任瑞鳳,孫玉芹,王華亭
二甲雙胍降低心房顫動發(fā)生風險的研究進展
任瑞鳳1,2,孫玉芹3,王華亭1,2
1.山東大學齊魯醫(yī)學院,山東濟南 250012;2.濟南市中心醫(yī)院心血管內科,山東濟南 250013;3.濰坊醫(yī)學院臨床醫(yī)學院,山東濰坊 261053
二甲雙胍的價格低廉且安全性高,是目前臨床上應用較為廣泛的經典降糖藥物。研究發(fā)現(xiàn),二甲雙胍與降低心房顫動的發(fā)生率有關,其可能是通過減少糖原和脂質沉積、激活單磷酸腺苷活化蛋白激酶、改善鈣穩(wěn)態(tài)、減輕炎癥、促進縫隙連接蛋白43的表達、恢復小電導鈣激活鉀通道電流等,改善左心房的結構重構和電學重構,從而降低心房顫動的發(fā)生風險。本文對二甲雙胍降低心房顫動發(fā)生風險的研究進展進行綜述。
二甲雙胍;心房顫動;單磷酸腺苷活化蛋白激酶;鈣穩(wěn)態(tài)
1998年,英國前瞻性糖尿病研究小組證實,二甲雙胍不僅可降低血糖,其對心血管系統(tǒng)也有明確的保護作用[1]。一項Meta分析研究結果顯示,二甲雙胍可降低心肌梗死和心力衰竭患者的全因病死率[2]。在一項應用二甲雙胍治療糖尿病的隨訪研究中發(fā)現(xiàn),二甲雙胍組患者發(fā)生腦卒中的風險比為0.468,明顯低于對照組[3]。既往研究認為,二甲雙胍通過激活單磷酸腺苷活化蛋白激酶(adenosine monophosphate- activated protein kinase,AMPK)、增加一氧化氮利用度,降低促炎因子表達水平、減少氧化應激和炎癥反應、促進脂肪酸氧化和葡萄糖轉運、通過糖酵解途徑提高腺苷三磷酸(adenosine triphosphate,ATP)水平、維持細胞鈣穩(wěn)態(tài)等,發(fā)揮保護心臟的作用[4-7]。盡管二甲雙胍對心血管系統(tǒng)有益,但其對心律失常的作用機制尚不明確。心房顫動(atrial fibrillation,AF)是臨床上最常見的心律失常疾病,研究二甲雙胍與AF的關系對其臨床診治具有重要意義。本文綜述二甲雙胍降低AF發(fā)生風險作用機制的研究進展,為二甲雙胍的臨床應用提供理論依據(jù)。
AF是臨床上最常見的心律失常疾病,其與腦卒中、外周血管栓塞等發(fā)生風險的增加有關。據(jù)統(tǒng)計數(shù)據(jù)估算,全球AF患者總人數(shù)為3350萬[8]。近年來多項研究結果提示,二甲雙胍可降低AF的發(fā)生風險。在一項觀察性研究中,利用傾向評分匹配法評估服用不同糖尿病藥物的患者發(fā)生心律失常的風險;結果發(fā)現(xiàn),與未使用二甲雙胍的患者相比,二甲雙胍單一治療患者發(fā)生心律失常的風險顯著降低;與磺脲類藥物相比,二甲雙胍組患者室性心動過速/心室顫動的發(fā)生率減少了34%;與二肽基肽酶4抑制劑單一治療相比,二甲雙胍與AF、心房撲動或其他室上性心律失常和心動過緩的風險顯著降低相關,發(fā)生率降低約10%;與噻唑烷二酮相比,二甲雙胍可顯著降低AF、心房撲動或其他室上性心律失常的發(fā)生風險,其發(fā)生率分別降低14%和9%[9]。在一項隊列研究中,將645710例新確診為2型糖尿病且未使用過降糖藥物的患者納入研究中,平均隨訪時間為5.4年;結果顯示,與安慰劑組相比,二甲雙胍組患者的AF發(fā)生率顯著低于對照組[10]。Ozcan等[11]利用心臟特異性肝激酶B1基因敲除小鼠模型研究二甲雙胍和阿司匹林一級預防AF的效果,結果顯示,與未處理組小鼠相比,二甲雙胍和阿司匹林治療小鼠的自發(fā)性AF發(fā)生率顯著降低[11]。在2型糖尿病患者的相關研究中發(fā)現(xiàn),二甲雙胍與AF的住院風險降低有關,且具有劑量-反應效應[12]。二甲雙胍與射頻導管消融術后再發(fā)房性心律失常風險顯著降低獨立相關[13]。Lal等[14]通過篩選確定二甲雙胍是治療AF的潛在藥物。目前,二甲雙胍降低AF發(fā)生風險的機制尚不明確。
