平的升高與細胞老化和紫外線暴露相關。在衰老的皮膚中膠原蛋白含量是減少的,2019年,Mamalis A等[33]發(fā)現(xiàn)在老化皮膚中miRNA-29、miRNA-196a和Let-7a上調,miRNA-21、miRNA-23b和miRNA-31下調,這些miRNA可以通過TGF-β/SMAD途徑,導致真皮成纖維細胞增殖和膠原蛋白沉積減緩成纖維細胞的衰老。小細胞囊泡(SEV)是塑造皮膚生理和病理發(fā)育的關鍵協(xié)調器,有趣的是在衰老成纖維細胞中SEV隨年齡增加而減少[34]。

最新的研究也報道,miR-218能夠靶向SEV,進而通過激活下游TGF-β1-SMAD2/3途徑促進成纖維細胞的活性增加了小鼠皮膚的厚度和膠原I的含量[32,35]。真皮成纖維細胞的衰老過程也與下調的miRNA有關,去年的研究報道房顫導致的心肌纖維化的成纖維細胞中miR-4443的表達顯著降低??估w維化因子血小板豆素1和TGF-β1的表達進一步促進miR-4443下調,增強心肌成纖維細胞的活性和膠原蛋白的產生,從而對纖維化和心肌損傷發(fā)揮保護作用[36]。參與細胞周期和增殖的因子p53、p21、p16、p38、哺乳動物雷帕霉素靶蛋白(mTOR)、絲分裂激活蛋白激酶(MAPK)也參與了miRNAs與衰老過程之間的聯(lián)系[37]。有證據(jù)表明,p53會誘發(fā)衰老[38]。已有研究證明p53下游基因CDKN1A/p21在衰老過程中被上調[39]。Lezzi A等[40]在2021年報道了p53與p21和CDKN1A之間呈反向趨勢,衰老成纖維細胞中miR-16-5p、miR-454-3p、miR-17-5p、miR-30655的上調,促進p21和CDKN1A表達和p53表達上調,導致細胞周期蛋白依賴性激酶的作用被上調的p53停滯,從而觸發(fā)細胞周期停滯和永久性細胞衰老。

2.3 miRNA影響黑素細胞的衰老:黑素細胞是皮膚抵御紫外線損害的重要細胞,其產生的黑色素能夠分泌到角質成形細胞中分布,吸收紫外線,避免光老化。中年以后,隨著年齡的積累,黑素細胞逐漸減少[41]。目前的研究認為,miRNA在黑色素生成調節(jié)中起著至關重要的作用。在衰老皮膚中黑素細胞分泌和降解黑色素的能力降低,最直觀的表現(xiàn)就是皮膚色素的沉著,光老化加速。Shen Z等[42]用UVB照射體外培養(yǎng)的黑素細胞后測定miRNA譜的表達變化,與未照射相比有15個miRNA上調,包括miR-448、miR-1246、miR-423-5p、miR-320a-3p、miR-320c、miR-320d、miR-320b、miR-375-3p、miR-125b-1-3p、miR-193a-5p、miR-485-5p、miR-7704、let-7a-3p、miR-22-3p和miR-744-5p。其中miR-4488,miR-320d和miR-7704升高最顯著。小眼炎相關轉錄因子(MITF)通過調節(jié)各種基因作為黑素細胞功能、發(fā)育和存活的主要調節(jié)劑[43]。miR-7013在衰老的皮膚組織中上升,MITF是miR-7013-3p的靶基因,miR-7013-3p的過表達會抑制MITF的mRNA和蛋白表達,使得黑素細胞增殖、色素降解、氧化應激的能力降低[44]。相反,miR-340、miR-181a-5p和miR-199a上調通過靶向MITF來減少皮膚色素沉著[45-46]。此外,Zhang Z等[47]的新近綜述中也報道了miR-508-3p、miR-218、miR-141-3p、miR-200a-3p能通過MITF途徑影響黑色素的產生。MITF也是編碼酪氨酸酶(TYR)和透明質酸酶的關鍵基因。Du B等[48-49]研究發(fā)現(xiàn),衰老過程中過表達的miR-183在黑色素B16細胞中可以直接靶向MITF來降低TYR的表達,調節(jié)B16細胞中的黑色素生成。同時,過表達的miR-183也降低了細胞增殖調節(jié)因子絲裂原活化蛋白激酶1(MEK1)、細胞外調節(jié)蛋白激酶L/2(ERK1/2)和cAMP應答元件結合蛋白(CREB)的表達,使得黑素細胞發(fā)育受阻。

