華璐伊,徐莉莉,張志群
斑點(diǎn)追蹤超聲心動(dòng)圖技術(shù)在新生兒中的應(yīng)用進(jìn)展
華璐伊1,徐莉莉2,張志群2
1.浙江中醫(yī)藥大學(xué)第四臨床醫(yī)學(xué)院,浙江杭州 310053;2.浙江大學(xué)醫(yī)學(xué)院附屬杭州市第一人民醫(yī)院兒科,浙江杭州 310006
評(píng)價(jià)新生兒心功能的傳統(tǒng)指標(biāo)或檢查手段對(duì)患兒心功能的細(xì)微變化或臨床前變化的敏感度不高,斑點(diǎn)追蹤超聲心動(dòng)圖技術(shù)可通過檢測(cè)室壁運(yùn)動(dòng)而較好地評(píng)價(jià)其心肌應(yīng)變和心室旋轉(zhuǎn)等,為新生兒心功能的評(píng)價(jià)提供新方法。本文對(duì)斑點(diǎn)追蹤超聲心動(dòng)圖技術(shù)在新生兒心功能評(píng)價(jià)中的應(yīng)用進(jìn)展做一綜述。
斑點(diǎn)追蹤超聲心動(dòng)圖;新生兒;心室應(yīng)變;心室扭轉(zhuǎn)
收縮功能和射血分?jǐn)?shù)是評(píng)價(jià)左心室(left ventricle,LV)功能的傳統(tǒng)方法,二者可用于評(píng)估腔體尺寸;但因新生兒圖像的再現(xiàn)性與標(biāo)準(zhǔn)化不佳,無法及時(shí)發(fā)現(xiàn)患兒心臟的顯性功能障礙。右心室(right ventricle,RV)功能評(píng)價(jià)的傳統(tǒng)方法因其獨(dú)特的三維結(jié)構(gòu)而受限。斑點(diǎn)追蹤超聲心動(dòng)圖(speckle tracking echocardiography,STE)技術(shù)衍生的應(yīng)變測(cè)量在剛被引入臨床應(yīng)用時(shí),便很快成為L(zhǎng)V功能評(píng)價(jià)的指標(biāo),現(xiàn)已被納入成人心臟超聲心動(dòng)圖的相關(guān)建議中[1]。研究表明,STE測(cè)量心臟應(yīng)變較常規(guī)超聲心動(dòng)圖更敏感,且其不依賴于超聲角度,可追蹤心臟各方向的運(yùn)動(dòng),評(píng)估心臟縱向、徑向、周向的應(yīng)變和應(yīng)變率(strain rate,SR)[2]。健康新生兒相關(guān)參考值的建立將實(shí)現(xiàn)相關(guān)疾病下心臟應(yīng)變值變化的臨床評(píng)估[3]。
目前,STE多為二維成像技術(shù)。散斑圖案是超聲波束產(chǎn)生的聲學(xué)反向散射,斑點(diǎn)運(yùn)動(dòng)遵循心肌運(yùn)動(dòng),逐幀追蹤定義的斑點(diǎn)區(qū)域最終覆蓋整個(gè)心動(dòng)周期,提取位移(斑點(diǎn)的運(yùn)動(dòng))、速度(斑點(diǎn)運(yùn)動(dòng)的速度)、心肌節(jié)段應(yīng)變(斑點(diǎn)之間距離的相對(duì)變化)、SR(距離變化發(fā)生的速度)、扭轉(zhuǎn)(心臟收縮的扭轉(zhuǎn)運(yùn)動(dòng))和解旋(心臟舒張的解旋運(yùn)動(dòng))等。
心肌應(yīng)變是指心肌從舒張末期的基線形態(tài)到收縮末期的應(yīng)變形態(tài),表示為相對(duì)于基線變化的百分比,包括縱向縮短、周向縮短和徑向增厚。LV和RV的應(yīng)變模式不同,LV射血分?jǐn)?shù)和每搏輸出量的主要應(yīng)變是周向縮短,RV則是縱向縮短。應(yīng)變受前后負(fù)荷影響,SR對(duì)負(fù)荷的依賴性較低,更能反映收縮性,提供超出常規(guī)超聲心動(dòng)圖測(cè)量值的信息。既往研究證實(shí),心肌應(yīng)變和SR是定量測(cè)量新生兒LV功能的敏感指標(biāo)[4]。
