国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

三相電壓不平衡下DDSRF-PLL與DSOGI-PLL的鎖相誤差檢測(cè)與補(bǔ)償方法

2024-02-05 09:43:02祁永勝高暢毓薛騰躍游小杰
電工技術(shù)學(xué)報(bào) 2024年2期
關(guān)鍵詞:積分器鎖相鎖相環(huán)

祁永勝 李 凱 高暢毓 薛騰躍 游小杰

三相電壓不平衡下DDSRF-PLL與DSOGI-PLL的鎖相誤差檢測(cè)與補(bǔ)償方法

祁永勝1,2李 凱1高暢毓1薛騰躍1游小杰1

(1. 北京交通大學(xué)電氣工程學(xué)院 北京 100044 2. 國(guó)網(wǎng)山西省電力公司忻州供電公司 忻州 034000)

由于高滲透的分布式電源、多樣化的負(fù)荷類型以及電網(wǎng)故障等因素,并網(wǎng)點(diǎn)三相電壓不僅存在幅值不平衡,而且會(huì)出現(xiàn)相位不平衡現(xiàn)象。這種情況下,廣泛應(yīng)用的解耦雙同步坐標(biāo)系鎖相環(huán)(DDSRF-PLL)和雙二階廣義積分器鎖相環(huán)(DSOGI-PLL)無法獲得精確的同步信息。為此,該文在論證這兩種鎖相環(huán)具有理論等價(jià)性的基礎(chǔ)上,闡釋三相電壓不平衡與鎖相誤差的內(nèi)在關(guān)系,進(jìn)而提出一種鎖相誤差的補(bǔ)償方法,實(shí)現(xiàn)幅值和相位不平衡下的準(zhǔn)確鎖相。所提方法僅需對(duì)電壓采樣值進(jìn)行簡(jiǎn)單計(jì)算即可獲得不平衡相位和鎖相誤差,實(shí)現(xiàn)開環(huán)相位補(bǔ)償,無需修改原有鎖相結(jié)構(gòu),具有良好的拓展性。最后,通過仿真和實(shí)驗(yàn)驗(yàn)證了所提方法的有效性。

三相電壓不平衡 鎖相環(huán)(PLL) 不平衡相位檢測(cè) 鎖相誤差補(bǔ)償

0 引言

近年來,隨著電力電子技術(shù)的發(fā)展,涌現(xiàn)出大量的并網(wǎng)電氣設(shè)備,如分布式發(fā)電系統(tǒng)的接口變換器和各種電能質(zhì)量治理裝置,在增強(qiáng)供電可靠性的同時(shí)也改善了電能質(zhì)量[1-3]。這些并網(wǎng)變換器需要通過鎖相環(huán)來實(shí)時(shí)獲取并網(wǎng)點(diǎn)電壓的頻率和相位信息,以實(shí)現(xiàn)其與電網(wǎng)系統(tǒng)的協(xié)調(diào)控制[4-6]。然而,大量非線性負(fù)荷的接入、不均衡分配、線路阻抗差異、電網(wǎng)故障和采樣等[7]使得并網(wǎng)點(diǎn)電壓存在不同程度的諧波污染、三相不平衡以及直流偏置等情況,為此,文獻(xiàn)[8-10]對(duì)諸多學(xué)者提出的非理想電網(wǎng)電壓下的三相鎖相環(huán)方法進(jìn)行綜述、建模及設(shè)計(jì)。它們均以理想三相電壓下的單同步坐標(biāo)系鎖相環(huán)(Single Synchronous Reference Frame-Phase Locked Loop, SSRF-PLL)為基礎(chǔ)展開研究[11-12]。為拓展SSRF-PLL在三相電壓不平衡工況下的應(yīng)用,文獻(xiàn)[13-15]通過增加一個(gè)負(fù)序旋轉(zhuǎn)坐標(biāo)系,提出解耦雙同步坐標(biāo)系鎖相環(huán)(Decoupled Double SRF-PLL, DDSRF-PLL),但其僅能消除負(fù)序分量的影響。為改善其濾波性能,文獻(xiàn)[16-19]采用基于二階廣義積分器(Second Order Generalized Integrator, SOGI)的鎖相結(jié)構(gòu),其中應(yīng)用最為廣泛的是雙二階廣義積分器鎖相環(huán)(Double SOGI-PLL, DSOGI-PLL)。為簡(jiǎn)化SOGI結(jié)構(gòu),文獻(xiàn)[20-22]提出了復(fù)系數(shù)濾波器,即降階廣義積分器[23],它們本質(zhì)上均是應(yīng)用帶通濾波特性實(shí)現(xiàn)對(duì)基波正序分量的單位增益、零相移提取。對(duì)于并網(wǎng)點(diǎn)電壓存在較為嚴(yán)重的諧波污染情形,可將多個(gè)帶通濾波器疊加形成一系列梳狀濾波器來實(shí)現(xiàn)較好的濾波效果,如對(duì)電壓采樣信號(hào)進(jìn)行延遲[24]、嵌入重復(fù)內(nèi)模[25]、做滑動(dòng)均值處理[26]和離散傅里葉分解[27-28],或采用多種濾波方法[29-30]來消除諧波。

