靳文君?鄭琳?羅珊珊?程余婷?鞏仔鵬?廖健
通信作者簡(jiǎn)介: 廖健,博士,教授,主任醫(yī)師,博士研究生導(dǎo)師,貴州省高層次創(chuàng)新“百層次”人才,貴州省第三屆“百優(yōu)醫(yī)師”,貴州醫(yī)科大學(xué)骨干教師、優(yōu)秀共產(chǎn)黨員、優(yōu)秀教師、優(yōu)秀教育工作者,貴州醫(yī)科大學(xué)附屬口腔醫(yī)院十佳醫(yī)生。現(xiàn)任貴州醫(yī)科大學(xué)口腔醫(yī)學(xué)院黨委委員、副院長(zhǎng)。2014年畢業(yè)于四川大學(xué)華西口腔醫(yī)學(xué)院,獲口腔醫(yī)學(xué)博士學(xué)位。2016年至2017年獲國家公派留學(xué)于美國Loma Linda大學(xué),同期參加美國牙科種植學(xué)會(huì)(AAID)認(rèn)證的國際頂尖口腔種植大師課程(Implant Maxi-Courses)學(xué)習(xí)并獲證書。兼任美國種植牙科學(xué)會(huì)(AAID)會(huì)員,中華口腔醫(yī)學(xué)會(huì)口腔材料學(xué)專委會(huì)委員,貴州省口腔醫(yī)學(xué)會(huì)口腔修復(fù)及口腔種植專委會(huì)常委。主持國家自然科學(xué)基金項(xiàng)目3項(xiàng)、省部級(jí)科研項(xiàng)目6項(xiàng)(包括省自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng))。已發(fā)表專業(yè)論文60余篇。
【摘要】骨質(zhì)疏松癥(OP)是一種以全身性骨量丟失、骨微結(jié)構(gòu)破壞為特征的骨骼疾病,根本病因在于由成骨細(xì)胞和破骨細(xì)胞介導(dǎo)的骨形成與骨吸收動(dòng)態(tài)平衡失調(diào),骨吸收大于骨形成。而自噬對(duì)OP的發(fā)生、發(fā)展起著重要作用,自噬水平的變化是影響骨平衡的關(guān)鍵因素。研究證實(shí),自噬相關(guān)分子 Beclin-1、P62通過不同層面直接調(diào)控自噬小體的形成,從而影響OP的發(fā)生與發(fā)展。該文對(duì)Beclin-1、P62在OP中的表達(dá)機(jī)制、作用特點(diǎn)及靶向治療作一概述,為今后OP的防治以及進(jìn)一步研究提供理論基礎(chǔ)。
【關(guān)鍵詞】自噬;骨質(zhì)疏松癥;P62;Beclin-1;靶向治療
Research progress in Beclin-1 and P62 in osteoporosis Jin Wenjun△, Zheng Lin, Luo Shanshan, Cheng Yuting, Gong Zipeng,Liao Jian.△School of Stomatology, Guizhou Medical University, Guiyang 550001, China
Corresponding author, Liao Jian, E-mail: liaojian@gmc.edu.cn
【Abstract】Osteoporosis (OP) is a bone disease characterized by systemic bone loss and destruction of bone microstructure. The fundamental cause is the imbalance between bone formation and bone resorption mediated by osteoblasts and osteoclasts, and bone resorption is greater than bone formation. Autophagy plays an important role in the occurrence and development of osteoporosis, and the change of autophagy level is a key factor affecting bone balance. Studies have confirmed that autophagy-related molecules of Beclin-1 and P62 directly regulate the formation of autophagosomes at different levels, thus affecting the occurrence and development of OP. In this article, the expression mechanism, functional characteristics and targeted therapy of Beclin-1 and P62 in OP were reviewed, aiming to provide a theoretical basis for the prevention, treatment and subsequent research of OP.