二維STE是一種已經(jīng)被充分驗(yàn)證了的,可評(píng)估心臟旋轉(zhuǎn)力學(xué)的方法。LV扭轉(zhuǎn)可描述LV收縮期的扭轉(zhuǎn)運(yùn)動(dòng),是心尖和心底沿LV長(zhǎng)軸對(duì)比旋轉(zhuǎn)的凈結(jié)果,可改善LV射血;LV解旋則促進(jìn)舒張?jiān)缙诔溆?。STE還可測(cè)量LV的扭轉(zhuǎn)率和解旋率,為心功能評(píng)估提供重要信息,研究表明,其與傳統(tǒng)磁共振成像技術(shù)測(cè)量的扭轉(zhuǎn)結(jié)果一致,但前者的操作更簡(jiǎn)便[5]。
2.1.1 心室旋轉(zhuǎn)力學(xué) 研究證實(shí),在成人和兒童中,扭轉(zhuǎn)可作為心功能的評(píng)價(jià)指標(biāo),但臨床缺乏關(guān)于新生兒的數(shù)據(jù)[6-7]。在動(dòng)物模型和成人的研究中,后負(fù)荷增加可降低LV扭轉(zhuǎn)和解旋率[8];在早產(chǎn)兒中也可獲得相同的負(fù)性影響[9]。Breatnach等[9]研究證實(shí),測(cè)量早產(chǎn)兒的LV扭轉(zhuǎn)具有可行性和重現(xiàn)性;且研究發(fā)現(xiàn),早產(chǎn)兒在出生后的第1天,其全身血管阻力的增加對(duì)LV扭轉(zhuǎn)和解旋有負(fù)性影響。Auriau等[10]研究發(fā)現(xiàn),LV心底部旋轉(zhuǎn)在健康足月兒的早期幾乎是不存在的。Castaldi等[11]研究表明,心外膜應(yīng)變的增加導(dǎo)致早產(chǎn)兒在出生后,其心臟左旋扭轉(zhuǎn)逐漸增加。推測(cè)心底部旋轉(zhuǎn)的主要變化發(fā)生在出生后幾周內(nèi),但與出生孕周無關(guān),這可能是對(duì)肺阻力下降的適應(yīng)表現(xiàn)。在新生兒與兒童、成人的對(duì)比研究中發(fā)現(xiàn),LV扭轉(zhuǎn)和解旋在新生兒出生后3個(gè)月便與兒童和成人大致相仿,表明LV收縮舒張功能在此時(shí)才明顯改善[12]。
2.1.2 心室應(yīng)變 應(yīng)變應(yīng)來自3種視圖,即4腔室(chamber,CH)、3CH和2CH[1,3]。最常用的收縮期應(yīng)變參數(shù)是整體縱向應(yīng)變(global longitudinal strain,GLS)。多層應(yīng)變研究顯示,應(yīng)變值從心外膜到心內(nèi)膜呈梯度變化[13]。然而,對(duì)健康新生兒多層GLS的研究尚不多見。Khan等[14]研究發(fā)現(xiàn),健康新生兒4CH和3CH的GLS及漂移補(bǔ)償無明顯差異,GLS從心外膜向心內(nèi)膜逐漸增加,但心外膜層的重現(xiàn)性較低。因4CH較3CH獲得圖像更快,在新生兒的應(yīng)用中十分關(guān)鍵,二者能否在臨床中互換使用值得進(jìn)一步探索。既往研究表明,4CH和3CH的GLS在新生兒有所應(yīng)用,但與之相關(guān)的參考值仍在建立[15-16]。
2.2.1 支氣管肺發(fā)育不良(broncho-pulmonary dysplasia,BPD) BPD是嬰幼兒最常見的慢性肺部疾病,在早產(chǎn)兒中較為多見。目前,最常用的BPD定義由美國(guó)國(guó)立衛(wèi)生研究院于2001年和2018年提出,該定義基于不同呼吸支持方式的主觀需求識(shí)別疾病的嚴(yán)重程度,故此方法有很大的局限性。Levy等[17]研究發(fā)現(xiàn),BPD患兒在32周時(shí)RV游離壁縱向應(yīng)變(free wall longitudinal strain,F(xiàn)WLS)和室間隔(interventricular septum,IVS)GLS顯著降低,IVS應(yīng)變從基底到頂點(diǎn)呈遞增梯度,這與無BPD的新生兒正好相反。James等[18]亦研究發(fā)現(xiàn),BPD對(duì)RV FWLS有負(fù)性影響。綜上,與無BPD的新生兒相比,BPD患兒的RV FWLS和IVS GLS顯著降低,這為BPD的盡早發(fā)現(xiàn)提供重要的臨床依據(jù)。