值得注意的是,由于負(fù)載差異或電網(wǎng)故障等[31]會(huì)導(dǎo)致三相電壓存在幅值和相位兩方面的不平衡[32],而上述文獻(xiàn)并未考慮相位不平衡下的鎖相情形。文獻(xiàn)[33]采用延遲信號(hào)對(duì)消方法在實(shí)現(xiàn)濾波和幅值標(biāo)幺化的基礎(chǔ)上,利用不平衡相位對(duì)鎖相誤差進(jìn)行補(bǔ)償,雖具有較好的效果,但結(jié)構(gòu)復(fù)雜、計(jì)算繁瑣。文獻(xiàn)[34]利用自適應(yīng)Clarke變換以實(shí)現(xiàn)三相電壓幅值和相位不平衡下的精確鎖相,運(yùn)用帶通濾波器實(shí)現(xiàn)濾波,并給出相位誤差校正算法,但同樣存在結(jié)構(gòu)復(fù)雜和計(jì)算負(fù)擔(dān)大的缺陷。而文獻(xiàn)[35-36]雖提出相對(duì)前述文獻(xiàn)較簡(jiǎn)單的相位補(bǔ)償方法,但并未從本質(zhì)上分析相位不平衡與鎖相誤差的內(nèi)在關(guān)系。針對(duì)該問題,本文基于理論推導(dǎo),以DDSRF-PLL和DSOGI-PLL為例,揭示不平衡相位和鎖相誤差的內(nèi)在關(guān)系,進(jìn)而提出一種簡(jiǎn)易可行的不平衡相位檢測(cè)與鎖相誤差補(bǔ)償方法,該方法具有普適性,有著較高的補(bǔ)償精度和良好的拓展性。

1 DDSRF與DSOGI的理論等價(jià)性

圖1 解耦雙同步坐標(biāo)系鎖相環(huán)的結(jié)構(gòu)框圖

圖2 雙二階積分器鎖相環(huán)的結(jié)構(gòu)框圖

國(guó)標(biāo)將三相電壓不平衡闡述為幅值和相位兩方面的不平衡[32]。由于諧波和直流分量等可通過濾波器消除,這里僅考慮三相不平衡電壓為

式中,sa、sb、sc分別為A相、B相及C相電壓;sma、smb、smc分別為其對(duì)應(yīng)的幅值;g為電壓角頻率;Dqb、Dqc分別為以A相電壓相位為基準(zhǔn)的B相和C相的不平衡電壓相位。

將式(1)所示的包含幅值和相位不平衡的三相電壓作為DDSRF-PLL與DSOGI-PLL兩種方法的輸入信號(hào),并以A相電壓定向,可得到式(1)的兩相靜止坐標(biāo)系表示為

式中,1~4為中間變量,是關(guān)于sma、smb、smc以及Dqb、Dqc的函數(shù),其表達(dá)式如附錄式(A1)~式(A4)所示。

進(jìn)一步地,利用輔助角公式,可將式(2)整理為

其中

對(duì)于DDSRF-PLL,通過正、負(fù)同步旋轉(zhuǎn)坐標(biāo)系結(jié)合解耦網(wǎng)絡(luò)和低通濾波器實(shí)現(xiàn)諧波分量的濾除和基波正、負(fù)序分量的分離[13-15]?;赿軸電壓定向,可得到正、負(fù)同步旋轉(zhuǎn)坐標(biāo)變換后的信號(hào),分別為

經(jīng)解耦網(wǎng)絡(luò)消去式(4)和式(5)的二倍頻分量后,可得

同理,在式(3)的基礎(chǔ)上,根據(jù)式(8)所示的兩相靜止坐標(biāo)系下的提取正序分量的對(duì)稱分量法表達(dá)式[19],可得到基于DSOGI-QSG的兩相靜止坐標(biāo)系下的正序電壓分量如式(9)所示。

