国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

多尺度數(shù)字巖石建模進(jìn)展與展望

2024-01-01 00:00:00吳翔肖占山張永浩王飛趙建斌方朝強(qiáng)
關(guān)鍵詞:多尺度圖像融合

摘要:數(shù)字巖石技術(shù)可對(duì)巖心進(jìn)行精細(xì)數(shù)字化表征,結(jié)合數(shù)值模擬方法研究微觀巖石物理屬性。非常規(guī)儲(chǔ)層巖石在不同尺度上表現(xiàn)出不同的特征,多尺度成像技術(shù)能以亞納米—毫米級(jí)分辨率觀測(cè)不同尺度的巖石微觀組構(gòu),然而單一分辨率掃描方法無(wú)法解析跨尺度結(jié)構(gòu)信息,構(gòu)建多尺度、多分辨率、多組分的數(shù)字巖石模型是解決這一矛盾的關(guān)鍵方法。通過(guò)系統(tǒng)的調(diào)研,將現(xiàn)有的多尺度數(shù)字巖石建模方法分為兩大類,分別為基于混合疊加、模板匹配和深度學(xué)習(xí)的圖像融合建模方法,以及帶有顯式微孔網(wǎng)絡(luò)、僅添加額外喉道和含裂縫系統(tǒng)的孔隙網(wǎng)絡(luò)整合建模方法。其中:圖像融合建模法能夠真實(shí)反映不同尺度巖心的孔隙、礦物三維分布并進(jìn)行多物理場(chǎng)模擬,但受計(jì)算效率限制難以實(shí)現(xiàn)尺度差異較大的混合建模;孔隙網(wǎng)絡(luò)整合法能夠?qū)崿F(xiàn)多個(gè)連續(xù)尺度的建模,模型儲(chǔ)存空間小且數(shù)值模擬效率高,但可研究的物理屬性受限。此外,數(shù)字巖石工作流程還存在如何精確提取礦物、如何確定適當(dāng)?shù)拇硇泽w積元大小等共性問(wèn)題。筆者認(rèn)為下一步探索方向?yàn)椋豪脤?shí)驗(yàn)數(shù)據(jù)優(yōu)化建模,按需研究物理屬性建模及結(jié)合均化等效理論建模,以早日形成具體的應(yīng)用體系,支撐實(shí)際測(cè)井解釋及油氣藏開發(fā)。

關(guān)鍵詞:數(shù)字巖石;多尺度;三維隨機(jī)重建;圖像融合;孔隙網(wǎng)絡(luò)模型

doi:10.13278/j.cnki.jjuese.20230141

中圖分類號(hào):P631

文獻(xiàn)標(biāo)志碼:A

吳翔,肖占山,張永浩,等. 多尺度數(shù)字巖石建模進(jìn)展與展望. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2024,54(5):17361751. doi:10.13278/j.cnki.jjuese.20230141.

Wu Xiang, Xiao Zhanshan, Zhang Yonghao, et al. Progress and Prospect of Multiscale Digital Rock Modeling. Journal of Jilin University (Earth Science Edition), 2024, 54 (5): 17361751. doi:10.13278/j.cnki.jjuese.20230141.

收稿日期:20230529

作者簡(jiǎn)介:吳翔(1999—),男,碩士研究生,主要從事數(shù)字巖石建模和模擬方面的研究,E-mail:wxchd1201@163.com

基金項(xiàng)目:中國(guó)石油天然氣集團(tuán)有限公司項(xiàng)目(2021DJ4003); 陜西省自然科學(xué)基金項(xiàng)目(2022JM147)

Supported by the Program of China National Petroleum Corporation (2021DJ4003) and the Natural Science Foundation of Shaanxi Province (2022JM147)

Progress and Prospect of Multiscale Digital Rock Modeling

Wu Xiang1, 2, Xiao Zhanshan1, 3, Zhang Yonghao1, 3,

Wang Fei2, Zhao Jianbin1, 3, Fang Chaoqiang1, 3

1. Geological Research Institute, China National Logging Corporation, Xi’an 710077, China

2. College of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China

3." Well Logging Key Laboratory, China National Petroleum Corporation, Xi’an 710077, China

Abstract:

Digital rock technology enables the precise digital characterization of core samples and facilitates the study of microscale rock physical properties through numerical simulations. Unconventional reservoir rocks display distinct features across various scales, and multiscale imaging technology can capture the rock’s microstructure at resolutions ranging from sub-nanometer to millimeter levels. However, single-resolution scanning methods fail to resolve cross-scale structural information, making the development of multiscale, multiresolution, and multicomponent digital rock models crucial to overcoming this limitation. Existing multiscale digital rock modeling methods can be broadly categorized into two main approaches: image fusion modeling, which relies on mixed overlays, template matching and" deep learning, and pore network integration modeling, which incorporates explicit micropore networks, additional throat networks, and fracture systems. The image fusion approach accurately represents the three-dimensional distribution of pores and minerals across various scales and supports multiphysics simulations. However, its computational efficiency constrains its ability to manage large-scale discrepancies in hybrid modeling. Conversely, the pore network integration approach allows for modeling across multiple contiguous scales, requires less storage space, and offers high numerical simulation efficiency, although it is limited to certain physical properties. Moreover, digital rock workflows still face challenges, such as the precise extraction of minerals and the determination of suitable representative elementary volumes. Future research should focus on optimizing models using experimental data, studying physical properties as needed, and integrating homogenization and equivalent theory modeling to develop specific application systems that enhance well-logging interpretation and hydrocarbon reservoir development.

Key words:

digital rock; multiscale; 3D stochastic reconstruction; image fusion; pore network model

0" 引言

數(shù)字巖石技術(shù)通過(guò)對(duì)實(shí)際巖樣掃描成像構(gòu)建三維數(shù)字巖心模型,將巖石內(nèi)部的孔隙格架和礦物組構(gòu)可視化;通過(guò)數(shù)值模擬方法研究巖石的滲流、彈性、電性及核磁等物理屬性的響應(yīng)特征,分析微觀因素對(duì)宏觀響應(yīng)的影響規(guī)律以形成定量評(píng)價(jià)模型,為地球物理解釋提供支撐[17]。數(shù)字巖石技術(shù)在一定程度上解決了復(fù)雜油氣儲(chǔ)層取心難、驅(qū)替難及實(shí)驗(yàn)室?guī)r石物理實(shí)驗(yàn)難以開展的問(wèn)題[8]。與傳統(tǒng)巖石物理實(shí)驗(yàn)相比,該技術(shù)具有快速、經(jīng)濟(jì)、無(wú)損、環(huán)保的優(yōu)勢(shì),是巖石物理技術(shù)的新方向[2, 910]。在數(shù)字巖石工作流程中,最為基礎(chǔ)和關(guān)鍵的是對(duì)孔隙和礦物進(jìn)行精確成像和數(shù)字化[3, 1112]。但對(duì)于具有不同尺度孔隙結(jié)構(gòu)的巖石來(lái)說(shuō),這是難以實(shí)現(xiàn)的。主要問(wèn)題是受表征技術(shù)(成像)的限制,具有固定分辨率的單一成像方法不能解析跨尺度的結(jié)構(gòu)分布。由于微觀、介觀和宏觀孔隙的相互作用使得Archie公式和Brooks-Corey兩相流模型等經(jīng)驗(yàn)公式不再適用[13],因此多尺度多孔介質(zhì)的巖心建模引起了學(xué)者們的廣泛關(guān)注[4, 1419]。

需要指出的是,各個(gè)學(xué)科領(lǐng)域針對(duì)微孔、介孔和大孔尺寸的定義有所不同。本文的孔隙尺寸為相對(duì)概念,為描述方便,統(tǒng)稱較小尺度高分辨率巖心圖像內(nèi)的孔隙為微孔或小孔,稱較大尺度低分辨率巖心圖像內(nèi)的孔隙為宏孔或大孔。復(fù)雜的沉積和成巖過(guò)程使得非常規(guī)儲(chǔ)層巖石孔隙尺寸分布在多個(gè)尺度上,具有明顯的非均質(zhì)性[4, 2021]。分選性、黏土分布和壓實(shí)作用使得致密砂巖在不同尺度上具有復(fù)雜的孔隙結(jié)構(gòu),孔隙類型多樣且連通性差,常由納米級(jí)黏土礦物填充在大孔內(nèi)造成[2223]。碳酸鹽巖儲(chǔ)層同樣具有較寬的孔隙尺寸分布,部分溶解的生物碎屑和顆粒溶蝕產(chǎn)生的微孔和毫米級(jí)的粒間孔使得碳酸鹽巖的孔隙尺寸分布具有典型的雙峰特征[14, 20, 2425]。頁(yè)巖儲(chǔ)層基質(zhì)滲透率極低,包含三種不同尺度的多孔介質(zhì)系統(tǒng),分別是有機(jī)質(zhì)(干酪根)、非有機(jī)質(zhì)(黏土礦物、方解石、黃鐵礦和石英)和天然的微裂縫。典型頁(yè)巖的孔徑分布覆蓋亞納米至數(shù)百納米范圍[15, 2627]。識(shí)別和量化非常規(guī)儲(chǔ)層巖石的微孔特征至關(guān)重要,亞分辨率孔隙對(duì)巖石的迂曲度和比表面積影響極大并直接關(guān)系到孔隙度大小,Tutolo等[28]通過(guò)對(duì)白云石的溶蝕實(shí)驗(yàn)發(fā)現(xiàn),在常規(guī)成像條件下有一半孔隙是不可見的。而微孔網(wǎng)絡(luò)的存在會(huì)改變整體孔隙結(jié)構(gòu)的連通性,影響流體流動(dòng)和傳質(zhì)。此外,微孔對(duì)傳輸性能的影響通常與存在的微孔類型有關(guān)[29]??梢?,非常規(guī)儲(chǔ)層中的巖石包含不同尺度的孔隙且非均質(zhì)性強(qiáng),這使得預(yù)測(cè)其物理屬性成為一項(xiàng)挑戰(zhàn)性的任務(wù)。