糖尿病是AF的危險因素。胰島素抵抗和血糖升高可引起心房結構重構和電學重構,進一步引起心房擴張、間質纖維化及心房有效不應期(atrium effective refractory period,AERP)縮短,最終導致AF的發(fā)生[15-16]。AF發(fā)生時能量需求增加,葡萄糖代謝上調失敗,更依賴于脂肪酸代謝,糖原沉積導致心肌細胞明顯肥大,使AF持續(xù)存在。二甲雙胍是臨床上治療糖尿病的經典用藥;其在不降低正常血糖的基礎上,通過促進肌肉等外周組織攝取葡萄糖、促進糖酵解、抑制糖異生及改善胰島素抵抗等發(fā)揮作用[17-18]對非糖尿病犬進行快速心房起搏后發(fā)現(xiàn),左心耳脂質沉積的增加與AERP的縮短和分散有關[19]。研究發(fā)現(xiàn),二甲雙胍可通過AMPK/過氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptor,PPAR)-α/極長鏈脂酰輔酶A脫氫酶信號傳導途徑,促進脂肪酸-β氧化,減少脂質沉積,改善心房重構[20]。另有研究表明,二甲雙胍可通過縮小心外膜脂肪組織體積,降低患者的術后復發(fā)率[21]。綜上,二甲雙胍減少糖原和脂質沉積,可在一定程度上減緩AF進程。
研究發(fā)現(xiàn),細胞內鈣穩(wěn)態(tài)異??蓪е翧F的易感性增加[22-23]。Harada等[24]在AF犬模型的左心房樣本和AF術后患者的右心房組織樣本中測定Ca2+的瞬變幅度和細胞收縮能力,評估AMPK的磷酸化水平及AMPK與鈣離子轉運蛋白的關系;研究發(fā)現(xiàn),AMPK的激活有助于維持L型鈣通道電流、Ca2+瞬變幅度、肌質網Ca2+含量和細胞收縮能力。二甲雙胍可增加AMPK的表達水平,推測其可能通過AMPK途徑維持鈣穩(wěn)態(tài),從而減少AF的發(fā)生[19]。
Cx43是心臟連接蛋白的重要成員之一,可介導心肌細胞間的電偶合,參與相鄰細胞間的離子交換,從而調控細胞間通訊[25]。研究發(fā)現(xiàn),Cx43在改善細胞內電傳導、抑制心律失常中起關鍵作用,可預防AF的發(fā)生[26-27]。研究證實,二甲雙胍可激活AMPK[28]。研究表明,在新生大鼠的心肌細胞中,二甲雙胍通過激活AMPK,促進Cx43和緊密連接蛋白-1的表達,抑制AERP的縮短,改善AERP的離散度[20]。同時,AMPK磷酸化可通過促進大鼠心肌細胞中ATP敏感鉀離子通道(KATP)的開放,抑制細胞間隙通透性,增加Cx43的表達,從而減少房性心律失常的發(fā)生[29-30]。
AF的發(fā)生與氧化應激和炎癥反應密切相關[31]。非糖尿病小鼠AF模型研究發(fā)現(xiàn),二甲雙胍可通過抑制還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶,減少細胞內活性氧的表達,抑制心房中成纖維細胞分化,從而改善心房重構[10,32]。AF涉及炎癥過程,心外膜脂肪組織分泌的脂肪因子可誘導炎癥反應,促進AF的發(fā)生[21]。二甲雙胍可影響心外膜脂肪組織的積累、脂肪的生成和脂肪細胞的功能,包括脂肪因子的產生和釋放[33]。研究表明,快速心房起搏可促進細胞內活性氧和核因子κB的磷酸化,上調心房和心外膜脂肪組織中白細胞介素-6、腫瘤壞死因子-α和轉化生長因子-β1的水平,抑制PPARγ和脂聯(lián)素的表達,并伴有心房纖維化和脂肪浸潤;上述因子的表達在給予二甲雙胍后出現(xiàn)逆轉,氧化應激和炎癥反應減少,從而降低心房纖維化和AF的發(fā)生[34]。