同樣地,可得到DSOGI-PLL的正序電壓分量在正序同步旋轉(zhuǎn)坐標(biāo)系下的表達(dá)式為

2 不平衡相位檢測(cè)與鎖相誤差補(bǔ)償方法

2.1 鎖相誤差的內(nèi)在機(jī)理分析

為獲得三相不平衡電壓下的鎖相誤差,根據(jù)鎖相的穩(wěn)態(tài)關(guān)系,將式(6)或式(10)的q軸分量調(diào)節(jié)至零。由于兩種鎖相環(huán)的表達(dá)形式一致,這里統(tǒng)一記為sq,令其為零并經(jīng)三角函數(shù)恒等變換,可得

進(jìn)一步地,由于三相鎖相環(huán)常對(duì)每相電壓進(jìn)行幅值標(biāo)幺化以消除幅值不平衡的影響[33],從而保證鎖相環(huán)控制精度。為便于分析,這里將sma、smb、smc取為1,后續(xù)以上標(biāo)“*”表示幅值標(biāo)幺化。結(jié)合附錄中式(A1)~式(A4),可將式(13)簡(jiǎn)化為

式(14)表明,Dqcorrect與Dqb、Dqc具有映射關(guān)系。

將Dqcorrect作為因變量,Dqb、Dqc作為自變量,經(jīng)反正切運(yùn)算,可得式(15)所示的Dqcorrect與Dqb和Dqc的關(guān)系。由于反正切函數(shù)的值域?yàn)閇-p/2,p/2],且實(shí)際的相位不平衡程度有限,這里以Dqb、Dqc在[-p/6,p/6]內(nèi)的情形分析。

由式(15)可繪制出Dqcorrect=(Dqb,Dqc)的三維圖形,如圖3所示。為直觀顯示,圖3的坐標(biāo)單位以角度標(biāo)注。通過分析圖3的曲面關(guān)系,有如下結(jié)論:

圖3 Dqcorrect與Dqb、Dqc的三維關(guān)系曲面

(2)鎖相誤差曲面近似為平面,并與零平面相交于直線i:Dqb=Dqc,Dqorrect=0,如圖3中的點(diǎn)、點(diǎn)和點(diǎn),表明Dqb和Dqc取值相等時(shí),不會(huì)產(chǎn)生鎖相誤差。而且該曲面以直線i為界,當(dāng)處于直線i上方的A1區(qū)域時(shí),Dqb<Dqc,Dqcorrect>0;而處于i下方的A2區(qū)域時(shí),Dqb>Dqc,Dqcorrect<0。

(3)該曲面上關(guān)于直線i軸對(duì)稱的點(diǎn),Dqcorrect的幅值相同,符號(hào)相反,如圖3中的點(diǎn)與點(diǎn)。

(4)處于曲面與直線i平行直線上的點(diǎn),它們的Dqcorrect取值相等,如圖3中的點(diǎn)和點(diǎn)以及點(diǎn)和點(diǎn)。

2.2 鎖相誤差求解方法

圖4 Dqcorrect的平面近似方法

圖4所示的平面近似方法以點(diǎn)、、確定區(qū)域A1,以點(diǎn)、、確定區(qū)域A2,并由點(diǎn)、、確定區(qū)域A3。因此,可以很容易地得到區(qū)域A1、區(qū)域A2和區(qū)域A3的數(shù)學(xué)表達(dá)式分別為

2.3 不平衡相位檢測(cè)方法

圖5Dqb與Dqc檢測(cè)中的電壓采樣情形

Fig.5 Voltage sampling in the detection ofDqbandDqc

將式(1)進(jìn)行三角恒等變換為正弦形式,并考慮幅值標(biāo)幺化,可得三相電壓表達(dá)式為

3 仿真分析

3.1 不平衡相位與鎖相誤差內(nèi)在關(guān)系的仿真分析

為驗(yàn)證理論分析的正確性,搭建Matlab仿真模型,并將不同Dqb和Dqc取值下的三相電壓和兩種鎖相方法的鎖相結(jié)果進(jìn)行仿真如圖6所示。