2.2.2 肺動(dòng)脈高壓(pulmonary hypertention,PH) 新生兒PH是指肺血管阻力持續(xù)增高,最終引起嚴(yán)重低氧血癥,常合并BPD,與心肺疾病的發(fā)展密切相關(guān)。Levy等[17]研究發(fā)現(xiàn),32~36周PH患兒的RV FWLS和IVS GLS持續(xù)降低,10%的無BPD新生兒在36周時(shí)可檢測(cè)到PH,這種模式會(huì)持續(xù)到1歲;患兒第5~7天出現(xiàn)IVS節(jié)段縱向應(yīng)變基底頂點(diǎn)梯度模式,其與晚期PH風(fēng)險(xiǎn)較高相關(guān)。Mourani等[19]研究發(fā)現(xiàn),7日齡新生兒IVS變平與晚期PH風(fēng)險(xiǎn)增加相關(guān)。盡管BPD和PH的某些機(jī)制重疊,但無BPD極度早產(chǎn)兒的肺循環(huán)發(fā)育損傷可能不足以診斷其為PH,卻仍可能導(dǎo)致心肺疾病。這種PH是否單獨(dú)具有臨床意義或可預(yù)測(cè)BPD嬰兒的長(zhǎng)期發(fā)病率有待于進(jìn)一步研究。
2.2.3 動(dòng)脈導(dǎo)管未閉(patent ductus arteriosus,PDA) 新生兒PDA會(huì)導(dǎo)致肺循環(huán)過度,了解LV各平面前負(fù)荷的不同貢獻(xiàn)有助于建立PDA靶向治療管理方法。持續(xù)性PDA對(duì)新生兒心室應(yīng)變模式的影響逐步研究中[18]。Levy等[17]研究發(fā)現(xiàn),生后5~7d的血流動(dòng)力學(xué)異常動(dòng)脈導(dǎo)管未閉(hemodynamic significant patent ductus arteriosus,hsPDA)早產(chǎn)兒,其PDA直徑及LV與主動(dòng)脈根部的比率均高于無hsPDA的早產(chǎn)兒,且其LV GLS和RV FWLS也較高,hsPDA和LV收縮期SR對(duì)LV GLS有獨(dú)立影響。現(xiàn)已證實(shí),hsPDA可顯著增加LV前負(fù)荷,并導(dǎo)致LV輸出量增加[20]。前負(fù)荷的增加伴隨著應(yīng)變的增加,但不是LV收縮期SR,這與動(dòng)物研究結(jié)果一致[21]。De Waal等[22]研究也得出相同的結(jié)論,且因PDA直徑較大患兒的容量負(fù)荷更高,其有更高的LV LS和LV收縮期SR。嚴(yán)重PDA患兒的3個(gè)平面應(yīng)變和LV收縮期SR受容量負(fù)荷的影響,LS似乎最敏感,因此在解釋LV LS時(shí)須考慮負(fù)荷條件。將應(yīng)變信息應(yīng)用于早產(chǎn)兒血液動(dòng)力學(xué)受損的治療管理具有告知臨床決策和確定分流管的血流動(dòng)力學(xué)意義。
2.2.4 生長(zhǎng)受限(growth restriction,GR) 新生兒GR常與胎兒GR密切相關(guān)。Patey等[23]研究發(fā)現(xiàn),GR新生兒的LV LS、RV LS、LV SR、LV和RV心肌性能指數(shù)持續(xù)顯著增加,LV扭轉(zhuǎn)顯著減少,這可能是胎兒期LV殘余擴(kuò)張和LV LS增加所致,可能導(dǎo)致新生兒出生后數(shù)小時(shí)的舒張功能障礙。多項(xiàng)研究結(jié)果與上述研究結(jié)果一致[23-26]。此外,GR新生兒圍產(chǎn)期變化顯示心肌應(yīng)變的所有指標(biāo)及LV和RV心肌性能指數(shù)較胎兒期均顯著改善,這反映了血流動(dòng)力學(xué)負(fù)荷的變化[23]。評(píng)估心臟的幾何形狀和功能改變是否持續(xù)到嬰兒期甚至兒童期對(duì)改善GR新生兒的心臟功能具有重要意義,可將胎兒期作為未來干預(yù)的潛在窗口。