2.4 miRNA影響皮膚免疫細胞的衰老:朗格漢斯細胞(LC)和樹突狀細胞(DC)是皮膚中參與免疫反應的主要細胞,其功能主要為識別呈遞抗原至淋巴結中的T細胞,啟動適應性免疫反應或誘導耐受性。目前的研究多認為,皮膚衰老與皮膚免疫能力的降低與LC和DC中miRNA的差異表達降低了LC和DC的增殖和功能導致皮膚對細菌、病毒和真菌感染的敏感性降低有關[50]。幾種miRNA被確定與LC和DC發(fā)育(miR-22和miR-142)、成熟和分化(miR-21、miR-34a、miR-99b、miR-223及miR-511)和免疫功能(miR-10、miR-21、miR-142-3p、miR-146a及miR-155)有關[51]。早在2012年,Xu YP等[52]發(fā)現(xiàn)LC細胞的衰老與miR-709、miR-449和miR-9表達的上調和miR-200c、miR-10a表達下調有關,進一步研究發(fā)現(xiàn),這些差異表達的miRNA能夠靶向TGF-β、RUNX、C/EBP、RANK、CSF、Gfi1、IRF8、AhR阻斷LC的功能和發(fā)育。此外,miR-21和miR-34a在DC分化和調控抗原中發(fā)揮關鍵因素,在衰老DC中miR-21和miR-34a下調了JAG1和WNT1的表達,導致DC發(fā)育和功能缺陷[53]。另一項研究發(fā)現(xiàn),體外FMS樣酪氨酸激酶3配體(Flt3-L)參與DC的分化,并且是miR-142的靶標,有趣的是衰老皮膚中miR-142表達上調會抑制Fit3-L阻斷DC的分化[54]。miR-6875-5p在衰老皮膚中過表達,最近miR-6875-5p也被證明參與了DC的分化,但卻是通過靶向E蛋白家族成員E2-2,E2-2能在轉錄水平上調控DC的發(fā)育,過表達的miR-6875-5p抑制STAT3/E2信號通路降低DC的分化[55]。除此之外,DC的成熟依賴于特異性細胞間黏附分子3(ICAM-3)和捕獲非整合蛋白(SIGN),DC的免疫作用依賴于人細胞因子信號轉導抑制因子1(SOCS-1),它們是miR-155的靶點。因此,衰老DC中miR-155的下調,阻礙了DC的成熟,促進SOCS-1的表達,抑制DC釋放炎性因子IL-12[56-57]。DC的凋亡也受miRNA調控,如miR-146、miR-29、miR-126,其在衰老DC中的過表達顯著促進了DC的凋亡[58]。綜上,隨年齡調節(jié)變化的miRNA可能通過影響靶向多種調節(jié)LC和DC發(fā)育或功能的信號通路,使得皮膚免疫能力降低來參與皮膚衰老。

3? 小結

綜上,與衰老相關的miRNA的表達會影響皮膚組織結構細胞中各種基因的功能,并可能促進或抵消細胞衰老。本文總結了部分已發(fā)表miRNA與皮膚組成細胞之間衰老的研究。發(fā)現(xiàn)許多miRNA在不同年齡人群中表達差異,這使得它們在調節(jié)與年齡相關信號通路時導致皮膚在不同年齡段有不同的外觀表現(xiàn)。雖然一些研究已明確了某一特定miRNA在特定皮膚細胞中的衰老調節(jié)機制,但仍難以全面解釋皮膚衰老。因此,miRNAs調節(jié)皮膚衰老的過程仍需進一步探索,這或許將為抗衰老提供一種治療策略。

[參考文獻]

[1]Xie X Y, Wang Y N, Zeng Q T, et al. Characteristic features of neck skin aging in Chinese women[J]. J Cosmet Dermatol, 2018,17(5):935-944.