SK通道是一類對膜電位變化不敏感,而對細胞內Ca2+濃度變化較為敏感的鉀離子通道蛋白,其在心臟中廣泛存在,可影響動作電位時程。SK通道在心房肌細胞和起搏細胞中高度表達[35]。SK通道包括SK1(KCNN1基因編碼的KCa2.1)、SK2(KCNN2基因編碼的KCa2.2)和SK3(KCNN3基因編碼的KCa2.3);KCNN2和KCNN3基因與孤立性AF存在關聯(lián)[36-37]。研究證實,SK2基因敲除小鼠的心房動作電位時程顯著延長,SK2、SK3過表達小鼠動作電位時程縮短、放電頻率增加,SK通道的過表達可增加AF的易感性,易誘發(fā)房性心律失常[38-39]。二甲雙胍的長期使用可通過蛋白激酶C/胞外信號調節(jié)激酶途徑,抑制SK2的下調和SK3的上調[40]。Fu等[41]研究證實,糖尿病大鼠SK2的表達減少,SK3的表達增加,SK總體電流減少,電流-電壓關系扭曲,導致動作電位時程延長并出現(xiàn)隨后的房性心律失常;經二甲雙胍治療3個月后,SK2的表達增加,SK3的表達減少,SK的總體電流增加,正常的電流-電壓關系得以恢復,動作電位時程正?;?,從而減少房性心律失常的發(fā)生。SK通道參與糖尿病條件下心律失常的進展過程,二甲雙胍對心房電生理有潛在益處,其可能成為房性心律失常治療的新靶點。
二甲雙胍是已知的AMPK激活劑,可通過酪氨酸蛋白激酶/磷脂酰肌醇3激酶途徑激活AMPK,或通過抑制線粒體復合體激活AMPK[7,18];也可通過維持胰島素/葡萄糖穩(wěn)態(tài),調控AMPK信號通路。Harada等[24]研究發(fā)現(xiàn),AF相關的代謝應激使心房的收縮功能和Ca2+的處理能力下降;同時,AF能量需求增加可激活AMPK;AMPK磷酸化比例在陣發(fā)性AF患者中較高,在持續(xù)性AF患者中較低,且AMPK磷酸化活性的降低使AF患者心律失常狀態(tài)持續(xù)存在并出現(xiàn)治療抵抗。推測AMPK激活可能有助于延緩AF進程,幫助將陣發(fā)性AF和持續(xù)性AF轉復為竇性心律。代謝正常的豬缺血再灌注損傷模型研究發(fā)現(xiàn),酸中毒、腺苷二磷酸的積累和ATP的消耗會引起心臟KATP開放,導致動作電位縮短;二甲雙胍可通過激活AMPK,增加ATP濃度,進而抑制KATP的開放[42]。AMPK的磷酸化可增加Cx43的表達,進而減少房性心律失常的發(fā)生[30]。綜上,無論患者是否存在代謝異常,二甲雙胍的臨床治療均可獲得明顯的心血管益處,AMPK可能是治療AF的新靶點。
此外,二甲雙胍不會增加低血糖風險,可減少因低血糖導致的AF;也可通過調節(jié)微RNA-1,改善心臟傳導延遲[43-44]。然而,二甲雙胍在抗心律失常的同時,可導致心律失常。二甲雙胍的使用和維生素B12的缺乏具有顯著相關性[45]。二甲雙胍可能通過干擾內在因子維生素B12復合物與回腸末端相應受體的結合,阻礙維生素B12的吸收。維生素B12的缺乏可引起或加速心臟去神經等自主神經病變,這與心律失常有關。
二甲雙胍被列為一線降糖藥物,其可控制血糖,亦具有降低AF和其他心律失常疾病發(fā)生的作用,但作用機制尚未完全明確。二甲雙胍預防AF的有效性值得在糖尿病患者和非糖尿病患者中進行更深入的研究。AMPK是干預AF病程進展的新靶點。未來可著眼于二甲雙胍激活AMPK、減少AF發(fā)生的具體機制及相關影響因素,并通過進一步的動物和臨床研究進行不斷探索。
[1] ANON. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet, 1998, 352(9131): 854–865.
[2] HAN Y, XIE H, LIU Y, et al. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: A systematic review and an updated Meta-analysis[J]. Cardiovasc Diabetol, 2019, 18(1): 96.