得益于掃描成像技術(shù)的發(fā)展,現(xiàn)可采用亞納米級(jí)到厘米級(jí)分辨率對(duì)巖心進(jìn)行多尺度成像。Ma等[30]、張哲豪等[31]、Chandra等[32]、Bultreys等[33]總結(jié)了當(dāng)前數(shù)字巖心物理成像方法及其適用的樣品尺寸和分辨率,主要技術(shù)有透射電子顯微鏡(transmission electron microscope, TEM)、聚焦離子束掃描電鏡(focused ion beam-scanning electron microscope, FIBSEM)、大視域SEM圖像自動(dòng)采集技術(shù)MAPS(modular automated processing system)、X射線計(jì)算機(jī)斷層掃描(Xray computed tomography, XCT)等。多尺度成像技術(shù)如圖1所示。每種成像技術(shù)在視場(chǎng)、空間分辨率、采集時(shí)間和成本方面都有優(yōu)勢(shì)和局限性,單一分辨率的方法不能解析跨尺度的復(fù)雜結(jié)構(gòu),存在視場(chǎng)與分辨率之間的權(quán)衡。例如:FIBSEM可以獲取納米級(jí)孔隙結(jié)構(gòu)特征,但樣品視場(chǎng)較小,體現(xiàn)不了非均質(zhì)性,不能代表巖心特征;XCT具有亞微米到微米級(jí)的成像分辨率,可構(gòu)建柱塞尺度的三維數(shù)字巖石,但不能體現(xiàn)高分辨率的細(xì)節(jié)特征[4, 18, 3436]。

針對(duì)上述視場(chǎng)與分辨率之間存在矛盾這一問(wèn)題,已提出了大量的多尺度多孔介質(zhì)建模方法,其中還包含一些多尺度多組分(礦物)模型[3742]。然而,從理論問(wèn)題(如何最好地耦合不同分辨率的巖石特性)到技術(shù)難點(diǎn)(如何對(duì)體素?cái)?shù)量或孔喉數(shù)量極大的模型進(jìn)行數(shù)值模擬)仍存在許多挑戰(zhàn)。通過(guò)系統(tǒng)的調(diào)研,針對(duì)多尺度數(shù)字巖石技術(shù)的發(fā)展,本文從三維隨機(jī)重建、圖像融合和孔隙網(wǎng)絡(luò)整合等方面介紹了多尺度數(shù)字巖石建模方法,分析當(dāng)前面臨的難點(diǎn)并給出下一步探索的方向。

1" 基于圖像融合的多尺度數(shù)字巖石建模

基于圖像融合的多尺度數(shù)字巖石建模是將不同視場(chǎng)不同分辨率的巖石圖像數(shù)據(jù)融合在一個(gè)三維數(shù)據(jù)體中[43]。由于其物理尺寸與分辨率不一致,無(wú)法直接融合,因此開發(fā)了混合疊加、模板匹配和深度學(xué)習(xí)的方法構(gòu)建多尺度數(shù)字巖心。

1.1" 三維隨機(jī)重建

三維隨機(jī)重建是除了物理掃描實(shí)驗(yàn)外另一種構(gòu)

據(jù)文獻(xiàn)[30]修改。

建數(shù)字巖心的方法,基于少量的巖石圖像信息,在形態(tài)和粒度等特征約束下,借助各種數(shù)學(xué)算法生成三維數(shù)字巖心。重建方法主要分為基于統(tǒng)計(jì)隨機(jī)模擬和基于過(guò)程模擬。典型的隨機(jī)方法包括高斯場(chǎng)法[44]、模擬退火(simulated annealing, SA)法[4547]、多點(diǎn)地質(zhì)統(tǒng)計(jì)法[4851]、順序指示模擬法[5253]、馬爾科夫鏈蒙特卡羅(Markov chain Monte Carlo, MCMC)模擬法[5455]、四參數(shù)生成算法(quartet structure generation set, QSGS)等[41, 5658]。上述隨機(jī)算法將孔隙度、兩點(diǎn)相關(guān)函數(shù)、線性路徑函數(shù)等作為約束條件,優(yōu)化生成與原始圖像統(tǒng)計(jì)特征一致的三維巖心,但每種方法都在一定程度上受到孔隙連通性和建模效率的限制。基于過(guò)程的方法模擬巖石在自然界沉積、壓實(shí)和成巖等地質(zhì)作用,調(diào)整參數(shù)以匹配相應(yīng)屬性,能夠精細(xì)刻畫巖石的顆粒特征。過(guò)程模擬法已廣泛應(yīng)用于碎屑巖儲(chǔ)層巖石物理研究[2, 9, 59],但對(duì)非均質(zhì)較強(qiáng)的碳酸鹽巖和頁(yè)巖的重構(gòu)難以通過(guò)此方法實(shí)現(xiàn)[6061]。此外還發(fā)展了大量基于深度學(xué)習(xí)方法的多孔介質(zhì)三維隨機(jī)重建算法,將在下文詳細(xì)介紹。高分辨率納米級(jí)圖像雖包含多孔介質(zhì)微觀結(jié)構(gòu)信息,但其視場(chǎng)較小且通常為二維圖像,因此需采用合適的重建算法以得到代表巖心特征的三維圖像。

1.2" 構(gòu)建方法

1.2.1" 混合疊加法

由于不同尺度圖像的視場(chǎng)和分辨率不一致,因此融合之前需要將低分辨率圖像上采樣并對(duì)高分辨率圖像進(jìn)行三維隨機(jī)重建。如果小尺寸圖像與大尺寸圖像分辨率之間的比率為i,則每個(gè)具有低分辨率(孔隙或基質(zhì))的體素被細(xì)化為i×i×i個(gè)體素。通過(guò)上述步驟后,原尺度不同的圖像具有了相同的體素?cái)?shù)和物理尺寸,將其孔隙或固體空間通過(guò)邏輯運(yùn)算融合成一個(gè)數(shù)據(jù)體。

Okabe等[62]基于二維薄片圖像,采用多點(diǎn)地質(zhì)統(tǒng)計(jì)算法重建了包含小孔信息的三維巖心,借助XCT掃描構(gòu)建了表示大孔的3D數(shù)字圖像,使用圖像疊加技術(shù)得到了多尺度多孔介質(zhì)。Yao等[63]基于SA算法重建了大孔的數(shù)字巖心,結(jié)合高分辨率SEM圖像,基于MCMC算法生成包含微孔的三維數(shù)字圖像(圖2),通過(guò)疊加這些包含大孔和微孔的雙尺度數(shù)字巖石來(lái)構(gòu)建多尺度碳酸鹽數(shù)字圖像。Tahmasebi等[61]認(rèn)為傳統(tǒng)的隨機(jī)重建方法僅基于低階的特征描述符,無(wú)法再現(xiàn)頁(yè)巖的復(fù)雜結(jié)構(gòu),因此提出了采用基于互相關(guān)模擬的頁(yè)巖多尺度多分辨率建模方法,直接采用具有代表性的高分辨率和低分辨率巖石二維圖像進(jìn)行建模。Wu等[58]結(jié)合CT成像技術(shù)和QSGS構(gòu)建了包含多尺度孔隙結(jié)構(gòu)的數(shù)字巖石,其中前者用于捕獲尺寸大于CT實(shí)驗(yàn)分辨率的微米孔,后者用于隨機(jī)生成小于CT分辨率的納米孔,結(jié)果表明加入QSGS生成的小孔后,模型的孔隙率更接近真實(shí)巖心,且孔隙結(jié)構(gòu)具有更好的連通性和迂曲度。

只將巖心圖像劃分為兩相(孔隙和固體基質(zhì))丟失了礦物信息,難以研究巖心的彈性屬性,且黏土對(duì)