圖6 相位不平衡下DDSRF和DSOGI-PLL的仿真結(jié)果

Fig.6 Simulation results of DDSRF and DSOGI-PLL at unbalanced phase angles

表1 相位不平衡下兩種鎖相環(huán)的鎖相數(shù)據(jù)

Tab.1 Data of two PLLs at unbalanced phase angles (單位: °)

3.2 不平衡相位檢測(cè)與補(bǔ)償方法的仿真驗(yàn)證

圖7 不平衡相位的檢測(cè)結(jié)果

Fig.7 Detection results of unbalanced phase angle

圖8 時(shí),經(jīng)相位補(bǔ)償前后的DSOGI-PLL的鎖相結(jié)果

4 實(shí)驗(yàn)驗(yàn)證

4.1 不平衡相位與鎖相誤差內(nèi)在關(guān)系的實(shí)驗(yàn)驗(yàn)證

相位不平衡下DDSRF-PLL和DSOGI-PLL的實(shí)驗(yàn)結(jié)果如圖9所示。圖9中的不平衡工況分別按照?qǐng)D6的仿真工況設(shè)置,每個(gè)圖中的波形從上至下依次為并網(wǎng)點(diǎn)三相電壓波形(sa,sb,sc)、DDSRF- PLL估測(cè)相位的DA值(DDSRF_DA)以及DSOGI-PLL估測(cè)相位的DA值(DSOGI_DA)。其中,相位不平衡的三相電壓由Chroma 61705型三相可編程電壓源產(chǎn)生。圖9的實(shí)驗(yàn)結(jié)果與圖6的仿真結(jié)果基本一致,僅在數(shù)值上有微小差異,表明DDSRF-PLL及DSOGI- PLL兩種鎖相方法在三相電壓相位不平衡下鎖相的等價(jià)性,同時(shí)驗(yàn)證了鎖相誤差與不平衡相位內(nèi)在關(guān)系的理論分析。

4.2 不平衡相位檢測(cè)與補(bǔ)償方法的實(shí)驗(yàn)驗(yàn)證

進(jìn)一步地,選擇圖9h所示的鎖相誤差最大的情形,并以DSOGI-PLL為例,對(duì)本文提出的不平衡相位檢測(cè)和補(bǔ)償方法進(jìn)行實(shí)驗(yàn),相位補(bǔ)償前后的實(shí)驗(yàn)結(jié)果如圖10所示。圖10中,各圖波形從上至下依次為并網(wǎng)點(diǎn)三相電壓波形(sa,sb,sc)和對(duì)應(yīng)估測(cè)相位的余弦值(cosa_DA, cosb_DA, cosc_DA),其中后者通過數(shù)模轉(zhuǎn)換(DA)讀出。圖10a和圖10b表明,補(bǔ)償后相較于補(bǔ)償前相位滯后1.425 ms,精確補(bǔ)償后相位滯后僅為75ms;而圖10c~圖10e則表明,基于一次、二次以及平面近似的方法補(bǔ)償后相位滯后分別減小為250ms、325ms和225ms。這說明精確補(bǔ)償具有最高的補(bǔ)償精度;而近似算法則以略低的補(bǔ)償精度為代價(jià)實(shí)現(xiàn)了簡(jiǎn)化計(jì)算,選擇時(shí)需要對(duì)補(bǔ)償精度和計(jì)算量進(jìn)行折中。