[3] CHENG Y Y, LEU H B, CHEN T J, et al. Metformin- inclusive therapy reduces the risk of stroke in patients with diabetes: A 4-year follow-up study[J]. J Stroke Cerebrovasc Dis, 2014, 23(2): e99–e105.
[4] CHEN X, LI X, ZHANG W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway[J]. Metabolism, 2018, 83: 256–270.
[5] FEI Q, MA H, ZOU J, et al. Metformin protects against ischaemic myocardial injury by alleviating autophagy- ROS-NLRP3-mediated inflammatory response in macrophages[J]. J Mol Cell Cardiol, 2020, 145: 1–13.
[6] YOUNG L H. AMP-activated protein kinase conducts the ischemic stress response orchestra[J]. Circulation, 2008, 117(6): 832–840.
[7] DIAMANTI-KANDARAKIS E, CHRISTAKOU C D, KANDARAKI E, et al. Metformin: An old medication of new fashion: Evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome[J]. Eur J Endocrinol, 2010, 162(2): 193–212.
[8] MORIN D P, BERNARD M L, MADIAS C, et al. The state of the art: Atrial fibrillation epidemiology, prevention,and treatment[J]. Mayo Clin Proc, 2016, 91(12): 1778–1810.
[9] OSTROPOLETS A, ELIAS P A, REYES M V, et al. Metformin is associated with a lower risk of atrial fibrillation and ventricular arrhythmias compared with sulfonylureas: An observational study[J]. Circ Arrhythm Electrophysiol, 2021, 14(3): e009115.
[10] CHANG S H, WU L S, CHIOU M J, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: A population- based dynamic cohort and in vitro studies[J]. Cardiovasc Diabetol, 2014, 13: 123.
[11] OZCAN C, DIXIT G, LI Z. Activation of AMP-activated protein kinases prevents atrial fibrillation[J]. J Cardiovasc Transl Res, 2021, 14(3): 492–502.
[12] TSENG C H. Metformin use is associated with a lower incidence of hospitalization for atrial fibrillation in patients with type 2 diabetes mellitus[J]. Front Med (Lausanne), 2021, 7: 592901.
[13] DESHMUKH A, GHANNAM M, LIANG J, et al. Effect of metformin on outcomes of catheter ablation for atrial fibrillation[J]. J Cardiovasc Electrophysiol, 2021, 32(5): 1232–1239.
[14] LAL J C, MAO C, ZHOU Y, et al. Transcriptomics- based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation[J]. Cell Rep Med, 2022, 3(10): 100749.
[15] CARLISLE M A, FUDIM M, DEVORE A D, et al. Heart failure and atrial fibrillation, like fire and fury[J]. JACC Heart Fail, 2019, 7(6): 447–456.
[16] WANG A, GREEN J B, HALPERIN J L, et al. Atrial fibrillation and diabetes mellitus: JACC review topic of the week[J]. J Am Coll Cardiol, 2019, 74(8): 1107–1115.
[17] RENA G, HARDIE D G, PEARSON E R. The mechanisms of action of metformin[J]. Diabetologia, 2017, 60(9): 1577–1585.
[18] FORETZ M, GUIGAS B, BERTRAND L, et al. Metformin: From mechanisms of action to therapies[J]. Cell Metab, 2014, 20(6): 953–966.
[19] BAI F, LIU Y, TU T, et al. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway[J]. Lipids Health Dis, 2019, 18(1): 109.
[20] LI J, LI B, BAI F, et al. Metformin therapy confers cardioprotection against the remodeling of gap junction in tachycardia-induced atrial fibrillation dog model[J]. Life Sci, 2020, 254: 117759.
[21] PACKER M. Disease-treatment interactions in the management of patients with obesity and diabetes who have atrial fibrillation: The potential mediating influence of epicardial adipose tissue[J]. Cardiovasc Diabetol, 2019, 18(1): 121.
[22] CHAN Y H, CHANG G J, LAI Y J, et al. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance[J]. Cardiovasc Diabetol, 2019, 18(1): 125.
[23] LIU C, FU H, LI J, et al. Hyperglycemia aggravates atrial interstitial fibrosis, ionic remodeling and vulnerability to atrial fibrillation in diabetic rabbits[J]. Anadolu Kardiyol Derg, 2012, 12(7): 543–550.