2.2.5 妊娠期糖尿病 糖尿病妊娠是圍產(chǎn)期發(fā)病和病死的重要原因,對(duì)新生兒分娩前后心臟的形態(tài)和功能有重大影響?!癙edersen假說”總結(jié)母體糖尿病對(duì)胎兒心肌纖維結(jié)構(gòu)的影響,心臟指標(biāo)發(fā)生改變[27]。Patey等[23]研究發(fā)現(xiàn),與正常胎兒和新生兒相比,糖尿病母親嬰兒(infants of diabetic mother,IDM)的心臟指標(biāo)存在顯著差異,提示心肌損傷,而分娩可顯著改善部分心臟指標(biāo)。IDM的LV結(jié)構(gòu)持續(xù)改變,心室壁更厚,心室更窄更短,雙心室LS顯著下降,而縱向纖維對(duì)需氧量最敏感,提示心內(nèi)膜下微血管缺血性變化。另有研究表明,IDM的心臟舒張功能受損,LV扭轉(zhuǎn)增加[2]。小鼠研究也得到相同的研究結(jié)果[28]。上述研究表明,IDM出生前后心臟指標(biāo)的變化、分娩后心室?guī)缀涡螤詈凸δ艹掷m(xù)改變可能提示其有患心血管疾病的傾向,STE對(duì)后續(xù)心血管并發(fā)癥具有一定的預(yù)測(cè)價(jià)值。然而,目前在IDM的中STE獲得的數(shù)據(jù)是有限的[2,29-30]。
2.2.6 先天性膈疝(congenital diaphragmatic hernia,CDH) CDH新生兒均有不同程度的肺發(fā)育不全和PH,這是胎兒先天性膈肌發(fā)育不全導(dǎo)致腹腔內(nèi)容物疝入胸腔所致,CDH新生兒出生后存在不同程度的心功能障礙。Altit等[16]研究發(fā)現(xiàn),CDH新生兒肺動(dòng)脈壓顯著升高,雙心室GLS顯著降低,RV應(yīng)變異常,與RV側(cè)壁相比,RV IVS應(yīng)變明顯減少。另有研究發(fā)現(xiàn),CDH新生兒存在RV舒張功能障礙,與LV外部壓迫或IVS形態(tài)異常引起的LV形態(tài)異常及臨床病程有關(guān)[31]。CDH新生兒的應(yīng)變值提示心室收縮舒張功能受損,但LV射血分?jǐn)?shù)無明顯下降,二者的不協(xié)調(diào)可能是由于應(yīng)變對(duì)LV功能亞臨床異常敏感度更高。Altit等[16]研究發(fā)現(xiàn),偏心指數(shù)與雙心室功能障礙和心輸出量密切相關(guān),可作為CDH新生兒預(yù)后和隨訪的重要指標(biāo)。研究表明,CDH胎兒的左心發(fā)育不全程度與新生兒CDH嚴(yán)重程度有關(guān),心功能障礙是CDH不良心肺生理的重要組成部分[32]。改善心功能和降低新生兒肺動(dòng)脈壓雙管齊下是有必要的。
2.2.7 左心發(fā)育不良綜合征(hypoplastic left heart syndrome,HLHS) HLHS新生兒的左心臟結(jié)構(gòu)發(fā)育嚴(yán)重不足,出生時(shí)存在導(dǎo)管依賴性體循環(huán)的單心室生理學(xué)。Altit等[33]研究發(fā)現(xiàn),HLHS新生兒心功能異常,雙心室GLS和GLSR峰值與舒張?jiān)缙赟R均降低,RV三尖瓣瓣環(huán)平面收縮偏移,LV周向應(yīng)變和SR、徑向應(yīng)變和SR降低,這種異常心肌應(yīng)變?cè)诔錾蟊憧蓹z測(cè)到。Michielon等[34]研究發(fā)現(xiàn),Norwood 1期術(shù)后1個(gè)月LS顯著降低,這是早期負(fù)荷獨(dú)立參數(shù)和預(yù)后不良的強(qiáng)有力預(yù)測(cè)因素,有助于預(yù)測(cè)Norwood手術(shù)的失敗,可將其納入Norwood術(shù)后對(duì)RV功能評(píng)估的指標(biāo)。Altit等[33]研究認(rèn)為,RV功能應(yīng)變參數(shù)是Norwood衰竭的潛在風(fēng)險(xiǎn)因素。研究表明,HLHS新生兒除術(shù)前RV應(yīng)變降低外,在Norwood 1期和2期姑息治療間歇、2期姑息治療后和3期姑息(Fontan手術(shù))治療后RV應(yīng)變也較低,第一階段姑息治療前心臟收縮功能差與長(zhǎng)期病死率增加有關(guān)[33,35-38]。STE在評(píng)估HLHS新生兒心功能上是可行的,但其在評(píng)估預(yù)測(cè)術(shù)后死亡或移植的價(jià)值還有待于更多病例研究的支持。