[2]Russell-Goldman E, Murphy G F. The pathobiology of skin aging new insights into an old dilemma[J]. Am J Pathol, 2020,190(7):1356-1369.

[3]Schneider S, Pollet M, Majora M, et al. Intrinsic versus extrinsic skin aging: Extrinsically differ from intrinsically aged human skin fibroblasts in their metabolic adaptive responses and by carrying a signature of catastrophic failure[J]. J Invest Dermatol, 2022,142(8):S105.

[4]Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs[J]. Nucleic Acids Res, 2019,47(7):3353-3364.

[5]Karagkouni D, Paraskevopoulou M D, Tastsoglou S, et al. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts[J]. Nucleic Acids Res, 2020,48(D1):D101-D110.

[6]Matsubara K, Matsubara Y, Uchikura Y, et al. Pathophysiology of preeclampsia: the role of exosomes[J]. Int J Mol Sci, 2021,22(5):2572.

[7]Grillari J, Hackl M, Grillari-Voglauer R. miR-17-92 cluster: ups and downs in cancer and aging[J]. Biogerontology, 2010,11(4):501-506.

[8]Pokorski M, Barassi G, Bellomo R G, et al. Bioprogressive paradigm in physiotherapeutic and antiaging strategies: a review[J]. Adv Exp Med Biol, 2018,1116:1-9.

[9]Ortiz G G R, Mohammadi Y, Nazari A,et al. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity[J]. Cell Commun Signal, 2023,21(1):85.

[10]Huan T, Chen G, Liu C, et al. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits[J]. Aging Cell, 2018,17(1):e12678.

[11]Kinser H E, Pincus Z. MicroRNAs as modulators of longevity and the aging process[J]. Hum Genet, 2020,139(3):291-308.

[12]Zhang H, Yang H, Zhang C, et al. Investigation of microRNA expression in human serum during the aging process[J]. J Gerontol A Biol Sci Med Sci, 2015,70(1):102-109.

[13]Ameling S, Kacprowski T, Chilukoti R K, et al.Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study[J]. BMC Med Genomics, 2015,8:61.

[14]Olivieri F, Bonafe M, Spazzafumo L, et al. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells[J]. Aging (Albany NY), 2014,6(9):771-787.

[15]Szemraj M, Oszajca K, Szemraj J, et al. MicroRNA Expression Analysis in Serum of Patients with Congenital Hemochromatosis and Age-Related Macular Degeneration (AMD)[J]. Med Sci Monit, 2017,23:4050-4060.

[16]Noren H N, Martin-Montalvo A, Dluzen D F, et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence[J]. Aging Cell, 2016,15(3):572-581.

[17]Storci G, De Carolis S, Papi A, et al. Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians[J]. Cell Death Differ, 2019,26(9):1845-1858.

[18]Blackstone B N, Wilgus T A, Roy S, et al. Skin biomechanics and mirna expression following chronic UVB irradiation[J]. Adv Wound Care (New Rochelle), 2020,9(3):79-89.

[19]Zhang Y, Yang C, Yang S, et al. MiRNA-27a decreases ultraviolet B irradiation-induced cell damage[J]. J Cell Biochem, 2020,121(2):1032-1038.

[20]Li W, Wu Y F, Xu R H, et al. miR-1246 releases RTKN2-dependent resistance to UVB-induced apoptosis in HaCaT cells[J]. Mol Cell Biochem, 2014,394(1-2):299-306.

[21]Gao W, Yuan L M, Zhang Y, et al. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-beta/Smad and attenuation of MAPK/AP-1 pathway[J]. Photochem Photobiol Sci, 2023,22(1):135-146.

[22]Greussing R, Hackl M, Charoentong P, et al. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts[J]. BMC Genomics, 2013,14:224.

[23]Min M, Chen X B, Wang P, et al. Role of Keratin 24 in human epidermal keratinocytes[J]. PLoS One, 2017,12(3):e0174626.