圖9 相位不平衡下DDSRF和DSOGI-PLL的實(shí)驗(yàn)結(jié)果

Fig.9 Experimental results of DDSRF and DSOGI-PLL at unbalanced phase angles

(a)相位未補(bǔ)償

(b)精確補(bǔ)償

(c)一次近似補(bǔ)償

(d)二次近似補(bǔ)償

(e)平面近似補(bǔ)償

圖10 相位補(bǔ)償前后的實(shí)驗(yàn)結(jié)果

Fig.10 Experimental results before and after phase compensation

5 結(jié)論

本文以DDSRF-PLL和DSOGI-PLL這兩種常用于三相電壓幅值不平衡的鎖相方法為基礎(chǔ),考慮幅值和相位兩方面的不平衡,論證了二者的鎖相等價(jià)性,并說明電壓相位不平衡會(huì)導(dǎo)致二者存在固有鎖相誤差。針對(duì)該問題,本文基于鎖相環(huán)的穩(wěn)態(tài)特性,在理論推導(dǎo)的基礎(chǔ)上,揭示了鎖相誤差和不平衡相位的內(nèi)在關(guān)系,進(jìn)而提出鎖相誤差的求解方法和不平衡相位的檢測(cè)方法,并通過仿真和實(shí)驗(yàn)驗(yàn)證了所提方法的準(zhǔn)確性。本文揭示的鎖相誤差和不平衡相位的內(nèi)在關(guān)系為三相電壓相位不平衡工況下的精確鎖相提供了一種行之有效的理論依據(jù)。所提的不平衡相位檢測(cè)和鎖相誤差補(bǔ)償方法,通過對(duì)三相電壓采樣值進(jìn)行反正弦運(yùn)算檢測(cè)不平衡相位,并根據(jù)其與鎖相誤差的關(guān)系實(shí)現(xiàn)相位補(bǔ)償。該方法結(jié)構(gòu)簡(jiǎn)單、易拓展且補(bǔ)償精度高,對(duì)相位不平衡下的精確鎖相有著一定的實(shí)用價(jià)值。

附 錄

為便于表述,這里將式(2)中的1~4表示為

[1] 楊珺, 侯俊浩, 劉亞威, 等. 分布式協(xié)同控制方法及在電力系統(tǒng)中的應(yīng)用綜述[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(19): 4035-4049.

Yang Jun, Hou Junhao, Liu Yawei, et al. Distributed cooperative control method and application in power system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4035-4049.

[2] 沈霞, 帥智康, 沈超, 等. 大擾動(dòng)時(shí)交流微電網(wǎng)的運(yùn)行與控制研究綜述[J]. 電力系統(tǒng)自動(dòng)化, 2021, 45(24): 174-188.

Shen Xia, Shuai Zhikang, Shen Chao, et al. Review on operation and control of AC microgrid under large disturbance[J]. Automation of Electric Power Systems, 2021, 45(24): 174-188.

[3] 余墨多, 黃文燾, 邰能靈, 等. 逆變型分布式電源并網(wǎng)運(yùn)行暫態(tài)穩(wěn)定機(jī)理與評(píng)估方法[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(10): 2596-2610.

Yu Moduo, Huang Wentao, Tai Nengling, et al. Transient stability mechanism and judgment for inverter interfaced distributed generators connected with public grids[J]. Transactions of China Elec- trotechnical Society, 2022, 37(10): 2596-2610.

[4] 王寶誠(chéng), 傘國(guó)成, 郭小強(qiáng), 等. 分布式發(fā)電系統(tǒng)電網(wǎng)同步鎖相技術(shù)[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2013, 33(1): 50-55.

Wang Baocheng, San Guocheng, Guo Xiaoqiang, et al. Grid synchronization and PLL for distributed power generation systems[J]. Proceedings of the CSEE, 2013, 33(1): 50-55.

[5] 陳明亮, 肖飛, 劉勇, 等. 一種正負(fù)序分離鎖相環(huán)及其在并網(wǎng)型風(fēng)力發(fā)電系統(tǒng)中的應(yīng)用[J]. 電工技術(shù)學(xué)報(bào), 2013, 28(8): 181-186.

Chen Mingliang, Xiao Fei, Liu Yong, et al. A positive and negative-sequence detection PLL and its appli- cation in wind power generation system[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(8): 181-186.

[6] 王國(guó)玲, 何富橋, 劉旭, 等. 基于二階廣義積分器新能源船舶電網(wǎng)鎖相技術(shù)[J]. 電機(jī)與控制學(xué)報(bào), 2020, 24(7): 147-155.

Wang Guoling, He Fuqiao, Liu Xu, et al. Phase- locked loop technique in new energy shipboard grid based on second-order generalized integrators[J]. Electric Machines and Control, 2020, 24(7): 147-155.

[7] 曾君, 岑德海, 陳潤(rùn), 等. 針對(duì)直流偏移和諧波干擾的單相鎖相環(huán)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(16): 3504-3515.

Zeng Jun, Cen Dehai, Chen Run, et al. Single-phase phase-locked loop for DC offset and harmonic inter- ference[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3504-3515.

[8] Golestan S, Monfared M, Freijedo F D. Design- oriented study of advanced synchronous reference frame phase-locked loops[J]. IEEE Transactions on Power Electronics, 2013, 28(2): 765-778.

[9] Golestan S, Guerrero J M, Vasquez J C. Three-phase PLLs: a review of recent advances[J]. IEEE Transa- ctions on Power Electronics, 2017, 32(3): 1894- 1907.

[10] Golestan S, Guerrero J M, Vasquez J C, et al. A study on three-phase FLLs[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 213-224.