據(jù)文獻(xiàn)[63]修改。

巖心的導(dǎo)電作用不可忽略[23]。多組分(礦物)數(shù)字巖心主要由包含灰度信息的CT圖像或SEM圖

像結(jié)合包含礦物信息的綜合自動(dòng)礦物巖石學(xué)檢測(cè)(quantitative evaluation of minerals by scanning electron microscopy, QEMSCAN)技術(shù)或能量色散X射線光譜(energy dispersive Xray spectrometry, EDS)構(gòu)建。Gerke等[39]提出一種通用的圖像融合方法,理論上可將任何分辨率和任意數(shù)量空間尺度的信息合并到單個(gè)圖像中,通過(guò)分級(jí)疊加得到了包含宏觀、微觀及納米級(jí)組分的二維圖像。聶昕等[54]采用MCMC算法重構(gòu)孔隙空間、有機(jī)質(zhì)、黏土礦物及黃鐵礦,構(gòu)建了多組分三維頁(yè)巖數(shù)字巖心(圖3a)。Liu等[23]對(duì)CT圖像和EDS圖像配準(zhǔn)后獲取每個(gè)像素的元素光譜,將其衰減曲線與已知礦物進(jìn)行比對(duì),構(gòu)建了致密砂巖的多礦物巖心以研究其導(dǎo)電性能(圖3b)。此外還開發(fā)了多尺度多組分?jǐn)?shù)字巖石模型,如崔利凱等[37]采用尺度不變特征轉(zhuǎn)換算法對(duì)多分辨率圖像進(jìn)行配準(zhǔn)后,結(jié)合QEMSCAN礦物信息,得到各組分的灰度分布范圍,再將這種信息外推到整個(gè)巖石空間進(jìn)行多閾值分割,構(gòu)建了多尺度多組分?jǐn)?shù)字巖心(圖3c)。礦物灰度范圍跨越數(shù)十個(gè)灰度級(jí)使得各組分之間有交叉,Li等[64]以CT圖像作為訓(xùn)練數(shù)據(jù),將QEMSCAN圖像作為標(biāo)簽,使用UNet定量分割得到了含裂縫的多組分?jǐn)?shù)字巖心。Ji等[40, 65]結(jié)合SEM和EDS信息,提出了改進(jìn)的互相關(guān)模擬法和微裂縫生成法,加以實(shí)驗(yàn)數(shù)據(jù)約束優(yōu)化,重構(gòu)了包含有機(jī)孔、無(wú)機(jī)孔、微裂縫和其他典型礦物的多尺度多組分?jǐn)?shù)字巖心。Wu等[42]采用QSGS生成了包含有機(jī)孔、黏土、黃鐵礦、方解石等組分的頁(yè)巖多尺度多組分模型,研究了有機(jī)孔對(duì)頁(yè)巖電性和流動(dòng)屬性的綜合影響(圖3d)。類似地,Wang等[41]結(jié)合XCT、QEMSCAN和MAPS技術(shù),采用QSGS構(gòu)建了多尺度多組分干熱巖數(shù)字巖心以研究高溫條件下的聲學(xué)特征。

1.2.2" 模板匹配法

混合疊加的多尺度建模方法可能會(huì)導(dǎo)致不同尺度的孔隙重疊,甚至產(chǎn)生偽影。此外,在融合重建過(guò)程中使用二維信息可能無(wú)法準(zhǔn)確表征細(xì)尺度孔隙的結(jié)構(gòu)。模板匹配是一種比較兩種模式匹配與否的方法,目前已廣泛應(yīng)用于多孔介質(zhì)構(gòu)建[18, 6668]。其主要流程如下:首先構(gòu)建包含小尺度信息的模板集合,其次細(xì)化低分辨率圖像并確定未解析的目標(biāo)區(qū)

域,接著將模板在大尺寸圖像上滑移并旋轉(zhuǎn),直到與目

標(biāo)區(qū)域相關(guān)度最高,最后進(jìn)行模板匹配耦合圖像。近年來(lái),諸多學(xué)者基于模板匹配思想構(gòu)建了多尺度數(shù)字巖心[66, 68]。Tahmasebi[67]、Wu等[18]將SEM得到的高分辨率圖像作為輸入,使用互相關(guān)函數(shù)等尋找最佳匹配圖像,構(gòu)建了頁(yè)巖的多尺度圖像,但他們的工作僅限于二維巖心圖像。Lin等[66]通過(guò)模板匹配算法耦合FIBSEM圖像與CT圖像,將高分辨率細(xì)尺度孔嵌入到CT圖像中,生成了多尺度數(shù)字巖石模型(圖4)。Wang等[43]基于多孔介質(zhì)存在局部相似性的假設(shè),提出了一種局部相似性統(tǒng)計(jì)重建方法,訓(xùn)練了大量高分辨率和低分辨率立方體模板并使用稀疏矩陣存儲(chǔ),采用正交匹配追蹤算法進(jìn)行圖像耦合,構(gòu)建了三維多尺度巖心。Zhang等[68]利用高分辨率圖像構(gòu)建模板集并將其展平為一維矩陣以節(jié)約存儲(chǔ)空間,以孔隙度為約束條件進(jìn)行雙尺度圖像融合,通過(guò)重建兩個(gè)巖心實(shí)例的結(jié)果表明基于模板匹配的方法充分利用了三維形態(tài)信息,考慮到了不同尺度間的位置關(guān)系,豐富了巖石圖像的微觀結(jié)構(gòu),在各方向上再現(xiàn)了孔隙結(jié)構(gòu)的連通性。

1.2.3" 深度學(xué)習(xí)法

近些年,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)理論飛速發(fā)展,已廣泛應(yīng)用于數(shù)字巖石領(lǐng)域,包括圖像分割、三維隨機(jī)重構(gòu)、超分辨率重建和巖石物理屬性預(yù)測(cè)等。超分辨率重建是是克服視場(chǎng)與分辨率矛盾的有效方法。Wang等[69]采用SRCNN(super-resolution convolution neural network)框架生成了高分辨率的砂巖與碳酸鹽巖圖像,結(jié)果表明,與雙三次插值相比,SRCNN生成的圖像質(zhì)量更高,相對(duì)誤差降低了50%~70%。但是基于卷積神經(jīng)網(wǎng)絡(luò)的超分辨率重建需要較多配對(duì)的高分辨率和低分辨率圖像,這通常代價(jià)較為高昂[70]。生成對(duì)抗網(wǎng)絡(luò)(generative adversarial network,GAN)在超分辨率重建上同樣效果顯著。GAN由Goodfellow等[71]提出,網(wǎng)絡(luò)由生成器和鑒別器組成,前者生成假圖像,后者用于辨別真實(shí)圖像和假圖像,直到二者達(dá)到均衡。Shams等[60]先采用GAN重建表示晶間孔的大孔圖像,之后采用自動(dòng)編碼器將晶內(nèi)孔耦合進(jìn)大孔圖像構(gòu)建多尺度巖心,結(jié)果表明重建巖心的孔滲特征與原始巖樣較為接近(圖5)。Chen等[72]采用周期一致的GAN學(xué)習(xí)高低分辨率圖像之間的映射關(guān)系,能在具有少量配對(duì)圖像的情況下顯著提高大視場(chǎng)圖像的分辨率以獲取高精度的巖石CT圖像。Yang等[73]基于條件GAN將低分辨率大孔圖像作為輸入以生成多尺度多孔介質(zhì),并通過(guò)兩點(diǎn)相關(guān)函數(shù)等進(jìn)行驗(yàn)證,模型可以生成任意尺度的三維數(shù)字巖心。

據(jù)文獻(xiàn)[66]修改。

據(jù)文獻(xiàn)[60]修改。

2" 基于孔隙網(wǎng)絡(luò)整合的多尺度數(shù)字巖石建模

孔隙網(wǎng)絡(luò)模型(pore network model, PNM)將多孔介質(zhì)復(fù)雜的孔隙空間簡(jiǎn)化成規(guī)則的幾何體,常使用球體和圓柱體表示大的孔隙空間和細(xì)長(zhǎng)的孔隙通道[24, 7476]。與基于圖像建模不同的是,PNM僅需存儲(chǔ)孔喉坐標(biāo)位置、半徑大小和連接方式等參數(shù),大幅度節(jié)約了建模和模擬時(shí)間;此外,PNM還能定量研究潤(rùn)濕性和界面張力對(duì)兩相流的影響,在巖石滲流屬性模擬中具有巨大優(yōu)勢(shì)[15, 74]。PNM可直接由分割好的二值圖像得到,主要方法有中軸線法[7778]、最大球法[7980]和分水嶺算法[81]等?;诳紫毒W(wǎng)絡(luò)整合的多尺度數(shù)字巖石建模是將各尺度數(shù)據(jù)通過(guò)特定的連接方式集成一個(gè)PNM,Ioannidis等[82]先引入了含雙尺度孔隙碳酸鹽巖的概念,之后發(fā)展了幾種雙尺度PNM[13, 83]和三尺度PNM[74, 84]。

2.1" 帶有顯式微孔網(wǎng)絡(luò)的多尺度PNM

該類方法首先以一定約束條件生成微孔網(wǎng)絡(luò),然后將其分布在整個(gè)多孔介質(zhì)域或選擇性地將微孔插入大孔網(wǎng)絡(luò)以構(gòu)建多尺度PNM[13, 8587]。Jiang等[74]先通過(guò)孔隙密度和孔隙度約束生成與大尺度巖心物理尺寸一致的隨機(jī)PNM,隨后將二者放置于同一坐標(biāo)系內(nèi),添加大孔與小孔之間的跨尺度喉道以實(shí)現(xiàn)尺度升級(jí),最終構(gòu)建了包含3個(gè)尺度的PNM,結(jié)果表明該模型的孔隙結(jié)構(gòu)和流動(dòng)屬性更接近真實(shí)巖心(圖6、圖7a)[74]。Pak等[88]結(jié)合薄片分析和壓汞實(shí)驗(yàn)得到的孔徑分布數(shù)據(jù),采用Jiang等[74]的方法構(gòu)建了多尺度碳酸鹽巖PNM。類似地,楊永飛等[15]整合孔徑較大的無(wú)機(jī)孔和孔徑較小的有機(jī)孔構(gòu)建了雙尺度頁(yè)巖PNM,并將該方法與基于圖像融合的直接疊加法進(jìn)行對(duì)比,結(jié)果表明孔隙半徑分布和配位數(shù)與實(shí)驗(yàn)結(jié)果擬合程度較好。