【Key words】Autophagy; Osteoporosis; P62; Beclin-1; Targeted therapy
骨質(zhì)疏松癥(OP)是一種以骨量減少、骨微結(jié)構(gòu)破壞為特征的全身破壞性骨疾病,分為原發(fā)性(絕經(jīng)、衰老)和繼發(fā)性(藥物)OP[1]。隨著老齡化進(jìn)程的加快,OP已成為嚴(yán)重危害公眾健康的慢性疾病之一。2018年國家健康委員會(huì)發(fā)布的我國OP的流行病學(xué)調(diào)查數(shù)據(jù)顯示,50歲以上人群中OP患病率為19.2%,其中中老年女性患病率達(dá)32.1%,且65歲以上女性高達(dá)51.6%[2]。
近幾十年來,眾多學(xué)者對(duì)OP病因機(jī)制的研究著重于骨細(xì)胞的穩(wěn)態(tài),包括細(xì)胞功能的維持、分化和應(yīng)激反應(yīng)。自噬與自噬相關(guān)蛋白在OP的發(fā)展中起重要作用,骨形成與骨吸收的平衡與自噬水平的變化密切相關(guān)[3-4]。近年來,針對(duì)OP的自噬靶向治療效果顯著,優(yōu)勢(shì)明顯。Beclin-1及P62是自噬過程中的關(guān)鍵蛋白,有望成為治療骨代謝疾病的靶點(diǎn),本文對(duì)兩者在OP發(fā)病中的分子機(jī)制以及靶向Beclin-1、P62治療OP的研究進(jìn)展作介紹。
一、自噬概述
自噬又稱Ⅱ型細(xì)胞死亡,是指在各種應(yīng)激條件(饑餓、低氧、高溫等)影響下,真核細(xì)胞通過溶酶體途徑對(duì)細(xì)胞質(zhì)內(nèi)的物質(zhì)進(jìn)行降解的一種高度保守的物質(zhì)循環(huán)過程[5]。此外,自噬能夠有效地清除細(xì)胞內(nèi)異常和受損的蛋白質(zhì),以此來維護(hù)細(xì)胞內(nèi)環(huán)境的穩(wěn)定。自噬分為巨自噬、分子伴侶介導(dǎo)的自噬和微自噬[3]。巨自噬是目前研究最廣泛的自噬過程,以下的自噬均指巨自噬[6]。自噬的階段包括起始、延伸、成核、降解[7]。自噬起始階段由兩大分子復(fù)合物介導(dǎo),分別是絲氨酸/蘇氨酸蛋白激酶ULK1、ULK2參與形成的ULK1/ULK2復(fù)合物以及由Beclin-1和其他蛋白組成的Ⅲ類磷脂酰肌醇3-激酶(PIK3)復(fù)合物,也稱為Vps34復(fù)合物[8]。因此Beclin-1可以作為觀察自噬起始的標(biāo)志物[9]。囊泡的延伸需要Atg12-Atg5-Atg16和微管相關(guān)蛋白質(zhì)輕鏈3(LC3)-磷脂酰乙醇胺(PE)這2個(gè)泛素樣結(jié)合系統(tǒng)的參與[10-11]。
起初,LC3由ATG4蛋白酶對(duì)其前端進(jìn)行加工而成,以LC3-Ⅰ的形式存在。而后,LC3-Ⅰ與磷脂酰乙醇胺(PE)結(jié)合形成LC3-Ⅱ,并融入自噬體的雙層膜結(jié)構(gòu)中。此外,聚集的蛋白和受損的細(xì)胞器可形成一種泛素化結(jié)構(gòu),P62能夠通過其泛素結(jié)構(gòu)相關(guān)域(UBA)與泛素結(jié)合,并通過其LC3結(jié)合區(qū)域(LIR)與LC3-Ⅱ相互作用。兩者結(jié)合后可將泛素化聚集體或其他細(xì)胞組分募集到自噬體中,促進(jìn)它們的降解。
二、自噬與OP的關(guān)系
1.自噬與老年性O(shè)P(SOP)