[11] 岑揚(yáng), 黃萌, 査曉明. 電網(wǎng)電壓不平衡跌落下同步參考坐標(biāo)系鎖相環(huán)瞬態(tài)響應(yīng)分析[J]. 電工技術(shù)學(xué)報(bào), 2016, 31(增刊2): 28-38.

Cen Yang, Huang Meng, Zha Xiaoming. The transient response analysis of SRF-PLL under the unbalance grid voltage sag[J]. Transactions of China Electro- technical Society, 2016, 31(S2): 28-38.

[12] Sadeque F, Reza M S, Hossain M M. Three-phase phase-locked loop for grid voltage phase estimation under unbalanced and distorted conditions[C]//2017 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 2017: 1-7.

[13] Rodriguez P, Pou J, Bergas J, et al. Decoupled double synchronous reference frame PLL for power con- verters control[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 584-592.

[14] 李珊瑚, 杜雄, 王莉萍, 等. 解耦多同步參考坐標(biāo)系電網(wǎng)電壓同步信號(hào)檢測(cè)方法[J]. 電工技術(shù)學(xué)報(bào), 2011, 26(12): 183-189.

Li Shanhu, Du Xiong, Wang Liping, et al. A grid voltage synchronization method based on decoupled multiple synchronous reference frame[J]. Transa- ctions of China Electrotechnical Society, 2011, 26(12): 183-189.

[15] Yepes A G, Vidal A, Lopez O, et al. Evaluation of techniques for cross-coupling decoupling between orthogonal axes in double synchronous reference frame current control[J]. IEEE Transactions on Indu- strial Electronics, 2014, 61(7): 3527-3531.

[16] 謝門喜, 朱燦焰, 楊勇. SRF-PLL環(huán)內(nèi)應(yīng)用二階廣義積分器的不平衡電壓鎖相方法[J]. 電氣工程學(xué)報(bào), 2017, 12(9): 16-21.

Xie Menxi, Zhu Canyan, Yang Yong. SRF-PLL with ln-loop second order generalized integrator for unba- lanced three-phase systems[J]. Journal of Electrical Engineering, 2017, 12(9): 16-21.

[17] 張純江, 趙曉君, 郭忠南, 等. 二階廣義積分器的三種改進(jìn)結(jié)構(gòu)及其鎖相環(huán)應(yīng)用對(duì)比分析[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(22): 42-49.

Zhang Chunjiang, Zhao Xiaojun, Guo Zhongnan, et al. Three improved second order generalized integrators and the comparative analysis in phase locked loop application[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 42-49.

[18] 閆培雷, 葛興來, 王惠民, 等. 弱電網(wǎng)下新能源并網(wǎng)逆變器鎖相環(huán)參數(shù)優(yōu)化設(shè)計(jì)方法[J]. 電網(wǎng)技術(shù), 2022, 46(6): 2210-2221.

Yan Peilei, Ge Xinglai, Wang Huimin, et al. PLL parameter optimization design for renewable energy grid-connected inverters in weak grid[J]. Power System Technology, 2022, 46(6): 2210-2221.

[19] Rodriguez P, Luna A, Candela I, et al. Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 127-138.

[20] 回楠木, 王大志, 李云路. 基于復(fù)變陷波器的并網(wǎng)鎖相環(huán)直流偏移消除方法[J]. 電工技術(shù)學(xué)報(bào), 2018, 33(24): 5897-5906.

Hui Nanmu, Wang Dazhi, Li Yunlu. DC-offset elimi- nation method for grid-connected phase-locked loop based on complex notch filter[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5897- 5906.

[21] 何宇, 漆漢宏, 羅琦, 等. 基于分?jǐn)?shù)階濾波器的三相鎖相環(huán)技術(shù)[J]. 電工技術(shù)學(xué)報(bào), 2019, 34(12): 2572-2583.

He Yu, Qi Hanhong, Luo Qi, et al. A novel three- phase phase-locked loop method based on fractional- order filter[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2572-2583.

[22] 何宇, 漆漢宏, 鄧小龍. 基于全復(fù)數(shù)型濾波器的三相鎖相環(huán)技術(shù)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(10): 2115-2126.

He Yu, Qi Hanhong, Deng Xiaolong. A three-phase phase-locked loop technique based on all complex coefficient filter[J]. Transactions of China Electro- technical Society, 2021, 36(10): 2115-2126.