2.2.8 心肌應(yīng)變預(yù)測(cè)新生嬰兒拔管成功 長(zhǎng)期插管曾被認(rèn)為與舒張功能障礙有關(guān),是成人和嬰兒拔管失敗的危險(xiǎn)因素[39-40]。Massolo等[41]在拔管前用STE評(píng)估心功能,發(fā)現(xiàn)與成功拔管的新生兒相比,需要重新插管的新生兒LV周向應(yīng)變和RV LS顯著降低,心肌應(yīng)變可能是識(shí)別拔管準(zhǔn)備的潛在指標(biāo)。
目前,因STE需要特定軟件,且易產(chǎn)生固有測(cè)量誤差,其尚未納入常規(guī)檢查中。STE因角度獨(dú)立性廣受歡迎,但目前缺乏新生兒的標(biāo)準(zhǔn)數(shù)據(jù),且其對(duì)幀頻要求較高,限制了其臨床應(yīng)用[20]。STE定量測(cè)量LV功能已被證明是可行的。后續(xù)需了解心臟指標(biāo)在指導(dǎo)、管理治療和預(yù)測(cè)疾病結(jié)局方面的能力。此外,還應(yīng)進(jìn)一步探索新的評(píng)估方法,以支持其對(duì)新生兒心功能的評(píng)估。
[1] LANG R M, BADANO L P, MOR-AVI V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2015, 28(1): 1–39, e14.
[2] AL-BILTAGI M, TOLBA O A, ROWISHA M A, et al. Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes[J]. Pediatr Cardiol, 2015, 36(2): 445–453.
[3] EL-KHUFFASH A, SCHUBERT U, LEVY P T, et al. Deformation imaging and rotational mechanics in neonates: A guide to image acquisition, measurement, interpretation, and reference values[J]. Pediatr Res, 2018, 84(Suppl 1): 30–45.
[4] JAMES A T, CORCORAN J D, JAIN A, et al. Assessment of myocardial performance in preterm infants less than 29 weeks gestation during the transitional period[J]. Early Hum Dev, 2014, 90(12): 829–835.
[5] HUANG S J, ORDE S. From speckle tracking echocardiography to torsion: research tool today, clinical practice tomorrow[J]. Curr Opin Crit Care, 2013, 19(3): 250–257.
[6] ZHANG Y, ZHOU Q C, PU D R, et al. Differences in left ventricular twist related to age: Speckle tracking echocardiographic data for healthy volunteers from neonate to age 70 years[J]. Echocardiography, 2010, 27(10): 1205–1210.