SOP是在增齡過程中造成的骨量減少、骨微結(jié)構(gòu)破壞、骨脆性增加、易發(fā)生骨折的一種骨骼生理性退行性疾?。?2]。研究表明,抑制骨細(xì)胞中的自噬引起的骨骼變化類似于由衰老引起的骨骼變化,這種異常的自噬水平可破壞骨代謝,在OP的發(fā)生中起促進(jìn)作用[13]。骨髓間充質(zhì)干細(xì)胞(BMSC)是成骨分化、維持骨代謝穩(wěn)態(tài)調(diào)控的關(guān)鍵細(xì)胞,BMSC衰老引發(fā)的細(xì)胞活力降低可能是引發(fā)OP骨代謝失衡的重要環(huán)節(jié)[14]。與健康人相比,OP患者的人來源BMSC表現(xiàn)出與衰老相關(guān)的表型,且自噬水平顯著降低[15]。在經(jīng)自噬激活劑雷帕霉素處理后的老年小鼠中,其自噬水平上調(diào),衰老BMSC的退行性功能恢復(fù),緩解了老年小鼠骨丟失[16]。以上研究表明,年齡相關(guān)性O(shè)P與自噬密切相關(guān)。
2.自噬與絕經(jīng)后OP(PMOP)
絕經(jīng)后的女性體內(nèi)雌激素水平大幅度下降,雌激素對(duì)骨骼具有保護(hù)作用,缺乏雌激素的保護(hù)作用會(huì)使骨吸收與骨重建的平衡失調(diào),最終導(dǎo)致PMOP。雌激素水平的下降會(huì)減少細(xì)胞自噬而增加細(xì)胞凋亡的易感性[17]。降低的自噬活性與BMSC的再生能力降低相關(guān),雌激素可抑制細(xì)胞凋亡且維持自噬而部分增加骨細(xì)胞活力[17-18]。卵巢切除小鼠表現(xiàn)出成骨分化減少、成脂分化增加,同時(shí)其骨髓和BMSC中的自噬均減少,而雷帕霉素可以上調(diào)自噬水平,恢復(fù)內(nèi)源性BMSC的功能并減弱PMOP表型[18]。
3.自噬與糖皮質(zhì)激素(GCS) 誘導(dǎo)的OP (GIOP)
GIOP是繼發(fā)性O(shè)P的常見形式之一。GCS會(huì)破壞成骨細(xì)胞的增殖能力,同時(shí)增強(qiáng)破骨細(xì)胞的存活能力和骨吸收,增加骨密度降低和骨折風(fēng)險(xiǎn)。當(dāng)細(xì)胞受到GCS刺激時(shí),可通過激活相應(yīng)的細(xì)胞信號(hào)通路促進(jìn)破骨細(xì)胞自噬過程的啟動(dòng)。在小鼠模型中,GIOP組的自噬受抑制,成骨細(xì)胞的數(shù)量減少75%[19]。GCS促進(jìn)破骨細(xì)胞的形成,破骨細(xì)胞特異性自噬相關(guān)蛋白缺失的小鼠表現(xiàn)出對(duì)GCS誘導(dǎo)的骨質(zhì)流失的抵抗[20]。因此,通過調(diào)控自噬改善GIOP過程中骨形成相關(guān)細(xì)胞的功能狀態(tài)、提高成骨能力,有望成為治療GIOP的新方法。
三、Beclin-1、P62與OP
1. Beclin-1與OP
1.1 Beclin-1結(jié)構(gòu)及蛋白功能
Beclin-1最初被鑒定為Bcl-2結(jié)合蛋白,是自噬機(jī)制的組分,并且對(duì)于Ⅲ類PI3K-Vsp34復(fù)合物和自噬膜成核的形成至關(guān)重要[9, 21]。Beclin-1在自噬通路中處于中心節(jié)點(diǎn),與多種蛋白相互作用調(diào)控自噬體形成與成熟,進(jìn)而與OP的發(fā)生和發(fā)展密切相關(guān)。Beclin-1與酵母自噬基因Atg 6
高度同源,由450個(gè)氨基酸組成,該蛋白含有12個(gè)外顯子,位于人類17號(hào)染色體的長(zhǎng)臂上[21]。
Beclin-1主要通過3個(gè)結(jié)構(gòu)域與其他蛋白結(jié)合形成多個(gè)復(fù)合體來調(diào)控自噬通路,通過這些結(jié)構(gòu)域能夠募集參與自噬體成核的幾種自噬蛋白,并為參與自噬體形成和成熟的重要自噬蛋白提供平臺(tái)。
1.2 Beclin-1在OP中的表達(dá)