Mehmani等[13]開發(fā)了一種基于過(guò)程的算法重建雙尺度PNM,模型包含粒間孔和由顆粒部分溶解及成巖作用產(chǎn)生的微孔。Tahmasebi等[89]從實(shí)際砂巖樣品的SEM圖像和顯微CT掃描中提取了微觀和宏觀PNM,采用Mehmani等[13]提出的方法模擬了微孔填充巖石顆粒。Vries等[86]將具有不同孔滲特征的球形微孔聚集體隨機(jī)放入大尺度PNM中構(gòu)建了雙尺度PNM,通過(guò)調(diào)整微孔網(wǎng)絡(luò)數(shù)量和網(wǎng)絡(luò)內(nèi)的孔隙體積分?jǐn)?shù)研究了流體的流動(dòng)和傳質(zhì)過(guò)程。

具有顯式微孔網(wǎng)絡(luò)的多尺度PNM構(gòu)建流程易于理解,符合巖心特征。但該方法的主要問(wèn)題是隨著尺度升級(jí),孔隙和喉道的數(shù)量呈指數(shù)級(jí)增長(zhǎng),以至于計(jì)算成本很高。

2.2" 僅添加額外喉道的多尺度PNM

Bauer等[83]基于CT圖像中未解析區(qū)域的體積分?jǐn)?shù),將微孔的宏觀性質(zhì)以額外喉道的形式添加在大孔之間,通過(guò)定義平均量衡量微孔對(duì)大孔網(wǎng)絡(luò)輸運(yùn)的影響(圖7b),該建模方法沒(méi)有改變整個(gè)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)且在建模速度上有優(yōu)勢(shì)。類似地,Yao

等[90]根據(jù)頁(yè)巖SEM圖像觀測(cè)到的孔喉連接特征構(gòu)

據(jù)文獻(xiàn)[74]修改。

建了多尺度PNM,綜合考慮了有機(jī)質(zhì)分布、有機(jī)質(zhì)總體積、有機(jī)孔徑、無(wú)機(jī)孔結(jié)構(gòu)以及有機(jī)與無(wú)機(jī)體系的連通性特征,其中包含三種不同類型的喉道,分別為無(wú)機(jī)孔之間的喉道、與納米多孔有機(jī)質(zhì)平行連接的無(wú)機(jī)質(zhì)喉道和與納米多孔有機(jī)質(zhì)串聯(lián)的無(wú)機(jī)質(zhì)喉道。Bultreys等[16]提出了微鏈接的概念,在設(shè)定微鏈接的長(zhǎng)度截止值之后(防止生成過(guò)多喉道并高估網(wǎng)絡(luò)流動(dòng)性能),在大孔與大孔之間添加額外的喉道以代替微孔的連接作用(圖7c)。以上方法在調(diào)整額外喉道屬性的情況下能獲取與實(shí)驗(yàn)數(shù)據(jù)相近的模擬結(jié)果,但通過(guò)將預(yù)測(cè)的傳輸特性與宏觀實(shí)驗(yàn)測(cè)量相匹配來(lái)調(diào)整微孔特性并不總是可行的[24]。

2.3" 含裂縫系統(tǒng)的多尺度PNM

與在大孔網(wǎng)絡(luò)添加微孔網(wǎng)絡(luò)類似,可以添加更大尺度的裂縫與大孔網(wǎng)絡(luò)耦合以構(gòu)建含裂縫的多尺度PNM。Hughes等[91]首先采用PNM研究裂縫介質(zhì)中的多相流,假設(shè)裂縫可以在規(guī)則的孔喉網(wǎng)絡(luò)上建模,以多個(gè)規(guī)則且長(zhǎng)寬不一的矩形表示裂縫形態(tài)和開度的變化。Wilson-Lopez等[92]以類似的思想將具有不同孔徑和長(zhǎng)度的正交平行板組成微裂縫網(wǎng)絡(luò),將模型拓展成包含相交裂縫的PNM。Mehmani等[93]通過(guò)在原始孔隙網(wǎng)絡(luò)上施加兩個(gè)平行平面并消除落在兩個(gè)平面內(nèi)的孔隙,在平面之間添加比原始孔徑大得多的孔隙構(gòu)建了裂縫孔隙雙重介質(zhì)PNM。與Bultreys等[16]提出的微鏈接概念類似,Liu等[94]通過(guò)將連接不相鄰

孔隙的平行喉道視為裂縫建立了二維裂縫孔隙模

型,研究了裂縫長(zhǎng)

度和裂縫密度對(duì)絕對(duì)滲透率和驅(qū)油效率的影響。Jiang等[95]提出了一種基于裂縫多孔介質(zhì)圖像提取孔隙網(wǎng)絡(luò)的方法,首先采用中軸法提取規(guī)則的PNM,接著設(shè)計(jì)了一種收縮算法定位裂縫,逐步去除非平面結(jié)構(gòu)以獲取真實(shí)裂縫;即便在裂縫相交的情況下,該方法也能夠準(zhǔn)確識(shí)別裂縫位置和開度。Rabbani等[84]建立了一種大孔網(wǎng)絡(luò)耦合裂縫和微孔網(wǎng)絡(luò)的三尺度PNM,模擬氣體和液體流動(dòng),并將計(jì)算出的滲透率與雙PNM以及實(shí)驗(yàn)數(shù)據(jù)進(jìn)行比較,結(jié)果表明果若在裂縫存在的情況下忽略微孔,碳酸鹽巖多孔介質(zhì)氣體滲透率的相對(duì)誤差在10%~50%之間(圖7d)。

3" 當(dāng)前存在的問(wèn)題及探索方向

盡管已經(jīng)提出了大量有關(guān)多尺度數(shù)字巖心和多尺度孔隙網(wǎng)絡(luò)建模的研究(表1簡(jiǎn)要總結(jié)了這些建模方法及模型尺寸、分辨率等相關(guān)屬性),但大多數(shù)應(yīng)用于微觀理論研究或方法驗(yàn)證,尚未形成具體的應(yīng)用體系以支撐實(shí)際測(cè)井工作及油氣藏開發(fā)。

3.1" 存在問(wèn)題

3.1.1" 數(shù)字巖石工作流程的共性問(wèn)題

1)圖像分割

如何精確地從灰度圖像中提取出孔隙結(jié)構(gòu)和劃分礦物類型是數(shù)字巖石技術(shù)面臨的首要問(wèn)題[6, 9]。非均質(zhì)性強(qiáng)的巖石CT圖像給傳統(tǒng)的濾波方法和圖像分割方法帶來(lái)巨大挑戰(zhàn),此外如何關(guān)聯(lián)圖像的灰度信息與礦物組分問(wèn)題也亟待解決。雖然已發(fā)展了

一些諸如UNet等深度學(xué)習(xí)理論的語(yǔ)義分割模型,但高質(zhì)量的數(shù)據(jù)集制作及模型的泛化能力進(jìn)一步限制了分割的精度[9697]。

2)代表性體積元選取

代表性體積元(representative element volume,REV)能夠反映巖石物理屬性的最小尺寸,常用孔隙度或滲透率不再隨模型大小明顯變化的體積代替[3, 9, 1112, 9899]。對(duì)于均勻的巖石,REV通過(guò)較小的體素?cái)?shù)就能表示,但對(duì)于非均質(zhì)性強(qiáng)的巖石,REV難以確定[4];此外,每個(gè)宏觀屬性都有不同的REV。例如滲透率的REV可能大于孔隙度的REV[100],而兩相流動(dòng)的REV也大于單相流動(dòng)的REV[13, 101]。

3.1.2" 現(xiàn)有多尺度建模方法的局限性

1)圖像融合建模

隨機(jī)重建的不確定性。三維隨機(jī)重建雖有快速、便捷、可控性強(qiáng)的優(yōu)點(diǎn),統(tǒng)計(jì)特征與實(shí)際巖心相近,但是重建過(guò)程過(guò)于隨機(jī),未能充分考慮不同組分之間的關(guān)聯(lián)性,無(wú)法精確表征巖樣的真實(shí)拓?fù)浣Y(jié)構(gòu),以至于相關(guān)物理屬性的模擬結(jié)果與實(shí)驗(yàn)測(cè)量結(jié)果存在較大偏差[6, 68, 70]。多尺度巖石的強(qiáng)各向異性、礦物分布的復(fù)雜特征限制了重建方法的實(shí)用性[70]。