[7] KAKU K, TAKEUCHI M, TSANG W, et al. Age- related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography[J]. J Am Soc Echocardiogr, 2014, 27(1): 55–64.
[8] BURNS A T, LA GERCHE A, PRIOR D L, et al. Left ventricular torsion parameters are affected by acute changes in load[J]. Echocardiography, 2010, 27(4): 407–414.
[9] BREATNACH C R, LEVY P T, JAMES A T, et al. Novel echocardiography methods in the functional assessment of the newborn heart[J]. Neonatology, 2016, 110(4): 248–260.
[10] AURIAU J, TRUONG B L, DOUCHIN S, et al. Longitudinal study by two-dimensional speckle-tracking echocardiography of the left ventricle rotational mechanics during postnatal adaptation in healthy newborns[J]. J Am Soc Echocardiogr, 2020, 33(2): 252–254.
[11] CASTALDI B, BORDIN G, FAVERO V, et al. Early modifications of cardiac function in preterm neonates using speckle tracking echocardiography[J]. Echocardiography, 2018, 35(6): 849–854.
[12] TAKAHASHI K, AL NAAMI G, THOMPSON R, et al. Normal rotational, torsion and untwisting data in children, adolescents and young adults[J]. J Am Soc Echocardiogr, 2010, 23(3): 286–293.
[13] WHITE B, VOIGT J U, THOMAS J D. Sifting through the layers of myocardial deformation imaging[J]. J Am Soc Echocardiogr, 2019, 32(1): 102–104.
[14] KHAN U, OMDAL T R, MATRE K, et al. Speckle tracking derived strain in neonates: Planes, layers and drift[J]. Int J Cardiovasc Imaging, 2021, 37(7): 2111–2123.
[15] JAIN A, EL-KHUFFASH A F, KUIPERS B C W, et al. Left ventricular function in healthy term neonates during the transitional period[J]. J Pediatr, 2017, 182: 197–203, e2.
[16] ALTIT G, BHOMBAL S, VAN MEURS K, et al. Diminished cardiac performance and left ventricular dimensions in neonates with congenital diaphragmatic hernia[J]. Pediatr Cardiol, 2018, 39(5): 993–1000.
[17] LEVY P T, EL-KHUFFASH A, PATEL M D, et al. Maturational patterns of systolic ventricular deformation mechanics by two-dimensional speckle-tracking echocardiography in preterm infants over the first year of age[J]. J Am Soc Echocardiogr, 2017, 30(7): 685–698, e1.
[18] JAMES A T, CORCORAN J D, BREATNACH C R, et al. Longitudinal assessment of left and right myocardial function in preterm infants using strain and strain rate imaging[J]. Neonatology, 2016, 109(1): 69–75.
[19] MOURANI P M, SONTAG M K, YOUNOSZAI A, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2015, 191(1): 87–95.
[20] EL-KHUFFASH A, WEISZ D E, MCNAMARA P J. Reflections of the changes in patent ductus arteriosus management during the last 10 years[J]. Arch Dis Child Fetal Neonatal Ed, 2016, 101(5): F474–F478.
[21] FERFERIEVA V, VAN DEN BERGH A, CLAUS P, et al. The relative value of strain and strain rate for defining intrinsic myocardial function[J]. Am J Physiol Heart Circ Physiol, 2012, 302(1): H188–H195.
[22] DE WAAL K, PHAD N, LAKKUNDI A, et al. Cardiac function after the immediate transitional period in very preterm infants using speckle tracking analysis[J]. Pediatr Cardiol, 2016, 37(2): 295–303.
[23] PATEY O, CARVALHO J S, THILAGANATHAN B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term[J]. Ultrasound Obstet Gynecol, 2019, 53(5): 655–662.
[24] CRISPI F, BIJNENS B, FIGUERAS F, et al. Fetal growth restriction results in remodeled and less efficient hearts in children[J]. Circulation, 2010, 121(22): 2427–2436.
[25] ALTIN H, KARAARSLAN S, KARATA? Z, et al. Evaluation of cardiac functions in term small for gestational age newborns with mild growth retardation: A serial conventional and tissue Doppler imaging echocardiographic study[J]. Early Hum Dev, 2012, 88(9): 757–764.