Beclin-1參與調(diào)控自噬與細(xì)胞凋亡之間的反饋?zhàn)饔?,與炎性骨代謝疾病的發(fā)生和發(fā)展密切相關(guān)。炎癥反應(yīng)在骨代謝中起著重要的調(diào)節(jié)作用,過度或持續(xù)的炎癥反應(yīng)會(huì)導(dǎo)致骨質(zhì)流失[22]。Beclin-1參與調(diào)控TNF-α、IL-1β等炎癥細(xì)胞因子的合成和分泌[23]。TNF-α的存在可阻礙成骨細(xì)胞分化和促進(jìn)破骨細(xì)胞分化,TNF-α基因敲除的小鼠會(huì)出現(xiàn)自噬增強(qiáng)導(dǎo)致的骨降解[24-25]。相關(guān)研究報(bào)道,破骨細(xì)胞中Beclin-1的缺乏會(huì)導(dǎo)致小鼠松質(zhì)骨骨量減少、皮質(zhì)骨增厚,并且伴有軟骨細(xì)胞的分化缺陷[26]。在人骨關(guān)節(jié)炎患者和去卵巢誘導(dǎo)的骨質(zhì)疏松小鼠模型中,Beclin-1的表達(dá)均下調(diào)[18, 27]。以上提示,Beclin-1可能會(huì)成為骨相關(guān)疾病研究的重點(diǎn)。
2. P62與OP
2.1 P62結(jié)構(gòu)及蛋白功能
P62蛋白由SQSTM1基因編碼,蛋白大小為62 kDa,位于第5號(hào)染色體上,由8個(gè)外顯子組成,包含440個(gè)氨基酸[28-29]。P62具有多個(gè)功能結(jié)構(gòu)域,包括2個(gè)核定位信號(hào)(NLS)、核輸出信號(hào)(NES)、LC3相互作用區(qū)(LIR)和泛素相關(guān)(UBA)結(jié)構(gòu)域等。P62含豐富的結(jié)構(gòu)域和功能,是信號(hào)傳導(dǎo)途徑中的重要組成部分。在骨代謝疾病發(fā)生發(fā)展的過程中,P62通過與相關(guān)蛋白質(zhì)的相互作用來調(diào)控不同的信號(hào)通路,包括核轉(zhuǎn)錄因子κappa B(NF-κB)、NF-E2相關(guān)因子2(NRF2)、哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)及細(xì)胞凋亡等[30]。
2.2 P62在OP中的表達(dá)
P62蛋白通過激活NF-κB 通路促進(jìn)破骨細(xì)胞的自噬,故可影響骨生成及緩解炎性反應(yīng)限制骨代謝紊亂[31-33]。NF-κB通路參與調(diào)節(jié)炎癥條件下P62的表達(dá),P62的上調(diào)依賴于NF-κB通路的激活[34]。P62不僅能作為NF-κB的靶基因發(fā)揮作用,還可通過自噬依賴性或非依賴性途徑影響NF-κB通路活化的能力[35]。研究顯示,P62基因突變與Paget骨?。≒DB)高發(fā)病率存在相關(guān)性。基因突變的P62會(huì)引起蛋白功能異常,進(jìn)而影響破骨細(xì)胞的調(diào)控和骨骼的正常代謝。具體來說,P62基因突變可引起破骨細(xì)胞的異常活躍而引發(fā)骨骼類疾病PDB[36]。P62也將有望成為骨相關(guān)疾病研究的重要方向。
四、以Beclin-1 與 P62為靶點(diǎn)治療OP的研究進(jìn)展
1.西 藥
1.1雌二醇
雌激素替代療法和選擇性雌激素受體調(diào)節(jié)劑被用于治療PMOP[37]。雌激素可通過上調(diào)Atg 7或Beclin-1直接激活破骨細(xì)胞前體細(xì)胞的自噬,從而促進(jìn)破骨細(xì)胞的生成;但雌激素也可通過抑制NF-κB受體活化因子配體(RANKL)信號(hào)而阻斷RANKL誘導(dǎo)的破骨前體細(xì)胞的自噬激活,若這個(gè)抑制程度超過雌激素對(duì)自噬的直接促進(jìn)作用,則會(huì)表現(xiàn)出抑制破骨的作用[38]。
1.2 甲狀旁腺激素(PTH)
PTH和特立帕肽作為合成代謝藥物,能激活自噬以保護(hù)骨細(xì)胞免受氧化應(yīng)激并抑制細(xì)胞凋亡級(jí)聯(lián)的激活[39-40]。PTH的間歇性釋放可通過上調(diào)Beclin-1表達(dá)增加自噬活性,從而刺激骨形成[40]。此外,PTH還可通過增強(qiáng)自噬過程預(yù)防骨關(guān)節(jié)炎誘導(dǎo)的骨損傷。
1.3骨保護(hù)素(OPG)