[24]Zhou B R, Xu Y, Permatasari F, et al. Characterization of the miRNA profile in UVB-irradiated normal human keratinocytes[J]. Exp Dermatol, 2012,21(4):317-319.

[25]Muther C, Jobeili L, Garion M, et al. An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis[J]. Aging (Albany NY), 2017,9(11):2376-2396.

[26]Chevalier F P, Rorteau J, Ferraro S, et al. Mir-30a-5p alters epidermal terminal differentiation during aging by regulating bnip3l/nix-dependent mitophagy[J]. Cells, 2022,11(5):836.

[27]Yang Z, Duan X, Wang X, et al. The effect of Q-switched 1 064 nm dymium-doped yttrium aluminum garnet laser on the skin barrier and collagen synthesis through miR-24-3p[J]. Lasers Med Sci, 2022,37(1):205-214.

[28]Min X, Cai M Y, Shao T, et al. A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR-24-3p/CDK4/pRb axis[J]. Aging Cell, 2022,21(1):e13529.

[29]Tan J, Hu L, Yang X, et al. miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence[J]. J Cell Biochem, 2020,121(1):70-80.

[30]Bielach-Bazyluk A, Zbroch E, Mysliwiec H, et al. Sirtuin 1 and skin: implications in intrinsic and extrinsic aging-a systematic review[J]. Cells, 2021,10(4):813.

[31]Park J, Kim J, Chen Y Q, et al. CO ameliorates cellular senescence and aging by modulating the miR-34a/Sirt1 pathway[J]. Free Radic Res, 2020,54(11-12):848-858.

[32]Gong H, Chen H, Xiao P, et al. miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD(+)/SIRT inactivation[J]. Signal Transduct Target Ther, 2022,7(1):66.

[33]Mamalis A, Koo E, Tepper C, et al. MicroRNA expression analysis of human skin fibroblasts treated with high-fluence light-emitting diode-red light[J]. J Biophotonics, 2019,12(5):e201800207.

[34]O'Loghlen A. The potential of aging rejuvenation[J]. Cell Cycle, 2022,21(2):111-116.

[35]Zou Q, Zhang M, Yuan R, et al. Small extracellular vesicles derived from dermal fibroblasts promote fibroblast activity and skin development through carrying miR-218 and ITGBL1[J]. J Nanobiotechnol, 2022,20(1):296.

[36]Xiao J, Zhang Y, Tang Y, et al. hsa-miR-4443 inhibits myocardial fibroblast proliferation by targeting THBS1 to regulate TGF-β1/α-SMA/collagen signaling in atrial fibrillation[J]. Braz J Med Biol Res, 2021,54(4):e10692.

[37]孫麗娥,金國琴.微小RNA在衰老及衰老性疾病發(fā)生發(fā)展中的調控作用[J].生命的化學,2018,38(2):200-206.

[38]Xu S, Zhang B, Zhu Y M, et al. miR-194 functions as a novel modulator of cellular senescence in mouse embryonic fibroblasts[J]. Cell Biol Int, 2017,41(3):249-257.

[39]Papismadov N, Gal H, Krizhanovsky V. The anti-aging promise of p21[J]. Cell Cycle, 2017,16(21):1997-1998.

[40]Lezzi A, Caiola E, Colombo M, et al. Molecular determinants of response to PI3K/akt/mTOR and KRAS pathways inhibitors in NSCLC cell lines[J]. Am J Cancer Res, 2020,10(12):4488.

[41]Waller J M, Maibach H I. Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure[J]. Skin Res Technol, 2006,12(3):145-154.

[42]Shen Z, Sun J, Shao J, et al. Ultraviolet B irradiation enhances the secretion of exosomes by human primary melanocytes and changes their exosomal miRNA profile[J]. PLoS One, 2020,15(8):e237023.

[43]Gelmi M C, Houtzagers L E, Strub T, et al. MITF in normal melanocytes, cutaneous and uveal melanoma: a delicate balance[J]. Int J Mol Sci, 2022,23(11):6001.

[44]Huang Y J, Gao Y, Wang C J, et al. Hydroxyurea regulates the development and survival of B16 Melanoma Cells by upregulating MiR-7013-3p[J]. Int J Med Sci, 2021,18(8):1877-1885.

