史博,宋鋒,李軼群,劉猛,趙東鋒,趙建東*
(1.河南交通投資集團(tuán)有限公司,鄭州 450000; 2.河南中原高速公路股份有限公司航空港分公司,鄭州 450000;3.北京交通大學(xué)交通運(yùn)輸學(xué)院,北京 100044)
隨著后ETC(electronic toll collection)時(shí)代的來(lái)臨,中國(guó)高速公路收費(fèi)站的收費(fèi)模式發(fā)生了巨大的改變。首先,ETC用戶規(guī)模的大幅增加導(dǎo)致了人工收費(fèi)MTC(manual toll collection)的主體地位被電子不停車收費(fèi)取代。其次,車輛的繳費(fèi)方式隨著各種支付手段的出現(xiàn)而呈現(xiàn)出了多元化特點(diǎn)。然而,現(xiàn)有的車道開閉配置方法無(wú)法應(yīng)對(duì)高速公路時(shí)變的交通需求和多元收費(fèi)模式,導(dǎo)致交通擁堵和車道閑置兩極化現(xiàn)象日益嚴(yán)重。因此,如何針對(duì)這種新的收費(fèi)模式和時(shí)變的交通需求制定合理的車道開閉配置方案是一個(gè)亟待解決的問(wèn)題。
在短時(shí)交通流預(yù)測(cè)方面,基于機(jī)器學(xué)習(xí)的預(yù)測(cè)模型近年來(lái)應(yīng)用廣泛,主要包括K均值聚類、系統(tǒng)聚類、主成分分析法等無(wú)監(jiān)督學(xué)習(xí)方式和支持向量機(jī)、決策樹、人工神經(jīng)網(wǎng)絡(luò)等有監(jiān)督學(xué)習(xí)方式[1]。其中人工神經(jīng)網(wǎng)絡(luò)在短時(shí)交通流預(yù)測(cè)中體現(xiàn)出了很好的適用性和有效性。宋瑞蓉等[2]為了提高交通流預(yù)測(cè)精度,將小波神經(jīng)網(wǎng)絡(luò)與果蠅優(yōu)化算法相結(jié)合,解決了小波神經(jīng)網(wǎng)絡(luò)對(duì)初始參數(shù)敏感的問(wèn)題。Wang等[3]基于長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)(long short term memory,LSTM)和循環(huán)神經(jīng)網(wǎng)絡(luò)提出了一種基于數(shù)據(jù)驅(qū)動(dòng)方法的城市道路網(wǎng)短期交通流預(yù)測(cè)框架,并證實(shí)其具有更高的精度和魯棒性。Zhao等[4]針對(duì)傳統(tǒng)機(jī)器學(xué)習(xí)在非復(fù)發(fā)性擁堵場(chǎng)景下的預(yù)測(cè)精度較低問(wèn)題,采用LSTM進(jìn)行速度預(yù)測(cè),經(jīng)評(píng)估后證明該方法具有較好的魯棒性。
在收費(fèi)車道開閉配置研究方面,方法分為兩種:一種是通過(guò)構(gòu)建微觀仿真模型來(lái)模擬收費(fèi)站在不同車道配置方案下的運(yùn)營(yíng)過(guò)程,再經(jīng)過(guò)平均延誤時(shí)間或平均排隊(duì)長(zhǎng)度等指標(biāo)的評(píng)價(jià)對(duì)比后選取最終方案;另一種是利用排隊(duì)論知識(shí)對(duì)收費(fèi)站進(jìn)行建模,確定目標(biāo)函數(shù)和約束條件,選取合適算法求解得到車道配置方案。李蓉[5]針對(duì)收費(fèi)站收費(fèi)方式多元化,統(tǒng)籌考慮各方利益建立了一種收費(fèi)系統(tǒng)資源優(yōu)化配置模型,并利用遺傳算法尋優(yōu)求解。姬楊蓓蓓等[6]從建設(shè)成本和延誤成本考慮,利用排隊(duì)論知識(shí)構(gòu)建了以總成本最小為目標(biāo)函數(shù)的優(yōu)化模型,并進(jìn)行實(shí)例分析,探討了成本與交通狀態(tài)和車道配置的關(guān)系。林弼胄等[7]采用VISSIM軟件構(gòu)建了混合收費(fèi)站仿真模型,并將仿真結(jié)果與實(shí)際觀測(cè)數(shù)據(jù)進(jìn)行了對(duì)比,提出了收費(fèi)車道的具體配置方案。