OPG屬于雙磷酸鹽類藥物、骨吸收抑制劑。該類藥物可通過抑制骨骼中骨吸收細(xì)胞的活性,緩解OP的進(jìn)展,從而起到保護(hù)骨骼的作用[41]。在經(jīng)OPG處理的小鼠破骨細(xì)胞中,LC3-Ⅱ水平升高,P62水平降低,伴隨破骨細(xì)胞活性下降,說明OPG可以誘導(dǎo)破骨細(xì)胞的自噬,降低骨吸收活性[42]。
2.中 藥
2.1 山柰酚
山柰酚是一種天然的黃酮類化合物。大量文獻(xiàn)表明,山柰酚具有抗炎、抗氧化、抗腫瘤以及免疫調(diào)節(jié)等多種生物活性[43-45]。目前,已有研究證實(shí)山柰酚活性單體具有骨保護(hù)作用,其能調(diào)節(jié)BMSC、成骨細(xì)胞及破骨細(xì)胞的活性,可用于防治OP[46]。Kim等[47]發(fā)現(xiàn),山柰酚在RANKL誘導(dǎo)的小鼠破骨細(xì)胞形成過程中,通過下調(diào)P62的表達(dá)抑制破骨細(xì)胞的自噬過程,并誘導(dǎo)細(xì)胞凋亡。此外,P62能夠與泛素化的蛋白質(zhì)結(jié)合并相互作用,調(diào)節(jié)泛素化蛋白質(zhì)周轉(zhuǎn),介導(dǎo)蛋白質(zhì)聚集,充當(dāng)自噬和細(xì)胞凋亡信號(hào)之間的分子開關(guān)[33]。由此推測(cè)山柰酚可通過降解P62來抑制自噬激活的細(xì)胞凋亡。
2.2 蘆 丁
蘆丁是杜仲中的一種天然黃酮類化合物,可能在OP中發(fā)揮重要作用[48]。研究表明,蘆丁通過激活自噬降低P62蛋白水平,促進(jìn)體外培養(yǎng)的老齡小鼠BMSC骨向分化能力,逆轉(zhuǎn)卵巢切除大鼠的骨質(zhì)疏松表型,并重建骨穩(wěn)態(tài)[49]。
2.3 葛根素
葛根素是一類以異黃酮類化合物為主要活性的中藥,其具有潛在的抗OP作用且可保護(hù)軟骨細(xì)胞、改善骨關(guān)節(jié)炎等[50]。體內(nèi)研究顯示,葛根素保護(hù)骨關(guān)節(jié)炎小鼠的軟骨免于被自噬抑制劑和 Beclin-1抑制劑逆轉(zhuǎn)導(dǎo)致的損傷,表明該藥可作為自噬相關(guān)疾病的潛在治療藥物。
2.4 淫羊藿苷
淫羊藿苷是從淫羊藿中提取的一種天然黃酮類化合物,具有類雌激素作用,包括抗炎、改善OP等[51]。Liang 等(2019年)的研究顯示,淫羊藿苷可能通過增加自噬活性加強(qiáng)BMSC的成骨分化來減少卵巢切除誘導(dǎo)的骨丟失。此外,楊冰璇等(2022年)發(fā)現(xiàn),前成骨細(xì)胞MC3T3-E1成骨分化的潛在機(jī)制可能與淫羊藿苷提高該細(xì)胞自噬相關(guān)。
五、總結(jié)與展望
OP是臨床常見的骨代謝類疾病。自噬對(duì)于骨穩(wěn)態(tài)變化具有重要調(diào)控作用,其中Beclin-1、P62作為自噬關(guān)鍵蛋白,參與了OP的發(fā)生發(fā)展。然而,以往有關(guān)自噬的研究著重于其在腫瘤、癌癥方面的作用機(jī)制,自噬對(duì)OP的機(jī)制研究相對(duì)較少。上調(diào)Beclin-1并下調(diào) P62可抑制OP的發(fā)生發(fā)展,而Beclin-1過表達(dá)或抑制P62表達(dá)可促進(jìn)OP,由此表明過低或過高的自噬水平均不利于骨穩(wěn)態(tài)的建立。目前,以細(xì)胞自噬為切入點(diǎn),靶向治療OP的研究已深入開展。近年來,中醫(yī)藥在治療OP方面的研究明顯增多,但以Beclin-1、P62為關(guān)鍵靶點(diǎn)防治OP尚缺少體內(nèi)或體外研究的驗(yàn)證,故未來應(yīng)將臨床與基礎(chǔ)研究緊密結(jié)合起來,并對(duì)中醫(yī)藥靶向調(diào)控Beclin-1、P62進(jìn)行更為系統(tǒng)化的研究,充分發(fā)揮中醫(yī)藥抗OP的優(yōu)勢(shì)。