[23] Xin Zhen, Zhao Rende, Mattavelli P, et al. Re- investigation of generalized integrator based filters from a first-order-system perspective[J]. IEEE Access, 2016, 4: 7131-7144.

[24] Gude S, Chu C C. Three-phase PLLs by using frequency adaptive multiple delayed signal can- cellation prefilters under adverse grid conditions[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3832-3844.

[25] 何宇, 漆漢宏, 鄧超, 等. 一種嵌入重復(fù)控制內(nèi)模的三相鎖相環(huán)的設(shè)計(jì)與實(shí)現(xiàn)[J]. 電工技術(shù)學(xué)報(bào), 2016, 31(22): 83-91.

He Yu, Qi Hanhong, Deng Chao, et al. A novel three- phase phase-locked loop method based on internal model of repetitive control[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 83-91.

[26] Luo Wei, Wei Dafang. A frequency-adaptive improved moving-average-filter based quasi-type-1 PLL for adverse grid conditions[J]. IEEE Access, 2020, 8: 54145-54153.

[27] Xia Tao, Zhang Xu, Tan Guojun, et al. Synchronous reference frame single-phase phase-locked loop (PLL) algorithm based on half-cycle DFT[J]. IET Power Electronics, 2020, 13(9): 1893-1900.

[28] 余攀, 盛萬興, 鐘佩軍, 等. 基于三相電壓空間矢量的開環(huán)鎖相方法[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(16): 3460-3469.

Yu Pan, Sheng Wanxing, Zhong Peijun, et al. An open-loop phase-locked method based on three-phase voltage space vector[J]. Transactions of China Elec- trotechnical Society, 2020, 35(16): 3460-3469.

[29] Hui Nanmu, Luo Zongan, Feng Yingying, et al. A novel grid synchronization method based on hybrid filter under distorted voltage conditions[J]. IEEE Access, 2020, 8: 65636-65648.

[30] Hui Nanmu, Wang Dazhi, Li Yunlu. A novel hybrid filter-based PLL to eliminate effect of input harmo- nics and DC offset[J]. IEEE Access, 2018, 6: 19762- 19773.

[31] Adib A, Mirafzal B. Virtual inductance for stable operation of grid-interactive voltage source inver- ters[J]. IEEE Transactions on Industrial Electronics, 2018, 66(8): 6002-6011.

[32] 國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局, 中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). GB/T 15543-2008. 電能質(zhì)量 三相電壓不平衡[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2009.

[33] Reza M S, Sadeque F, Hossain M M, et al. Three- phase PLL for grid-connected power converters under both amplitude and phase unbalanced conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8881-8891.

[34] Islam M Z, Reza M S, Hossain M M, et al. Three- phase PLL based on adaptive Clarke transform under unbalanced condition[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3(2): 382-387.

[35] Sadeque F, Benzaquen J, Adib A, et al. Direct phase- angle detection for three-phase inverters in asymmet- rical power grids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 520-528.

[36] Islam M Z, Reza M S, Hossain M M, et al. Accurate estimation of phase angle for three-phase systems in presence of unbalances and distortions[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.

Phase Estimation Error Detection and Compensation Method of DDSRF-PLL and DSOGI-PLL under Three-Phase Voltage Unbalance

1,21111

(1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China 2. State Grid Shanxi Electric Power Company Xinzhou Subsidiary Xinzhou 034000 China)

Due to the combined effect of high-permeability distributed power supply and various types of loads, the three-phase voltage of the actual grid-connected point has deviations in amplitude and phase angle. However, phase-locking methods based on single synchronous reference frame phase-locked loop (SSRF-PLL), such as decoupled double synchronous reference frame phase-locked loop (DDSRF-PLL) and double second-order generalized integrator phase-lock loop (DSOGI-PLL), generally ignored these differences, and, hence, only acquiring synchronization information at phase-balanced three-phase voltage. More is needed to support coordinated control among devices at the grid-connected point. Recently, some methods were presented to obtain phase information of three-phase voltage under phase unbalance, but most suffered from high computation costs and poor expansibility. Therefore, a compensation method for phase estimation error is proposed. The phase estimation error can be accurately compensated under phase-balanced three-phase voltage by detecting the unbalanced phase angle deviation of B and C phases.