綜上所述,人工神經(jīng)網(wǎng)絡(luò)經(jīng)過(guò)持續(xù)發(fā)展已經(jīng)足以承擔(dān)收費(fèi)站的交通需求預(yù)測(cè)任務(wù),但許多模型仍存在訓(xùn)練緩慢、工作量過(guò)大的問(wèn)題;而現(xiàn)有的車道開閉配置方法主要針對(duì)的是人工收費(fèi)車道,在當(dāng)前的多元收費(fèi)模式下亟需得到拓展。因此,現(xiàn)基于收費(fèi)站收費(fèi)數(shù)據(jù),提出一種基于貝葉斯優(yōu)化算法和LSTM的組合預(yù)測(cè)模型,用于實(shí)現(xiàn)收費(fèi)站的交通需求預(yù)測(cè),以及一種基于綜合成本最優(yōu)的車道開閉配置模型,用于確定車道開閉配置方案。
所用數(shù)據(jù)采集于河北新元高速機(jī)場(chǎng)收費(fèi)站,其中交通量數(shù)據(jù)由收費(fèi)系統(tǒng)的通行記錄獲取,時(shí)間范圍為2020年10月1日—12月31日;服務(wù)時(shí)間數(shù)據(jù)采用攝像法和人工統(tǒng)計(jì)獲取,時(shí)長(zhǎng)為2 h,為避免異常數(shù)據(jù)對(duì)研究過(guò)程的影響,對(duì)不同類型的異常數(shù)據(jù)進(jìn)行預(yù)處理,其中交通量數(shù)據(jù)存在缺失值和重復(fù)值,對(duì)這部分?jǐn)?shù)據(jù)直接剔除,服務(wù)時(shí)間數(shù)據(jù)存在偏大值,采用三西格瑪法則進(jìn)行過(guò)濾。數(shù)據(jù)經(jīng)清洗后,每條交通量數(shù)據(jù)包含7個(gè)主要字段,分別為流水號(hào)、收費(fèi)站名稱、車道編號(hào)、時(shí)間、車型、車種和通行介質(zhì),服務(wù)時(shí)間數(shù)據(jù)包含5個(gè)主要字段,分別為車型、支付方式、實(shí)際服務(wù)時(shí)間、離去時(shí)間和服務(wù)時(shí)間。
多元收費(fèi)方式是指車輛通過(guò)收費(fèi)車道繳費(fèi)時(shí)支付方式種類的多樣化。調(diào)研中發(fā)現(xiàn),目前主要的支付方式有ETC支付、現(xiàn)金支付、移動(dòng)支付和刷卡支付4種,其中ETC支付應(yīng)用于ETC專用車道,其余3種應(yīng)用于MTC車道。按不同的收費(fèi)方式進(jìn)行交通量統(tǒng)計(jì),結(jié)果顯示選擇ETC車道通行的用戶占比已達(dá)70%,在余下選擇MTC車道的30%用戶中,現(xiàn)金支付、移動(dòng)支付和刷卡支付的使用率分別為35.74%、56.38%和7.89%。
由于服務(wù)時(shí)間隨著收費(fèi)方式的不同存在明顯差異性,其值大小與收費(fèi)方式和車型密切相關(guān),故按照車型大小和不同收費(fèi)方式計(jì)算對(duì)應(yīng)的服務(wù)時(shí)間均值和標(biāo)準(zhǔn)差,以ETC車型為例,結(jié)果如表1所示。
表1 ETC車型服務(wù)時(shí)間統(tǒng)計(jì)表
高速公路收費(fèi)站是一個(gè)典型的排隊(duì)系統(tǒng),常采用排隊(duì)論展開理論研究。排隊(duì)論也被稱為隨機(jī)服務(wù)系統(tǒng)理論[8],是研究排隊(duì)現(xiàn)象的一種經(jīng)典理論,其核心可分為輸入過(guò)程、排隊(duì)規(guī)則和服務(wù)過(guò)程三部分[9]。針對(duì)高速公路收費(fèi)站,輸入過(guò)程即車輛的到達(dá)過(guò)程,決定了收費(fèi)站的交通需求,收費(fèi)車道即提供服務(wù)的機(jī)構(gòu),所提供服務(wù)能力的大小主要由車道開啟數(shù)目決定,同時(shí)也和收費(fèi)方式和工作人員的操作水平有關(guān),排隊(duì)規(guī)則屬于等待制,服務(wù)規(guī)則為FCFS??紤]到ETC車輛和MTC車輛分車道行駛,假設(shè)兩類車輛在進(jìn)入收費(fèi)系統(tǒng)時(shí)互不干擾,對(duì)ETC收費(fèi)系統(tǒng)和MTC收費(fèi)系統(tǒng)分別構(gòu)建排隊(duì)論模型。