模型大小與計(jì)算效率的權(quán)衡。數(shù)值模擬效率同樣制約著模型的大小,這是尺寸與分辨率之間的矛盾引起的。對(duì)孔隙度為10%、模型尺寸為1 0243的數(shù)字巖心進(jìn)行流動(dòng)屬性模擬需要1 TB運(yùn)行內(nèi)存(RAM)的高性能工作站[102]。若基于圖像融合方法建立包含納米結(jié)構(gòu)的毫米尺度數(shù)字巖心,則模型將具有1012~1018個(gè)體素。

2)孔隙網(wǎng)絡(luò)整合建模

PNM的準(zhǔn)確性。雖發(fā)展了各種基于真實(shí)孔隙空間提取等效PNM的方法,但算法受初始參數(shù)影響較大且各算法提取的PNM也有較大差異。圖8為基于Gostick[103]優(yōu)化的分水嶺算法和Raeini等[104]優(yōu)化的最大球算法對(duì)同一塊巖心孔隙網(wǎng)絡(luò)的提取結(jié)果,可見在默認(rèn)參數(shù)下,兩種方法提取出的孔隙數(shù)量、半徑、配位數(shù)均有明顯差異。

PNM的局限性。PNM未考慮巖石中的礦物組分,模型不能對(duì)巖心進(jìn)行彈性模擬,且難以考慮泥質(zhì)附加導(dǎo)電性,對(duì)模型電阻率分析誤差較大。此外,多尺度建模時(shí),為哪些孔添加跨尺度喉道、添加多少個(gè)跨尺度喉道、跨尺度喉道的半徑如何選取等問(wèn)題都影響著最終多尺度網(wǎng)絡(luò)模型的流動(dòng)性能。

3.2" 探索方向

1)利用實(shí)驗(yàn)數(shù)據(jù)優(yōu)化建模

正如前文提到,單純采用二維圖像的低階信息進(jìn)行三維隨機(jī)重構(gòu)的不確定性極強(qiáng)。結(jié)合N2吸附、高壓壓汞及核磁共振等實(shí)驗(yàn)得到的孔徑大小分布信息作為約束條件進(jìn)行多尺度孔隙網(wǎng)絡(luò)建模,或結(jié)合

礦物衍射實(shí)驗(yàn)結(jié)果約束灰度與礦物類型之間的映射關(guān)系是優(yōu)化巖心建模的有效手段。例如Ji等[40]以實(shí)驗(yàn)得到的孔徑分布和垂直滲透率為約束條件,通過(guò)優(yōu)化算法生成多尺度多組分的頁(yè)巖模型。

2)按需研究物理屬性建模

基于圖像和基于PNM的多尺度建模各有優(yōu)缺點(diǎn)。Navier-Stokes-Brinkman模型可以解決多尺度流動(dòng)問(wèn)題,Navier-Stokes方程可以模擬已解析區(qū)域的傳輸特性,Brinkman方程用于確定納米級(jí)多孔域(未解析域)的速度分布;然而其計(jì)算成本極高,只能在小尺寸巖心進(jìn)行[60, 105]。而PNM方法在流動(dòng)屬性模擬方面具有天然優(yōu)勢(shì),雖將孔隙空間結(jié)構(gòu)簡(jiǎn)化,但實(shí)際流動(dòng)模擬效果與實(shí)驗(yàn)測(cè)量結(jié)果相近[13, 74];然而,PNM方法不能精確考慮礦物結(jié)構(gòu),對(duì)復(fù)雜的電性和彈性等數(shù)值模擬無(wú)法進(jìn)行。

3)結(jié)合均化等效理論建模

分辨率與視場(chǎng)之間的矛盾最終導(dǎo)致了模型大小與計(jì)算效率之間的矛盾,即使采用多尺度PNM方法構(gòu)建跨越多個(gè)尺度的模型也是極具挑戰(zhàn)性的??赡艿慕鉀Q方法是將多尺度數(shù)據(jù)逐級(jí)均化進(jìn)行等效處理[39, 96, 106107],例如Bultreys等[16]和Bauer等[83]將微孔網(wǎng)絡(luò)的連接作用等效為額外的喉道。此外,在使用PNM建模時(shí)同樣可以將例如黏土礦物等的導(dǎo)電作用等效成額外的喉道研究模型的導(dǎo)電作用。而均化等效時(shí)各尺度、各組分之間的相互作用需充分考慮。

4" 結(jié)論與展望

1)混合疊加的多尺度建模方法理論上直觀,易于實(shí)現(xiàn),但疊加時(shí)可能導(dǎo)致不同尺度孔隙重疊并產(chǎn)生偽影;此外,三維隨機(jī)重建高分辨率巖心的不確定性限制了模型數(shù)值模擬結(jié)果的準(zhǔn)確性。模板匹配法細(xì)化了未解析區(qū)域的結(jié)構(gòu)特征,符合真實(shí)巖石圖像特性;但模板大小的確定和匹配過(guò)程極其耗時(shí)且在三維情況下難以開展。深度學(xué)習(xí)方法能夠?qū)W習(xí)高、低分辨率圖像之間的映射關(guān)系,甚至生成任意大小的多尺度數(shù)字巖心;但配對(duì)數(shù)據(jù)集的質(zhì)量及模型訓(xùn)練過(guò)程中的不穩(wěn)定性、不可控性同樣限制該方法的適用性。上述基于圖像融合的多尺度建模方法均有一個(gè)共性的問(wèn)題,即若建立柱塞巖心大小且涵蓋各尺度結(jié)構(gòu)的模型,那么該模型的體素?cái)?shù)量是無(wú)法估量的。

2)孔隙網(wǎng)絡(luò)整合法較圖像融合法具有模型存儲(chǔ)效率高、數(shù)值模擬快等優(yōu)勢(shì),還能定量研究界面張力和潤(rùn)濕性等微觀因素對(duì)滲流的影響。具有顯式微孔網(wǎng)絡(luò)的多尺度PNM同樣受到孔隙位置隨機(jī)性的影響,且隨著尺度升級(jí)孔喉數(shù)量呈指數(shù)級(jí)增加,加大了微觀流動(dòng)屬性分析的難度。而僅添加額外喉道的多尺度PNM基本沒(méi)有改變?cè)即罂拙W(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),但通過(guò)調(diào)整額外喉道特性使得模擬結(jié)果與實(shí)驗(yàn)測(cè)量結(jié)果相匹配并不總是可行的。此外,PNM僅能考慮巖石的孔隙空間,難以考慮礦物分布以研究巖石的彈性等特征。

3)數(shù)字巖石技術(shù)架起了微觀結(jié)構(gòu)與宏觀響應(yīng)之間的堅(jiān)實(shí)橋梁,開發(fā)新算法、新技術(shù)構(gòu)建滿足實(shí)際需求的多尺度多組分?jǐn)?shù)字巖石是將該技術(shù)落地的關(guān)鍵。期望多尺度數(shù)字巖石為數(shù)字井筒的構(gòu)建及儲(chǔ)層的三維地質(zhì)建模提供精確的細(xì)觀資料,以支撐實(shí)際地球物理解釋和油氣藏開發(fā)。

參考文獻(xiàn)(References):

[1]" 譚茂金. 數(shù)字巖石物理學(xué)及測(cè)井解釋應(yīng)用概論[J]. 測(cè)井技術(shù), 2022, 46(4): 371379.

Tan Maojin. Digital Rock Physics and Its Progress in Log Interpretation[J]. Well Logging Technology, 2022, 46(4): 371379.

[2]" 趙建鵬, 陳惠, 李寧, 等. 三維數(shù)字巖心技術(shù)巖石物理應(yīng)用研究進(jìn)展[J]. 地球物理學(xué)進(jìn)展, 2020, 35(3): 10991108.

Zhao Jianpeng, Chen Hui, Li Ning, et al. Research Advance of Petrophysical Application Based on Digital Core Technology[J]. Progress in Geophysics, 2020, 35(3): 10991108.

[3]" Andra H, Combaret N, Dvorkin J, et al. Digital Rock Physics Benchmarks: Part I: Imaging and Segmentation[J]. Computers amp; Geosciences, 2013, 50: 2532.

[4]" Sadeghnejad S, Enzmann F, Kersten M. Digital Rock Physics, Chemistry, and Biology: Challenges and Prospects of Pore-Scale Modelling Approach[J]. Applied Geochemistry, 2021, 131: 10528.

[5]" Ponomarev A A, Kadyrov M A, Tugushev O, et al. Digital Core Reconstruction Research: Challenges and Prospects[J]. Geology, Ecology, and Landscapes, 2024, 8(1): 4956.

[6]" Zhu L, Zhang C, Zhang C,et al. Challenges and Prospects of Digital Core-Reconstruction Research[J].Geofluids, 2019(2):129.

[7]" Dvorkin J, Tutuncu A, Tutuncu M, et al. Rock Property Determination Using Digital Rock Physics[C]// Geophysics of the 21st Century: The Leap into the Future. [S. l.]: European Association of Geoscientists amp; Engineers, 2003: cp3800040.

[8]" 孫建孟, 姜黎明, 劉學(xué)鋒, 等. 數(shù)字巖心技術(shù)測(cè)井應(yīng)用與展望[J]. 測(cè)井技術(shù), 2012, 36(1): 17.

Sun Jianmeng, Jiang Liming, Liu Xuefeng, et al. Log Application and Prospect of Digital Core Technology[J]. Well Logging Technology, 2012, 36(1): 17.