參 考 文 獻(xiàn)
[1] 夏維波, 章振林, 林華, 等. 原發(fā)性骨質(zhì)疏松癥診療指南(2017)[J]. 中國骨質(zhì)疏松雜志, 2019, 25(3): 281-309.
Xia W B, Zhang Z L, Lin H, et al. Guidelines for the diagnosis and management of primary osteoporosis(2017)[J]. Chin J Osteoporos, 2019, 25(3): 281-309.
[2] Wang L, Yu W, Yin X, et al. Prevalence of osteoporosis and fracture in China: the China Osteoporosis Prevalence Study[J]. JAMA Netw Open, 2021, 4(8): e2121106.
[3] Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256.
[4] Trojani M C, Santucci-Darmanin S, Breuil V, et al. Autophagy and bone diseases[J]. Joint Bone Spine, 2022, 89(3): 105301.
[5] Klionsky D J, Abdel-Aziz A K, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)[J]. Autophagy, 2021, 17(1): 1-382.
[6] Klionsky D J, Abdalla F C, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy[J]. Autophagy, 2012, 8(4): 445-544.
[7] Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy [J]. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364.
[8] Park J M, Seo M, Jung C H, et al. ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction[J]. Autophagy, 2018, 14(4): 584-597.
[9] Hill S M, Wrobel L, Rubinsztein D C. Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation[J]. Cell Death Differ, 2019, 26(4): 617-629.
[10] Luo Y, Jiang C, Yu L, et al. Chemical biology of autophagy-related proteins with posttranslational modifications: from chemical synthesis to biological applications[J]. Front Chem, 2020, 8: 233.
[11] Karow M, Fischer S, Me?ling S, et al. Functional characterisation of the autophagy ATG12~5/16 complex in Dictyostelium discoideum[J]. Cells, 2020, 9(5): 1179.
[12] 馬遠(yuǎn)征, 王以朋, 劉強(qiáng), 等. 中國老年骨質(zhì)疏松癥診療指南(2018)[J]. 中國實(shí)用內(nèi)科雜志, 2019, 39(1): 38-61.