[26] FOUZAS S, KARATZA A A, DAVLOUROS P A, et al. Neonatal cardiac dysfunction in intrauterine growth restriction[J]. Pediatr Res, 2014, 75(5): 651–657.
[27] PEDERSEN J. Diabetes and pregnancy; blood sugar of newborn infants during fasting and glucose administration[J]. Nord Med, 1952, 47(30): 1049.
[28] LEHTORANTA L, VUOLTEENAHO O, LAINE J, et al. Placental structural abnormalities have detrimental hemodynamic consequences in a rat model of maternal hyperglycemia[J]. Placenta, 2016, 44: 54–60.
[29] KULKARNI A, LI L, CRAFT M, et al. Fetal myocardial deformation in maternal diabetes mellitus and obesity[J]. Ultrasound Obstet Gynecol, 2017, 49(5): 630–636.
[30] MIRANDA J O, CERQUEIRA R J, RAMALHO C, et al. Fetal cardiac function in maternal diabetes: A conventional and speckle-tracking echocardiographic study[J]. J Am Soc Echocardiogr, 2018, 31(3): 333–341.
[31] MOENKEMEYER F, PATEL N. Right ventricular diastolic function measured by tissue Doppler imaging predicts early outcome in congenital diaphragmatic hernia[J]. Pediatr Crit Care Med, 2014, 15(1): 49–55.
[32] BYRNE F A, KELLER R L, MEADOWS J, et al. Severe left diaphragmatic hernia limits size of fetal left heart more than does right diaphragmatic hernia[J]. Ultrasound Obstet Gynecol, 2015, 46(6): 688–694.
[33] ALTIT G, BHOMBAL S, CHOCK V Y, et al. Immediate postnatal ventricular performance is associated with mortality in hypoplastic left heart syndrome[J]. Pediatr Cardiol, 2019, 40(1): 168–176.
[34] MICHIELON G, DISALVO G, FRAISSE A, et al. In-hospital interstage improves interstage survival after the Norwood stage 1 operation[J]. Eur J Cardiothorac Surg, 2020, 57(6): 1113–1121.
[35] KHOO N S, SMALLHORN J F, KANEKO S, et al. Novel insights into RV adaptation and function in hypoplastic left heart syndrome between the first 2 stages of surgical palliation[J]. JACC Cardiovasc Imaging, 2011, 4(2): 128–137.
[36] HILL G D, FROMMELT P C, STELTER J, et al. Impact of initial Norwood shunt type on right ventricular deformation: The single ventricle reconstruction trial[J]. J Am Soc Echocardiogr, 2015, 28(5): 517–521.
[37] MOIDUDDIN N, TEXTER K M, ZAIDI A N, et al. Two-dimensional speckle strain and dyssynchrony in single right ventricles versus normal right ventricles[J]. J Am Soc Echocardiogr, 2010, 23(6): 673–679.
[38] ALTMANN K, PRINTZ B F, SOLOWIEJCZKY D E, et al. Two-dimensional echocardiographic assessment of right ventricular function as a predictor of outcome in hypoplastic left heart syndrome[J]. Am J Cardiol, 2000, 86(9): 964–968.
[39] ROCHE-CAMPO F, BEDET A, VIVIER E, et al. Cardiac function during weaning failure: the role of diastolic dysfunction[J]. Ann Intensive Care, 2018, 8(1): 2.
[40] ABU-SULTANEH S, HOLE A J, TORI A J, et al. An interprofessional quality improvement initiative to standardize pediatric extubation readiness assessment[J]. Pediatr Crit Care Med, 2017, 18(10): e463–e471.
[41] MASSOLO A C, CLEMENTE M, PATEL N, et al. Could myocardial function be predictive of successful extubation in newborns and infants?[J]. Pediatr Pulmono, 2021, 56(6): 1733–1738.
(2022–10–10)
(2023–08–29)
R722
A
10.3969/j.issn.1673-9701.2023.29.030
浙江省醫(yī)藥衛(wèi)生科技計(jì)劃項(xiàng)目(2023KY164);杭州市衛(wèi)生科技計(jì)劃一般(A類)項(xiàng)目(A20220567)
張志群,電子信箱:zhiqun.zhang@zju.edu.cn