根據(jù)相關(guān)研究,收費(fèi)站車輛到達(dá)服從泊松分布,而服務(wù)時(shí)間通常服從正態(tài)分布或負(fù)指數(shù)分布[10-11],根據(jù)本次調(diào)研得到的服務(wù)時(shí)間,采用SPSS軟件分別對(duì)其進(jìn)行正態(tài)性檢驗(yàn)。經(jīng)檢驗(yàn),各收費(fèi)方式對(duì)應(yīng)的服務(wù)時(shí)間基本服從正態(tài)分布,因此選擇M/G/K排隊(duì)模型展開研究。在M/G/K模型中,能夠反映系統(tǒng)運(yùn)營(yíng)效果的重要指標(biāo)分別為平均排隊(duì)長(zhǎng)度Lq、平均等待時(shí)間Wq、平均逗留時(shí)間Ws和單個(gè)服務(wù)臺(tái)的服務(wù)強(qiáng)度ρ。
對(duì)于ETC收費(fèi)系統(tǒng)來(lái)說(shuō),車輛在經(jīng)過(guò)收費(fèi)車道時(shí)不需要停車?yán)U費(fèi),也不存在收費(fèi)方式的差異,因此服務(wù)時(shí)間的均值與方差只與所統(tǒng)計(jì)時(shí)間段內(nèi)的車型比例有關(guān),則模型中服務(wù)時(shí)間的均值和方差計(jì)算公式為
(1)
(2)
(3)
(4)
式中:EE為ETC服務(wù)時(shí)間均值,s;DE為ETC服務(wù)時(shí)間方差,s;E1為ETC小型車服務(wù)時(shí)間調(diào)研均值,s;D1為ETC小型車服務(wù)時(shí)間調(diào)研方差,s;β′j為各車型服務(wù)時(shí)間均值換算系數(shù);β″j為各車型服務(wù)時(shí)間方差換算系數(shù);θj為各車型比例;m為車型種類數(shù);t′j為各車型的服務(wù)時(shí)間調(diào)研均值,s;t″j為各車型的服務(wù)時(shí)間調(diào)研方差,s。
對(duì)于MTC收費(fèi)系統(tǒng),由于其支付方式多元化,導(dǎo)致服務(wù)時(shí)間的均值和方差不僅與所統(tǒng)計(jì)時(shí)間段內(nèi)的車型比例相關(guān),同時(shí)也與收費(fèi)方式的使用比例相關(guān),則模型中服務(wù)時(shí)間的均值和方差計(jì)算方法為
(5)
(6)
式中:
(7)
(8)
式中:EM為MTC服務(wù)時(shí)間均值,s;DM為MTC服務(wù)時(shí)間方差,s;Ei1為第i種收費(fèi)方式小型車服務(wù)時(shí)間調(diào)研均值,s;Di1為第i種收費(fèi)方式小型車服務(wù)時(shí)間調(diào)研方差,s;β′ij為第i種收費(fèi)方式第j種車型的服務(wù)時(shí)間均值換算系數(shù);β″ij為第i種收費(fèi)方式第j種車型的服務(wù)時(shí)間方差換算系數(shù);αij為第i種收費(fèi)方式第j種車型的比例;li為收費(fèi)方式占比;m為車輛類型數(shù);n為收費(fèi)方式種類數(shù);t′ij為第i種收費(fèi)方式第j種車型的服務(wù)時(shí)間調(diào)研均值,s;t″ij為第i種收費(fèi)方式第j種車型的服務(wù)時(shí)間調(diào)研方差,s。
服務(wù)能力的大小可以通過(guò)排隊(duì)論模型中的服務(wù)時(shí)間來(lái)衡量。因此利用服務(wù)時(shí)間進(jìn)行通行能力估計(jì)。即用平均服務(wù)率μ來(lái)計(jì)算單位時(shí)間內(nèi)收費(fèi)車道的通行能力大小。
對(duì)于ETC收費(fèi)系統(tǒng),收費(fèi)車道通行能力僅與所統(tǒng)計(jì)時(shí)間段內(nèi)的車型比例有關(guān),計(jì)算公式為