[24] HARADA M, TADEVOSYAN A, QI X, et al. Atrial fibrillation activates AMP-dependent protein kinase and its regulation of cellular calcium handling: Potential role in metabolic adaptation and prevention of progression[J]. J Am Coll Cardiol, 2015, 66(1): 47–58.
[25] S?HL G, WILLECKE K. Gap junctions and the connexin protein family[J]. Cardiovasc Res, 2004, 62(2): 228–232.
[26] BIKOU O, THOMAS D, TRAPPE K, et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model[J]. Cardiovasc Res, 2011, 92(2): 218–225.
[27] IGARASHI T, FINET J E, TAKEUCHI A, et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation[J]. Circulation, 2012, 125(2): 216–225.
[28] HE L, WONDISFORD F E. Metformin action: Concentrations matter[J]. Cell Metab, 2015, 21(2): 159–162.
[29] YOSHIDA H, BAO L, KEFALOYIANNI E, et al. AMP-activated protein kinase connects cellular energy metabolism to KATPchannel function[J]. J Mol Cell Cardiol, 2012, 52(2): 410–418.
[30] QIU J, ZHOU S, LIU Q. Phosphorylated AMP-activated protein kinase slows down the atrial fibrillation progression by activating Connexin43[J]. Int J Cardiol, 2016, 208: 56–57.
[31] YEH Y H, KUO C T, CHAN T H, et al. Transforming growth factor-β and oxidative stress mediate tachycardia-induced cellular remodelling in cultured atrial-derived myocytes[J]. Cardiovasc Res, 2011, 91(1): 62–70.
[32] BHATT M P, LIM Y C, KIM Y M, et al. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes[J]. Diabetes, 2013, 62(11): 3851–3862.
[33] ZULIAN A, CANCELLO R, GIROLA A, et al. In vitro and in vivo effects of metformin on human adipose tissue adiponectin[J]. Obes Facts, 2011, 4(1): 27–33.
[34] LI B, PO S S, ZHANG B, et al. Metformin regulates adiponectin signalling in epicardial adipose tissue and reduces atrial fibrillation vulnerability[J]. J Cell Mol Med, 2020, 24(14): 7751–7766.
[35] ZHANG X D, THAI P N, LIEU D K, et al. Cardiac small-conductance calcium-activated potassium channels in health and disease[J]. Pflugers Arch, 2021, 473(3): 477–489.
[36] ZHANG X D, LIEU D K, CHIAMVIMONVAT N. Small-conductance Ca2+-activated K+channels and cardiac arrhythmias[J]. Heart Rhythm, 2015, 12(8): 1845–1851.
[37] ELLINOR P T, LUNETTA K L, GLAZER N L, et al. Common variants in KCNN3 are associated with lone atrial fibrillation[J]. Nat Genet, 2010, 42(3): 240–244.
[38] ZHANG Q, TIMOFEYEV V, LU L, et al. Functional roles of a Ca2+-activated K+channel in atrioventricular nodes[J]. Circ Res, 2008, 102(4): 465–471.
[39] ZHANG X D, TIMOFEYEV V, LI N, et al. Critical roles of a small conductance Ca2+-activated K+channel (SK3) in the repolarization process of atrial myocytes[J]. Cardiovasc Res, 2014, 101(2): 317–325.
[40] LIU C H, HUA N, FU X, et al. Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats[J]. BMC Cardiovasc Disord, 2018, 18(1): 236.
[41] FU X, PAN Y, CAO Q, et al. Metformin restores electrophysiology of small conductance calcium-activated potassium channels in the atrium of GK diabetic rats[J]. BMC Cardiovasc Disord, 2018, 18(1): 63.
[42] LU L, YE S, SCALZO R L, et al. Metformin prevents ischaemic ventricular fibrillation in metabolically normal pigs[J]. Diabetologia, 2017, 60(8): 1550–1558.
[43] HANEFELD M, GANZ X, NOLTE C. Hypoglycemia and cardiac arrhythmia in patients with diabetes mellitus type 2[J]. Herz, 2014, 39(3): 312–319.
[44] LV L, ZHENG N, ZHANG L, et al. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice[J]. Eur J Pharmacol, 2020, 881: 173131.
[45] BELL D S H. Metformin-induced vitamin B12deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes[J]. Diabetes Obes Metab, 2022, 24(8): 1423–1428.
(2022–12–21)
(2022–12–28)
R541
A
10.3969/j.issn.1673-9701.2023.29.033
王華亭,電子信箱:wanghuating65@163.com