[9]" 劉學(xué)鋒,張偉偉,孫建孟. 三維數(shù)字巖心建模方法綜述[J]. 地球物理學(xué)進(jìn)展, 2013, 28(6): 30663072.

Liu Xuefeng, Zhang Weiwei, Sun Jianmeng.Methods of Constructing 3D Digital Cores: A Review[J]. Progress in Geophysics, 2013, 28(6): 30663072.

[10]" 肖飛,李戈理,陳玉林,等. 數(shù)字巖石構(gòu)建方法及應(yīng)用前景[J]. 測(cè)井技術(shù), 2021, 45(3): 240245.

Xiao Fei, Li Geli, Chen Yulin, et al.Exploration of Digital Rock Construction Method and Application Prospect[J]. Well Logging Technology, 2021, 45(3): 240245.

[11]" 趙建國(guó),潘建國(guó),胡洋銘,等. 基于數(shù)字巖心的碳酸鹽巖孔隙結(jié)構(gòu)對(duì)彈性性質(zhì)的影響研究上篇: 圖像處理與彈性模擬[J]. 地球物理學(xué)報(bào), 2021, 64(2): 656669.

Zhao Jianguo, Pan Jianguo, Hu Yangming, et al. Digital Rock Physics-Based Studies on Effect of Pore Types on Elastic Properties of Carbonate Reservoir Part 1: Imaging Processing and Elastic Modelling[J]. Chinese Journal of Geophysics, 2021, 64(2): 656669.

[12]" Karimpouli S, Tahmasebi P, Ramandi H L. A Review of Experimental and Numerical Modeling of Digital Coalbed Methane: Imaging, Segmentation, Fracture Modeling and Permeability Prediction[J]. International Journal of Coal Geology, 2020, 228: 103552.

[13]" Mehmani A, Prodanovic M. The Effect of Microporosity on Transport Properties in Porous Media[J]. Advances in Water Resources, 2014, 63: 104119.

[14]" 王晨晨,姚軍,楊永飛,等. 碳酸鹽巖雙孔隙數(shù)字巖心結(jié)構(gòu)特征分析[J]. 中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 37(2): 7174.

Wang Chenchen, Yao Jun, Yang Yongfei, et al. Structure Characteristics Analysis of Carbonate Dual Pore Digital Rock[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(2): 7174.

[15]" 楊永飛,劉志輝,姚軍,等. 基于疊加數(shù)字巖心和孔隙網(wǎng)絡(luò)模型的頁(yè)巖基質(zhì)儲(chǔ)層孔隙空間表征方法[J]. 中國(guó)科學(xué): 技術(shù)科學(xué), 2018, 48(5): 488498.

Yang Yongfei, Liu Zhihui, Yao Jun, et al. Pore Space Characterization Method of Shale Matrix Formation Based on Superposed Digital Rock and Pore-Network Model[J]. Scientia Sinica: Technologica, 2018, 48(5): 488498.

[16]" Bultreys T, van Hoorebeke L, Cnudde V. Multi-Scale, Micro-Computed Tomography-Based Pore Network Models to Simulate Drainage in Heterogeneous Rocks[J]. Advances in Water Resources, 2015, 78: 3649.

[17]" Henning P, Ohlberger M, Schweizer B. Adaptive Heterogeneous Multiscale Methods for Immiscible Two-Phase Flow in Porous Media[J]. Computational Geosciences,

2015, 19: 99114.

[18]" Wu Y, Tahmasebi P, Lin C, et al.Multiscale Modeling of Shale Samples Based on Low- and High-Resolution Images[J]. Marine and Petroleum Geology, 2019, 109: 921.

[19]" Ruspini L C, ren P E, Berg S, et al.Multiscale Digital Rock Analysis for Complex Rocks[J]. Transport in Porous Media, 2021, 139: 301325.

[20]" Thomson P R, Hazel A, Hier-Majumder S. The Influence of Microporous Cements on the Pore Network Geometry of Natural Sedimentary Rocks[J]. Frontiers in Earth Science, 2019, 7: 48.

[21]" Jouini M S, Vega S, Ratrout A. Numerical Estimation of Carbonate Rock Properties Using Multiscale Images[J]. Geophysical Prospecting, 2015, 63(2): 405421.

[22]" Jacob A, Peltz M, Hale S, et al. Simulating Permeability Reduction by Clay Mineral Nanopores in a Tight Sandstone by Combining Computer XRay Microtomography and Focused Ion Beam Scanning Electron Microscopy Imaging[J]. Solid Earth, 2021, 12(1): 114.

[23]" Liu X, Yan J, Zhang X, et al. Numerical Upscaling of Multi-Mineral Digital Rocks: Electrical Conductivities of Tight Sandstones[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108530.

[24]" Mehmani A, Verma R, Prodanovi?倢 M. Pore-Scale Modeling of Carbonates[J]. Marine and Petroleum Geology, 2020, 114: 104141.

[25]" Karimpouli S, Faraji A, Balcewicz M, et al. Computing Heterogeneous Core Sample Velocity Using Digital Rock Physics: A Multiscale Approach[J]. Computers amp; Geosciences, 2020, 135: 104378.

[26]" Wang L, Wang S, Zhang R, et al. Review of Multi-Scale and Multi-Physical Simulation Technologies for Shale and Tight Gas Reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 560578.

[27]" Hemes S, Desbois G, Urai J L, et al. Multi-Scale Characterization of Porosity in Boom Clay (HADES-Level, Mol, Belgium) Using a Combination of XRay μCT, 2D BIBSEM and FIBSEM Tomography[J]. Microporous and Mesoporous Materials, 2015, 208: 120.

[28]" Tutolo B M, Luhmann A J, Kong X Z, et al.Contributions of Visible and Invisible Pores to Reactive Transport in Dolomite[J]. Geochemical Perspectives Letters, 2020, 14: 4246.

[29]" Norbisrath J H, Eberli G P, Laurich B, et al.Electrical and Fluid Flow Properties of Carbonate Microporosity Types from Multiscale Digital Image Analysis and Mercury Injection[J]. AAPG Bulletin, 2015, 99(11): 20772098.

[30]" Ma L, Dowey P J, Rutter E, et al. A Novel Upscaling Procedure for Characterising Heterogeneous Shale Porosity from Nanometer-to Millimetre-Scale in 3D[J]. Energy, 2019, 181: 12851297.

[31]" 張哲豪,李新,趙建斌,等. 頁(yè)巖油儲(chǔ)層巖石物理實(shí)驗(yàn)技術(shù)現(xiàn)狀及發(fā)展[J]. 測(cè)井技術(shù), 2022, 46(6): 656663.

Zhang Zhehao, Li Xin, Zhao Jianbin, et al. Current Situation and Development of Petrophysical Experiment Technology in Shale Oil Reservoir[J]. Well Logging Technology, 2022, 46(6): 656663.

[32]" Chandra D, Vishal V. A Critical Review on Pore to Continuum Scale Imaging Techniques for Enhanced Shale Gas Recovery[J]. Earth-Science Reviews, 2021, 217: 103638.

[33]" Bultreys T, De Boever W, Cnudde V. Imaging and Image-Based Fluid Transport Modeling at the PoreScale in Geological Materials: A Practical Introduction to the Current State-of-the-Art[J]. Earth-Science Reviews, 2016, 155: 93128.

[34]" 王晨晨. 碳酸鹽巖介質(zhì)雙孔隙網(wǎng)絡(luò)模型構(gòu)建理論與方法[D]. 青島: 中國(guó)石油大學(xué)(華東), 2013.

Wang Chenchen. Construction Theory and Method of Dual Pore Network Model in Carbonate Media[D]. Qingdao: China University of Petroleum (East China), 2013.

[35]" Jackson S J, Lin Q, Krevor S. Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow from the Pore to Continuum Scale[J]. Water Resources Research, 2020, 56(6): e2019WR026396.

[36]" Song S, Li M, Tu Q, et al. An Improved Universal Fusion Algorithm for Constructing 3D Multiscale Porous Media[J]. Water Resources Research, 2021, 57(8): e2020WR029134.

[37]" 崔利凱, 孫建孟, 閆偉超, 等. 基于多分辨率圖像融合的多尺度多組分?jǐn)?shù)字巖心構(gòu)建[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2017, 47(6): 19041912.

Cui Likai, Sun Jianmeng, Yan Weichao, et al. Construction of Multi-Scale and -Component Digital Cores Based on Fusion of Different Resolution Core Images[J]. Journal of Jilin University (Earth Science Edition), 2017, 47 (6): 19041912.

[38]" Cui L K, Sun J M, Yan W C, et al. Multi-Scale and Multi-Component Digital Core Construction and Elastic Property Simulation[J]. Applied Geophysics, 2020, 17(1): 2636.

[39]" Gerke K M, Karsanina M V, Mallants D. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock[J]. Scientific Reports, 2015, 5(1): 15880.

[40]" Ji L, Lin M, Cao G, et al. A Core-Scale Reconstructing Method for Shale[J]. Scientific Reports, 2019, 9(1): 4364.

[41]" Wang S, Tan M, Wu H, et al.A Digital Rock Physics-Based Multiscale Multicomponent Model Construction of Hot-Dry Rocks and Microscopic Analysis of Acoustic Properties Under High-Temperature Conditions[J]. SPE Journal, 2022, 27(5): 31193135.