(9)
式(9)中:μE為單條ETC車道的平均服務(wù)率。
對(duì)于MTC收費(fèi)系統(tǒng),收費(fèi)車道的通行能力除了與所統(tǒng)計(jì)時(shí)間段內(nèi)的車型比例相關(guān)外,也與收費(fèi)方式的使用比例相關(guān),計(jì)算公式為
(10)
式(10)中:μM為單條MTC車道的平均服務(wù)率。
收費(fèi)車道通行能力的大小反映了收費(fèi)站的交通供給能力,而要實(shí)現(xiàn)車道配置合理化,還需要考慮收費(fèi)站的交通需求。一般情況下,車道配置方案依據(jù)實(shí)際的交通量來(lái)制定,但由于交通量只能在車輛通行完畢后才能統(tǒng)計(jì),此時(shí)再進(jìn)行車道配置會(huì)存在嚴(yán)重的滯后性。為此,本文研究首先展開交通流預(yù)測(cè)。
貝葉斯優(yōu)化算法[12]是一種全局優(yōu)化算法,其在獲得近似最優(yōu)解的過(guò)程中只需要對(duì)目標(biāo)函數(shù)進(jìn)行較少次評(píng)估[13],從而大幅度提高模型訓(xùn)練的調(diào)參效率。BOA主要由概率代理模型和采集函數(shù)兩部分組成[14]。概率代理模型負(fù)責(zé)計(jì)算未知目標(biāo)函數(shù)概率,采集函數(shù)則用來(lái)尋找下一個(gè)變量組合。
針對(duì)交通量的時(shí)變性特點(diǎn)和LSTM模型的超參數(shù)調(diào)整工作量過(guò)大問(wèn)題,在LSTM模型中引入BOA組合成BOA-LSTM模型實(shí)現(xiàn)收費(fèi)站交通流預(yù)測(cè),由上文構(gòu)建的收費(fèi)站M/G/K模型可知,影響收費(fèi)站服務(wù)效率的關(guān)鍵因素是交通量、車型比例和收費(fèi)方式占比,由于收費(fèi)方式占比數(shù)據(jù)需結(jié)合交通調(diào)查獲取,本文研究采用調(diào)研值。因此,模型預(yù)測(cè)的交通流信息中主要包括交通量和3種車型比例。模型結(jié)構(gòu)如圖1所示。
圖1 BOA-LSTM預(yù)測(cè)模型結(jié)構(gòu)圖
為評(píng)價(jià)模型的預(yù)測(cè)效果,選取工作日(12月9日、12月10日和12月11日)和休息日(12月19日、12月20日和12月26日)各3 d展開預(yù)測(cè)效果驗(yàn)證?;赑ython中的pytorch框架構(gòu)建LSTM模型,并選取Adam作為梯度下降算法進(jìn)行模型訓(xùn)練,循環(huán)迭代次數(shù)epoch設(shè)置為100,時(shí)間窗大小為20,隱藏層節(jié)點(diǎn)數(shù)為100;Adam優(yōu)化算法中學(xué)習(xí)率為0.01。利用Hyperopt庫(kù)實(shí)現(xiàn)貝葉斯算法優(yōu)化超參數(shù),選用樹狀結(jié)構(gòu)Parzen估計(jì)(tree-structured parzen estimator,TPE)作為概率代理模型,預(yù)期改善函數(shù)(expected improvement,EI)為采集函數(shù)。以均方誤差(mean square error,MSE)作為目標(biāo)函數(shù),對(duì)超參數(shù)中的學(xué)習(xí)率η和隱藏層神經(jīng)元個(gè)數(shù)hs進(jìn)行尋優(yōu)。以均方根誤差(root mean square error,RMSE)和平均絕對(duì)百分比誤差(mean absolute percentage error,MAPE)作為預(yù)測(cè)效果的評(píng)價(jià)指標(biāo)。結(jié)果如表2所示。
表2 BOA-LSTM模型預(yù)測(cè)效果