[45]Yang Y, Wei X J, Bai J, et al. MicroRNA-340 is involved in ultraviolet B-induced pigmentation by regulating the MITF/TYRP1 axis[J]. J Int Med Res, 2020,48(11):300060520971510.

[46]Wang X Y, Guan X H, Yu Z P, et al. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively[J]. Stem Cell Res Ther, 2021,12(1):501.

[47]Zhang Z, Shen W, Liu W, et al. Role of miRNAs in melanin metabolism: Implications in melanin-related diseases[J]. J Cosmet Dermatol, 2022,21(10):4146-4159.

[48]Du B, Liu X, Khan A, et al. miRNA-183 approximately 96 approximately 182 regulates melanogenesis, cell proliferation and migration in B16 cells[J]. Acta Histochem, 2020,122(3):151508.

[49]Jawaid A, Woldemichael B T, Kremer E A, et al. Memory decline and its reversal in aging and neurodegeneration involve mir-183/96/182 biogenesis[J]. Mol Neurobiol, 2019,56(5):3451-3462.

[50]Zegarska B, Pietkun K, Giemza-Kucharska P, et al. Changes of Langerhans cells during skin ageing[J]. Postepy Dermatol Alergol, 2017,34(3):260-267.

[51]Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017,8(7):501-513.

[52]Xu Y P, Qi R Q, Chen W, et al. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile[J]. Aging (Albany NY), 2012,4(11):742-754.

[53]Hashimi S T, Fulcher J A, Chang M H, et al. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation[J]. Blood,2009,114(2):404-414.

[54]Kuipers H, Schnorfeil F M, Brocker T. Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development[J]. Mol Immunol, 2010,48(1-3):333-340.

[55]Zhu X X, Yin X Q, Hei G Z, et al. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion[J]. Mol Hum Reprod, 2021,27(8):gaab044.

[56]Martinez-Nunez R T, Louafi F, Friedmann P S, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN)[J]. J Biol Chem, 2009,284(24):16334-16342.

[57]Lu C, Huang X, Zhang X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1[J]. Blood, 2011,117(16):4293-4303.

[58]Hong Y, Wu J, Zhao J, et al. miR-29b and miR-29c are involved in Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells[J]. PLoS One, 2013,8(7):e69926.

[收稿日期]2022-10-26

本文引用格式:包樹明,諾布央卓,左蕊,等.microRNA與皮膚衰老的研究進展[J].中國美容醫(yī)學,2024,33(4):186-190.

猜你喜歡
微小RNA衰老黑素細胞
MiRNA在肺癌診斷與治療中的應用進展
微小RNA和腫瘤治療的研究進展
香煙煙霧提取物對外周血內皮祖細胞衰老的影響及其機制研究
衰老與運動
體育時空(2016年8期)2016-10-25 20:40:30
物理學使“衰老”變得不可避免
飛碟探索(2016年8期)2016-09-06 10:26:12
鼻咽癌腫瘤干細胞miRNAs和 lncRNAs及mRNAs表達譜分析
亞精胺誘導自噬在衰老相關疾病中的作用
科技視界(2016年11期)2016-05-23 08:10:09
TLR3活化對正常人表皮黑素細胞內活性氧簇表達的影響
自體培養(yǎng)黑素細胞治療白癜風患者療效觀察
角質形成細胞和黑素細胞體外共培養(yǎng)體系的建立
三亚市| 鸡东县| 自治县| 时尚| 乌鲁木齐县| 宿松县| 宁武县| 晋城| 广南县| 凉城县| 海口市| 合江县| 靖远县| 临安市| 孝昌县| 綦江县| 城固县| 渭南市| 东阳市| 六安市| 光泽县| 聊城市| 河源市| 宁乡县| 丹东市| 甘德县| 万宁市| 奉贤区| 抚松县| 尖扎县| 永修县| 英吉沙县| 海淀区| 谷城县| 洱源县| 迁西县| 永州市| 达孜县| 泾川县| 神池县| 凉城县|