[42]" Wu Y, Tahmasebi P, Lin C, et al. A Comprehensive Investigation of the Effects of Organic-Matter Pores on Shale Properties: A Multicomponent and Multiscale Modeling[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103425.

[43]" Wang Y, Arns J Y, Rahman S S, et al. Three-Dimensional Porous Structure Reconstruction Based on Structural Local Similarity via Sparse Representation on Micro-Computed-Tomography Images[J]. Physical Review E, 2018, 98(4): 043310.

[44]" Quiblier J A. A New Three-Dimensional Modeling Technique for Studying Porous Media[J]. Journal of Colloid and Interface Science, 1984, 98(1): 84102.

[45]" 孫本耀, 滕奇志, 馮俊羲, 等. 基于模擬退火的多尺度巖心三維圖像融合重建[J]. 四川大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 57(4): 711718.

Sun Benyao, Teng Qizhi, Feng Junxi, et al. Three-Dimensional Image Fusion Reconstruction of Multi-Scale Core Based on Simulated Annealing[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(4): 711718.

[46]" 趙秀才, 姚軍, 陶軍, 等. 基于模擬退火算法的數(shù)字巖心建模方法[J]. 高校應(yīng)用數(shù)學(xué)學(xué)報(bào): A輯, 2007, 22(2): 127133.

Zhao Xiucai, Yao Jun, Tao Jun, et al. A Method of Constructing Digital Core by Simulated Annealing Algorithm[J]. Applied Mathematics: A Journal of Chinese Universities: Series A, 2007, 22(2): 127133.

[47]" Roberts A P. Statistical Reconstruction of Three-Dimensional Porous Media from Two-Dimensional Images[J].Physical Review E, 1997, 56: 32033212.

[48]" 吳玉其, 林承焰, 任麗華, 等. 基于多點(diǎn)地質(zhì)統(tǒng)計(jì)學(xué)的數(shù)字巖心建模[J]. 中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 42(3): 1221.

Wu Yuqi, Lin Chengyan, Ren Lihua, et al. Digital Core Modeling Based on Multiple-Point Statistics[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2018, 42(3): 1221.

[49]" 張麗, 孫建孟, 孫志強(qiáng), 等. 多點(diǎn)地質(zhì)統(tǒng)計(jì)學(xué)在三維巖心孔隙分布建模中的應(yīng)用[J]. 中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 35(5): 9296.

Zhang Li, Sun Jianmeng, Sun Zhiqiang, et al. Application of Multiple-Point Statistics in Three-Dimensional Core Pore Distribution Modeling[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2011, 35(5): 9296.

[50]" Strebelle S. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics[J]. Mathematical Geology, 2002, 34(1): 122.

[51]

Okabe H, Blunt M J. Pore Space Reconstruction

Using Multiple-Point Statistics[J]. Journal of Petroleum Science and Engineering, 2005, 46(1/2): 121137.

[52]" 劉學(xué)鋒, 孫建孟, 王海濤, 等. 順序指示模擬重建三維數(shù)字巖心的準(zhǔn)確性評(píng)價(jià)[J]. 石油學(xué)報(bào), 2009, 30(3): 391395.

Liu Xuefeng, Sun Jianmeng, Wang Haitao, et al. The Accuracy Evaluation on 3D Digital Cores Reconstructed by Sequence Indicator Simulation[J]. Acta Petrolei Sinica, 2009, 30(3): 391395.

[53]" 李忠城,李丹丹. 山西沁水壽陽(yáng)ST區(qū)塊煤儲(chǔ)層三維精細(xì)地質(zhì)建模[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2023, 53(2): 635650.

Li Zhongcheng, Li Dandan. 3D Fine Geological Modeling of Coal Reservoir in Shouyang ST Block in Qinshui Basin, Shanxi Province[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(2): 635650.

[54]" 聶昕, 鄒長(zhǎng)春, 孟小紅, 等. 頁(yè)巖氣儲(chǔ)層巖石三維數(shù)字巖心建模:以導(dǎo)電性模型為例[J]. 天然氣地球科學(xué), 2016, 27(4): 706715.

Nie Xin, Zhou Changchun, Meng Xiaohong, et al. 3D Digital Core Modeling of Shale Gas Reservoir Rocks: A Case Study of Conductivity Model[J]. Natural Gas Geoscience, 2016, 27(4): 706715.

[55]" Wu K J, van Dijke M I J, Couples G D, et al. 3D Stochastic Modelling of Heterogeneous Porous Media: Applications to Reservoir Rocks[J]. Transport in Porous Media, 2006, 65: 443467.

[56]" 張季如, 鐘思維. 四參數(shù)隨機(jī)生成法重構(gòu)土體微觀孔隙結(jié)構(gòu)的分形特征[J]. 水利學(xué)報(bào), 2018, 49(7): 814822.

Zhang Jiru, Zhong Siwei. Fractal Behaviors of Microscope Pore Structure of Soil Reconstructed by Quartet Structure Generation Set[J]. Journal of Hydraulic Engineering, 2018, 49(7): 814822.

[57]" Wang M, Wang J, Pan N, et al.Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media[J]. Physical Review E, 2007, 75(3): 036702.

[58]" Wu Y, Tahmasebi P, Liu K, et al. Two-Phase Flow in Heterogeneous Porous Media: A Multiscale Digital Model Approach[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123080.

[59]" ren P E, Bakke S. Process Based Reconstruction of Sandstones and Prediction of Transport Properties[J]. Transport in Porous Media, 2002, 46(2/3): 311343.

[60]" Shams R, Masihi M, Boozarjomehry R B, et al. Coupled Generative Adversarial and Auto-Encoder Neural Networks to Reconstruct Three-Dimensional Multi-Scale Porous Media[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106794.

[61]" Tahmasebi P, Javadpour F, Sahimi M. Multiscale and Multiresolution Modeling of Shales and Their Flow and Morphological Properties[J]. Scientific Reports, 2015, 5(1): 16373.

[62]" Okabe H, Blunt M J. Pore Space Reconstruction of Vuggy Carbonates Using Microtomography and Multiple-Point Statistics[J]. Water Resources Research, 2007, 43(12): W12S02.1W12S02.5.

[63]" Yao J, Wang C, Yang Y, et al. The Construction of Carbonate Digital Rock with Hybrid Superposition Method[J]. Journal of Petroleum Science and Engineering, 2013, 110: 263267.

[64]" Li B, Nie X, Cai J, et al.UNet Model for Multi-Component Digital Rock Modeling of Shales Based on CT and QEMSCAN Images[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110734.

[65]" Ji L, Lin M, Cao G, et al. A Multiscale Reconstructing Method for Shale Based on SEM Image and Experiment Data[J]. Journal of Petroleum Science and Engineering, 2019, 179: 586599.

[66]" Lin W, Li X, Yang Z, et al. Multiscale Digital Porous Rock Reconstruction Using Template Matching[J]. Water Resources Research, 2019, 55(8): 69116922.

[67]" Tahmasebi P. Nanoscale and Multiresolution Models for Shale Samples[J]. Fuel (Guildford), 2018, 217: 218225.

[68]" Zhang N, Teng Q, Yan P, et al. A Three-Dimension Multi-Scale Fusion Reconstruction Method for Porous Media Based on Pattern-Matching[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110673.

[69]" Wang Y D, Armstrong R T, Mostaghimi P. Enhancing Resolution of Digital Rock Images with Super Resolution Convolutional Neural Networks[J]. Journal of Petroleum Science amp; Engineering, 2019, 182: 106261.

[70]" Yang Y, Liu F, Zhang Q, et al. Recent Advances in Multiscale Digital Rock Reconstruction, Flow Simulation, and ExperimentsDuring Shale Gas Production[J]. Energy amp; Fuels, 2023, 37(4): 24752497.

[71]" Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]. //NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems: Volume 2.[S.l.]: MIT Press, 2014: 26722680.

[72]" Chen H, He X, Teng Q, et al. Super-Resolution of Real-World Rock Microcomputed Tomography Images Using Cycle-Consistent Generative Adversarial Networks[J]. Physical Review E, 2020, 101(2): 023305.

[73]" Yang Y, Liu F, Yao J, et al. Multi-Scale Reconstruction of Porous Media from Low-Resolution Core Images Using Conditional Generative Adversarial Networks[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104411.

[74]" Jiang Z, van Dijke M I J, Sorbie K S, et al. Representation of Multiscale Heterogeneity via Multiscale Pore Networks[J]. Water Resources Research, 2013, 49(9): 54375449.

[75]" 雷健, 潘保芝, 張麗華. 基于數(shù)字巖心和孔隙網(wǎng)絡(luò)模型的微觀滲流模擬研究進(jìn)展[J]. 地球物理學(xué)進(jìn)展, 2018, 33(2): 653660.

Lei Jian, Pan Baozhi, Zhang Lihua.Advance of Microscopic Flow Simulation Based on Digital Cores and Pore Network[J]. Progress in Geophysics, 2018, 33(2): 653660.

[76]" 姚軍, 孫海, 李愛(ài)芬, 等. 現(xiàn)代油氣滲流力學(xué)體系及其發(fā)展趨勢(shì)[J]. 科學(xué)通報(bào), 2018, 63(4): 425451.