由于所選收費(fèi)站的地理位置特殊,導(dǎo)致數(shù)據(jù)集中的小型車占比極大,幾乎占據(jù)了總交通量的90%,而中型車和大型車占比很少,并且體現(xiàn)不出變化規(guī)律,因此預(yù)測(cè)過(guò)程中擬合優(yōu)度出現(xiàn)了負(fù)數(shù),說(shuō)明效果很差,針對(duì)此類情況,將中型車和大型車的預(yù)測(cè)值采用均值替代。
4.1.1 運(yùn)營(yíng)成本
收費(fèi)站運(yùn)營(yíng)成本Cop是收費(fèi)站建成投入運(yùn)營(yíng)后維持正常運(yùn)轉(zhuǎn)需要的費(fèi)用,包含工作人員工資、水電費(fèi)、設(shè)備維修費(fèi)等[6]。計(jì)算公式為
(11)
式(11)中:Cop為收費(fèi)站整體運(yùn)營(yíng)成本,元/h;aE為一條ETC車道的運(yùn)營(yíng)成本,元/h;aM為一條MTC車道的運(yùn)營(yíng)成本,元/h;NE為收費(fèi)站ETC車道的開啟數(shù);NM為收費(fèi)站MTC車道的開啟數(shù);b為平均每條MTC車道安排的工作人員數(shù);Csa為工作人員的平均月工資,元;d為每個(gè)月的工作天數(shù),d;t為平均每天的工作時(shí)長(zhǎng),h。
4.1.2 用戶延誤時(shí)間成本
延誤時(shí)間成本Cde指車輛在收費(fèi)站繳費(fèi)過(guò)程中,由于減速、停車和排隊(duì)所造成的成本,用延誤時(shí)間和時(shí)間價(jià)值來(lái)衡量。延誤時(shí)間依據(jù)多元收費(fèi)方式M/G/K排隊(duì)模型計(jì)算得到,其中ETC車道和MTC車道的平均逗留時(shí)間分別用WsE和WsM表示。人均時(shí)間價(jià)值按式(12) 所示的收入法計(jì)算[15]。
(12)
式(12)中:A為人均時(shí)間價(jià)值,元/h;I為當(dāng)?shù)厝司率杖?元。
單位時(shí)間內(nèi)用戶延誤時(shí)間成本為
Cde=HA(λEWsE+λMWsM)
(13)
式(13)中:Cde為單位時(shí)間內(nèi)的用戶延誤時(shí)間成本,元/h;H為車輛的平均載人數(shù)。
為綜合考慮收費(fèi)站管理者和出行者的利益,以運(yùn)營(yíng)成本和用戶延誤時(shí)間成本之和作為綜合成本C,以綜合成本最小為目標(biāo),建立目標(biāo)函數(shù)為
minC=Cop+Cde
(14)
在求解最小成本的同時(shí),所得方案必須要符合客觀規(guī)律,要保證車輛的順利通行,必須要滿足以下約束條件。
(1)收費(fèi)站提供的服務(wù)能力必須滿足到達(dá)的交通流。為保證不會(huì)出現(xiàn)嚴(yán)重的交通阻塞,收費(fèi)站必須具備足夠的通行能力,即ETC車道和MTC車道的服務(wù)強(qiáng)度都不能超過(guò)1,且服務(wù)強(qiáng)度不能為負(fù)數(shù),公式為
(15)
(16)
(17)
式中:ρE為ETC車道的服務(wù)強(qiáng)度;ρM為MTC車道的服務(wù)強(qiáng)度。
(2)各類型車道至少有1條在全時(shí)段開啟。收費(fèi)站當(dāng)前可切換使用ETC和MTC兩種功能的車道,且需保證兩種類型的車道分別有一條以上處于全時(shí)段開啟狀態(tài)以防止個(gè)別車輛到來(lái)時(shí)無(wú)通道可走,即車道設(shè)置應(yīng)當(dāng)滿足
(18)
(3)ETC和MTC車道數(shù)之和不能超過(guò)已建成的車道總數(shù)。由于混合車道兼具有ETC車道和MTC車道的功能,可以保證在收費(fèi)站運(yùn)營(yíng)過(guò)程中實(shí)現(xiàn)兩種類型車道功能的轉(zhuǎn)換,所以兩種類型的車道數(shù)不必單獨(dú)設(shè)置上限,但其總和不能超過(guò)已建成的車道數(shù),即需要滿足
NE+NM≤N
(19)
式(19)中:N為已建成的車道總數(shù)。