Ma Y Z, Wang Y P, Liu Q, et al. 2018 China guideline for diagnosis and treatment of senile osteoporosis[J]. Chin J Pract Intern Med, 2019, 39(1): 38-61.
[13] Su W, Lv C, Huang L, et al. Glucosamine delays the progression of osteoporosis in senile mice by promoting osteoblast autophagy[J]. Nutr Metab, 2022, 19(1): 75.
[14] Qadir A, Liang S, Wu Z, et al. Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells[J]. Int J Mol Sci, 2020, 21(1): 349.
[15] Wan Y, Zhuo N, Li Y, et al. Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae[J]. Biochem Biophys Res Commun, 2017, 488(1): 46-52.
[16] Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging[J]. Aging Cell, 2018, 17(1): e12709.
[17] Florencio-Silva R, Sasso G R S, Sasso-Cerri E, et al. Effects of estrogen status in osteocyte autophagy and its relation to osteocyte viability in alveolar process of ovariectomized rats[J]. Biomed Pharmacother, 2018, 98: 406-415.
[18] Qi M, Zhang L, Ma Y, et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis[J]. Theranostics, 2017, 7(18): 4498-4516.
[19] Yao W, Dai W, Jiang L, et al. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength[J]. Osteoporos Int, 2016, 27(1): 283-294.
[20] Lin N Y, Chen C W, Kagwiria R, et al. Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss[J]. Ann Rheum Dis, 2016, 75(6): 1203-1210.
[21] Menon M B, Dhamija S. Beclin 1 phosphorylation - at the center of autophagy regulation[J]. Front Cell Dev Biol, 2018, 6: 137.
[22] Zhang S, Ni W. High systemic immune-inflammation index is relevant to osteoporosis among middle-aged and older people: a cross-sectional study[J]. Immun Inflamm Dis, 2023, 11(8): e992.
[23] Su Y L, Kortylewski M. Beclin-1 as a neutrophil-specific immune checkpoint[J]. J Clin Invest, 2019, 129(12): 5079-5081.
[24] Luo G, Li F, Li X, et al. TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via the NF-κB pathway[J]. Mol Med Rep, 2018, 17(5): 6605-6611.
[25] Tong X, Ganta R R, Liu Z. AMP-activated protein kinase (AMPK) regulates autophagy, inflammation and immunity and contributes to osteoclast differentiation and functionabs[J]. Biol Cell, 2020, 112(9): 251-264.
[26] Arai A, Kim S, Goldshteyn V, et al. Beclin1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation[J]. J Bone Miner Res, 2019, 34(9): 1753-1766.
[27] Zhou X, Li J, Zhou Y, et al. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis[J]. Aging, 2020, 12(20): 20163-20183.
[28] Islam M A, Sooro M A, Zhang P. Autophagic regulation of p62 is critical for cancer therapy[J]. Int J Mol Sci, 2018, 19(5): 1405.
[29] Berkamp S, Mostafavi S, Sachse C. Structure and function of p62/SQSTM1 in the emerging framework of phase separation[J]. FEBS J, 2021, 288(24): 6927-6941.
[30] Park J Y, Sohn H Y, Koh Y H, et al. Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at Ser351[J]. Sci Rep, 2021, 11(1): 8430.
[31] Jeong S J, Zhang X, Rodriguez-Velez A, et al. p62/SQSTM1 and selective autophagy in cardiometabolic diseases[J]. Antioxid Redox Signal, 2019, 31(6): 458-471.
[32] Sabbieti M G, Marchegiani A, Sufianov A A, et al. P62/SQSTM1 beyond autophagy: physiological role and therapeutic applications in laboratory and domestic animals[J]. Life, 2022, 12(4): 539.
[33] Shaik N A, Nasser K K, Alruwaili M M, et al. Molecular modelling and dynamic simulations of sequestosome 1 (SQSTM1) missense mutations linked to Paget disease of bone[J]. J Biomol Struct Dyn, 2021, 39(8): 2873-2884.