Yao Jun, Sun Hai, Li Aifen, et al. Modern System of Multiphase Flow in Porous Media and Its Development Trend[J]. Chinese Science Bulletin, 2018, 63(4): 425451.

[77]" Baldwin C A, Sederman A J, Mantle M D, et al. Determination and Characterization of the Structure of a Pore Space from 3D Volume Images[J]. Journal of Colloid and Interface Science, 1996, 181(1): 7992.

[78]" Valavanides M S, Payatakes A C. True-To-Mechanism Model of Steady-State Two-Phase Flow in Porous Media, Using Decomposition into Prototype Flows[J]. Advances in Water Resources, 2001, 24(3/4): 385407.

[79]" Dong H, Blunt M J. Pore-Network Extraction from Micro-Computerized-Tomography Images[J]. Physical Review E, 2009, 80(3): 036307.

[80]" Silin D, Patzek T. Pore Space Morphology Analysis Using Maximal Inscribed Spheres[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 371(2): 336360.

[81]" Rabbani A, Jamshidi S, Salehi S. An Automated Simple Algorithm for Realistic Pore Network Extraction from Micro-Tomography Images[J]. Journal of Petroleum Science and Engineering, 2014, 123: 164171.

[82]" Ioannidis M A, Chatzis I. A Dual-Network Model of Pore Structure for Vuggy Carbonates[C]//SCA200009, International Symposium of the Society of Core Analysts. Abu Dhabi: UAE, 2000: 112.

[83]" Bauer D, Youssef S, Fleury M, et al. Improving the Estimations of Petrophysical Transport Behavior of Carbonate Rocks Using a Dual Pore Network Approach Combined with Computed Microtomography[J]. Transport in Porous Media, 2012, 94: 505524.

[84]" Rabbani A, Babaei M, Javadpour F. A Triple Pore Network Model (TPNM) for Gas Flow Simulation in Fractured, Micro-Porous and Meso-Porous Media[J]. Transport in Porous Media, 2020, 132: 707740.

[85]" Hakimov N, Zolfaghari A, Kalantari-Dahaghi A, et al. Pore-Scale Network Modeling of Microporosity in Low-Resistivity Pay Zones of Carbonate Reservoir[J]. Journal of Natural Gas Science and Engineering, 2019, 71: 103005.

[86]" Vries E T, Raoof A, van Genuchten M T. Multiscale Modelling of Dual-Porosity Porous Media: A Computational Pore-Scale Study for Flow and Solute Transport[J]. Advances in Water Resources, 2017, 105: 8295.

[87]" 姚軍, 王晨晨, 楊永飛, 等. 碳酸鹽巖雙孔隙網(wǎng)絡(luò)模型的構(gòu)建方法和微觀滲流模擬研究[J]. 中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué), 2013,43(7): 896902.

Yao Jun, Wang Chenchen, Yang Yongfei, et al. The Construction Method and Microscopic Flow Simulation of Carbonate Dual Pore Network Model[J]. Scientia Sinica : Physica, Mechanica amp; Astronomica, 2013, 43(7): 896902.

[88] "Pak T, Butler I B, Geiger S, et al. Multiscale Pore-Network Representation of Heterogeneous Carbonate Rocks[J]. Water Resources Research, 2016, 52(7): 54335441.

[89]" Tahmasebi P, Kamrava S. Rapid Multiscale Modeling of Flow in Porous Media[J]. Physical Review E, 2018, 98(5): 052901.

[90]" Yao J, Song W, Wang D, et al. Multi-Scale Pore Network Modelling of Fluid Mass Transfer in Nano-Micro Porous Media[J]. International Journal of Heat and Mass Transfer, 2019, 141: 156167.

[91]" Hughes R G, Blunt M J. Network Modeling of Multiphase Flow in Fractures[J]. Advances in Water Resources, 2001, 24: 409421.

[92]" Wilson-Lopez R V, Rodriguez F. A Network Model for Two-Phase Flow in Microfractured Porous Media[C]//SPE International Oil Conference and Exhibition in Mexico. [S. l.]: SPE, 2004: SPE92056MS.

[93]" Mehmani A, Mehmani Y, Prodanovic' M, et al. A Forward Analysis on the Applicability of Tracer Breakthrough Profiles in Revealing the Pore Structure of Tight Gas Sandstone and Carbonate Rocks[J]. Water Resources Research, 2015, 51(6): 47514767.

[94]" Liu H, Zhang X, Lu X, et al.Study on Flow in Fractured Porous Media Using Pore-Fracture Network Modeling[J]. Energies, 2017, 10(12): 1984.

[95]" Jiang Z, van Dijke M I J, Geiger S, et al. Pore Network Extraction for Fractured Porous Media[J]. Advances in Water Resources, 2017, 107: 280289.

[96]" Berg C F, Lopez O, Berland H. Industrial Applications of Digital Rock Technology[J]. Journal of Petroleum Science and Engineering, 2017, 157: 131147.

[97]" Wang H, Dalton L, Fan M, et al.Deep-Learning-Based Workflow for Boundary and Small Target Segmentation in Digital Rock Images Using UNet++ and IK-EBM[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110596.

[98]" 林承焰, 王楊, 楊山, 等. 基于CT的數(shù)字巖心三維建模[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2018, 48(1): 307317.

Lin Chengyan, Wang Yang, Yang Shan, et al. 3D Modeling of Digital Core Based on XRay Computed Tomography[J]. Journal of Jilin University (Earth Science Edition), 2018, 48 (1): 307317.

[99]" Mehmani A, Kelly S, Torres-Verdín C. Leveraging Digital Rock Physics Workflows in Unconventional Petrophysics: A Review of Opportunities, Challenges, and Benchmarking[C]// SPWLA Annual Logging Symposium. [S. l.]: SPWLA, 2019: D043S013R004.

[100]" Mostaghimi P, Blunt M J, Bijeljic B. Computations of Absolute Permeability on Micro-CT Images[J]. Mathematical Geosciences, 2013, 45: 103125.

[101]" Georgiadis A, Berg S, Maitland G, et al. Pore-Scale Micro-CT Imaging: Cluster Size Distribution During Drainage and Imbibition[J]. Energy Procedia, 2012, 23: 521526.

[102]" Raeini A Q, Yang J, Bondino I, et al. Validating the Generalized Pore Network Model Using Micro-CT Images of Two-Phase Flow[J]. Transport in Porous Media, 2019, 130(2): 405424.

[103]" Gostick J T. Versatile and Efficient Pore Network Extraction Method Using Marker-Based Watershed Segmentation[J]. Physical Review E, 2017, 96(2): 023307.

[104]" Raeini A Q, Bijeljic B, Blunt M J. Generalized Network Modeling: Network Extraction as a Coarse-Scale Discretization of the Void Space of Porous Media[J]. Physical Review E, 2017, 96(1): 013312.

[105]" Yang X, Mehmani Y, Perkins W A, et al. Intercomparison of 3D Pore-Scale Flow and Solute Transport Simulation Methods[J]. Advances in Water Resources, 2016, 95: 176189.

[106]" 熊超,孫紅月. 基于多因素多尺度分析的階躍型滑坡位移預(yù)測(cè)[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2023, 53(4): 11751184.

Xiong Chao, Sun Hongyue. Step-Like Landslide Displacement Prediction Based on Multi-Factor and Multi-Scale Analysis[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(4): 11751184.

[107]" Garibotti C R, Peszyńska M. Upscaling Non-Darcy Flow[J]. Transport in Porous Media, 2009, 80: 401430.

猜你喜歡
多尺度圖像融合
基于多尺度融合插值算法的風(fēng)資源監(jiān)測(cè)方法
海綿城市建設(shè)研究進(jìn)展與若干問(wèn)題探討
一種基于多尺度數(shù)學(xué)形態(tài)學(xué)的心電信號(hào)去噪方法
多尺度高效用水評(píng)價(jià)
基于小波變換的多模態(tài)醫(yī)學(xué)圖像的融合方法
云環(huán)境下改進(jìn)的非授權(quán)用戶入侵行為分析及檢測(cè)研究
灰色關(guān)聯(lián)度在紅外與微光圖像融合質(zhì)量評(píng)價(jià)中的應(yīng)用研究
林火安防預(yù)警與應(yīng)急處理系統(tǒng)設(shè)計(jì)
基于Matlab的遙感圖像IHS小波融合算法的并行化設(shè)計(jì)
科技視界(2016年11期)2016-05-23 08:13:35
城市群體區(qū)域空間聯(lián)系格局的多尺度研究
湖北省| 齐齐哈尔市| 贵南县| 伊宁市| 宜兰市| 镇雄县| 龙岩市| 海晏县| 西华县| 涞源县| 兴安县| 当雄县| 大城县| 渝中区| 静宁县| 怀安县| 枞阳县| 驻马店市| 盈江县| 彭山县| 仙游县| 灌南县| 平遥县| 霍林郭勒市| 安庆市| 永嘉县| 昌黎县| 理塘县| 乌兰浩特市| 孝感市| 中超| 潞西市| 瓦房店市| 巴青县| 交口县| 津市市| 张家口市| 宿迁市| 阿巴嘎旗| 崇明县| 绥中县|