Firstly, the three-phase unbalanced voltage specified in the national standard is used as the input signal for DDSRF-PLL and DSOGI-PLL, and the equivalent relationship between unbalanced voltage and phase estimation error of the two phase-locked loops is obtained. The functional relationship between phase estimation error and unbalanced phase angle deviation is based on steady-state characteristics. Secondly, three approximate solutions for the phase estimation errors are given to simplify the calculation. Then, based on the zero-crossing point of the A phase, the unbalanced phase angle deviation of B and C phases is obtained by calculating the sample value of three-phase voltage. Finally, precise compensation of phase estimation error can be achieved by substituting the phase angle deviation in the function of phase estimation error, overlaying the output of phase estimation error to the original PLL reversely. The phase angle deviation detection and phase estimation error compensation method can realize open-loop compensation with a low computation cost and good expandability.

Simulation results under eight conditions of phase angle deviation show that the estimated phase curves of two PLLs always coincide when the unbalanced phase angle deviation of B and C phases change within the range of [-30 ° 30 °]. The maximum error between theoretical and simulation values is 0.230 °, and the relative error is only 2.3 %. It proves the rationality of the theoretical equivalence of two PLLs and the validity of the relationship between unbalanced phase angle deviation and phase estimation error. The results also show that the maximum delay time decreased from 1.126 ms to 28ms, and the corresponding phase estimation error reduced from 20.268 ° to 0.501 °, indicating the method’s high compensation accuracy. The experimental results also have similar conclusions. After the accurate compensation and three approximate methods, the phase estimation error was reduced from 1.425 ms to 75ms, 250ms, 325ms, and 225ms, respectively. The approximate method has a compromise between compensation accuracy and calculation burden.

The following conclusions can be drawn from the simulation and experimental results: (1) DDSRF-PLL and DSOGI-PLL are theoretically equivalent at phase-unbalanced three-phase voltage. (2) The relationship between phase estimation error and phase angle deviation is derived based on the steady-state characteristics of SSRF-PLL, which is suitable for a series of phase-locked methods based on SSRF-PLL and has a wide range of applications. (3) The proposed phase angle deviation detection and phase estimation error compensation method can realize open-loop compensation by simply calculating the sample value of three-phase voltage, which has the characteristics of low computational cost, easy expansion, and high compensation accuracy.

Three-phase voltage unbalance, phase-locked loop (PLL), phase angle deviation detection, phase estimation error compensation

TM46

10.19595/j.cnki.1000-6753.tces.221770

國(guó)家自然科學(xué)基金資助項(xiàng)目(52007005)。

2022-09-17

2022-11-11

祁永勝 男,1995年生,碩士研究生,研究方向?yàn)殡娔苜|(zhì)量治理、并網(wǎng)變換器控制技術(shù)。E-mail: 19121484@bjtu.edu.cn

李 凱 男,1988年生,副教授,碩士生導(dǎo)師,研究方向?yàn)殡娏﹄娮优c電力傳動(dòng)、電氣工程。E-mail: kaili@bjtu.edu.cn(通信作者)

(編輯 陳 誠(chéng))

猜你喜歡
積分器鎖相鎖相環(huán)
鎖相環(huán)HMC832的設(shè)計(jì)與實(shí)現(xiàn)
基于ECVT數(shù)字積分器的仿真及研究
電子科技(2018年8期)2018-07-23 02:15:28
新型無鎖相環(huán)DSTATCOM直接電流控制方法
Rogowski線圈數(shù)字積分器的直流誤差消除方法研究
基于雙dq鎖相技術(shù)的三電平SVG研究
基于單二階廣義積分器的三相數(shù)字鎖相環(huán)設(shè)計(jì)
新型鎖相環(huán)技術(shù)及仿真分析
寬頻鎖相的一種實(shí)現(xiàn)方法
基于LabVIEW的鎖相放大器的設(shè)計(jì)與測(cè)量
CDSC在單相電網(wǎng)同步鎖相技術(shù)中的應(yīng)用
黄梅县| 宁化县| 水城县| 屏山县| 昌邑市| 称多县| 平度市| 吴旗县| 天津市| 许昌市| 庆城县| 福贡县| 曲水县| 澄江县| 田林县| 玛曲县| 巴楚县| 灌阳县| 旌德县| 苏尼特右旗| 徐闻县| 瓦房店市| 铜川市| 宁海县| 思南县| 林西县| 巴东县| 略阳县| 龙井市| 琼中| 江川县| 丹凤县| 宁国市| 通道| 克山县| 阳新县| 揭东县| 兴安县| 德清县| 长沙县| 二连浩特市|