[34] Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria[J]. Cell, 2016, 164(5): 896-910.
[35] Lappas M. The adaptor protein p62 mediates nuclear factor κB activation in response to inflammation and facilitates the formation of prolabor mediators in human myometrium[J]. Reprod Sci, 2017, 24(5): 762-772.
[36] Michalski M N, Williams B O. A quest for clarity in bone erosion: the role of sequestosome 1 in Pagets disease of bone[J]. J Biol Chem, 2018, 293(24): 9542-9543.
[37] Dural O, Ulusoy H E, Tikiz M A, et al. Effects of hormone replacement therapy on low bone mineral density in adolescents and young women with hypogonadism: comparison of oral and transdermal 17 beta-estradiol administration[J]. J Pediatr Adolesc Gynecol, 2022, 35(6): 634-637.
[38] Cheng L, Zhu Y, Ke D, et al. Oestrogen-activated autophagy has a negative effect on the anti-osteoclastogenic function of oestrogen[J]. Cell Prolif, 2020, 53(4): e12789.
[39] Wang X Y, Jiao L Y, He J L, et al. Parathyroid hormone 1-34 inhibits senescence in rat nucleus pulposus cells by activating autophagy via the m-TOR pathway[J]. Mol Med Rep, 2018, 18(3): 2681-2688.
[40] Zhu L, Chen J, Zhang J, et al. Parathyroid hormone (PTH) induces autophagy to protect osteocyte cell survival from dexamethasone damage[J]. Med Sci Monit, 2017, 23: 4034-4040.
[41] Bucay N, Sarosi I, Dunstan C R, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification[J]. Genes Dev, 1998, 12(9): 1260-1268.
[42] Zhao H, Sun Z, Ma Y, et al. Antiosteoclastic bone resorption activity of osteoprotegerin via enhanced AKT/mTOR/ULK1-mediated autophagic pathway[J]. J Cell Physiol, 2020, 235 (3): 3002-3012.
[43] Rakha A, Umar N, Rabail R, et al. Anti-inflammatory and anti-allergic potential of dietary flavonoids: a review[J]. Biomedecine Pharmacother, 2022, 156: 113945.
[44] Nejabati H R, Roshangar L. Kaempferol: a potential agent in the prevention of colorectal cancer [J]. Physiol Rep, 2022, 10 (20):? e15488.
[45] Imran M, Rauf A, Shah Z A, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review[J]. Phytother Res, 2019, 33(2): 263-275.
[46] 袁真, 閔珺, 王愷, 等. 杜仲黃酮類3種藥物成分治療大鼠骨質(zhì)疏松的比較研究[J]. 中國骨質(zhì)疏松雜志, 2018, 24(2): 244-248.
Yuan Z, Min J, Wang K, et al. Effects of different pharmacological components of eucommia ulmoides flavonoids on postmenopausal osteoporosis[J]. Chin J Osteoporos, 2018, 24(2): 244-248.
[47] Kim C J, Shin S H, Kim B J, et al. The effects of kaempferol-inhibited autophagy on osteoclast formation[J]. Int J Mol Sci, 2018, 19(1): 125.
[48] Wang Q L, Huo X C, Wang J H, et al. Rutin prevents the ovariectomy-induced osteoporosis in rats[J]. Eur Rev Med Pharmacol Sci, 2017, 21(8): 1911-1917.
[49] Xiao Y, Wei R, Yuan Z, et al. Rutin suppresses FNDC1 expression in bone marrow mesenchymal stem cells to inhibit postmenopausal osteoporosis[J]. Am J Transl Res, 2019, 11(10): 6680-6690.
[50] Li G, Rao H, Xu W. Puerarin plays a protective role in chondrocytes by activating Beclin1-dependent autophagy[J]. Biosci Biotechnol Biochem, 2021, 85(3): 621-625.
[51] He C, Wang Z, Shi J. Pharmacological effects of icariin[J]. Adv Pharmacol, 2020, 87: 179-203.
(收稿日期:2023-09-09)
(本文編輯:洪悅民)