(4)車道數(shù)均為正整數(shù)。車道開閉配置模型采用粒子群算法(particle swarm optimization,PSO)求解,整體結(jié)構(gòu)如圖2所示,首先將BOA-LSTM模型預(yù)測(cè)得到的收費(fèi)站交通量和車型比例輸入到多元收費(fèi)方式M/G/K排隊(duì)模型中,即依據(jù)預(yù)測(cè)得到的ETC和MTC交通量及相應(yīng)的車型比例計(jì)算ETC和MTC收費(fèi)車道的到達(dá)率、通行能力和車輛的平均逗留時(shí)間、服務(wù)時(shí)間均值和方差等指標(biāo),然后根據(jù)這些指標(biāo)計(jì)算值和調(diào)研得到的參數(shù)確定車道開閉配置模型的各個(gè)參數(shù),求解可得未來(lái)某一時(shí)段的車道開閉配置方案。
以河北新元高速機(jī)場(chǎng)收費(fèi)站為例,獲取其在2020年12月9日、12月10日以及12月11日(工作日)和12月19日、12月20日以及12月26日(休息日)的相關(guān)數(shù)據(jù),以工作日和休息日兩個(gè)場(chǎng)景展開實(shí)證分析,根據(jù)上述調(diào)研得到的基本信息設(shè)置模型參數(shù),采用PSO算法求解后得到車道開閉配置方案,其中07:00—21:00的配置方案如表3所示。
表3 車道開閉配置模型求解結(jié)果
服務(wù)水平指出行者在道路上行駛時(shí)能夠感受到的交通設(shè)施所提供的服務(wù)質(zhì)量,用來(lái)衡量交通狀態(tài)和相應(yīng)的出行者感受。為衡量本文方案的實(shí)際應(yīng)用效果,分別計(jì)算ETC和MTC車道的服務(wù)水平。針對(duì)MTC收費(fèi)車道,采用平均排隊(duì)長(zhǎng)度Lq來(lái)劃分服務(wù)水平等級(jí),當(dāng)平均排隊(duì)長(zhǎng)度在0~1 pcu時(shí),服務(wù)水平為一級(jí),對(duì)應(yīng)交通狀態(tài)為順暢;當(dāng)平均排隊(duì)長(zhǎng)度在1~4 pcu時(shí),服務(wù)水平為二級(jí),對(duì)應(yīng)交通狀態(tài)為基本順暢;當(dāng)平均排隊(duì)長(zhǎng)度在4~8 pcu時(shí),服務(wù)水平為三級(jí),對(duì)應(yīng)交通狀態(tài)為擁堵;當(dāng)平均排隊(duì)長(zhǎng)度大于8 pcu時(shí),服務(wù)水平為四級(jí),對(duì)應(yīng)交通狀態(tài)為嚴(yán)重?fù)矶?。針?duì)ETC收費(fèi)車道,采用服務(wù)強(qiáng)度ρE來(lái)衡量服務(wù)水平,當(dāng)服務(wù)強(qiáng)度在0~0.6時(shí),服務(wù)水平為一級(jí),對(duì)應(yīng)交通狀態(tài)為順暢;當(dāng)服務(wù)強(qiáng)度≥0.6~0.8時(shí),服務(wù)水平為二級(jí),對(duì)應(yīng)交通狀態(tài)為基本順暢;當(dāng)服務(wù)強(qiáng)度在0.8~1時(shí),服務(wù)水平為三級(jí),對(duì)應(yīng)交通狀態(tài)為擁堵;當(dāng)服務(wù)強(qiáng)度≥1時(shí),服務(wù)水平為四級(jí),對(duì)應(yīng)交通狀態(tài)為嚴(yán)重?fù)矶?。根?jù)本文模型求解方案分別計(jì)算相應(yīng)的ETC車道服務(wù)強(qiáng)度和MTC車道的平均排隊(duì)長(zhǎng)度,工作日和休息日的結(jié)果分別如圖3(a)、圖3(b)和圖4(a)、圖4(b)所示。
圖3 工作日收費(fèi)車道服務(wù)水平
圖4 休息日收費(fèi)車道服務(wù)水平
按照上述服務(wù)水平劃分標(biāo)準(zhǔn)依次確定其服務(wù)水平,結(jié)果表明,在工作日ETC車道處于二級(jí)以上服務(wù)水平的時(shí)間達(dá)到了90.28%,MTC車道處于二級(jí)以上服務(wù)水平的時(shí)間達(dá)到了100%;在休息日ETC車道處于二級(jí)以上服務(wù)水平的時(shí)間達(dá)到了69.44%,MTC車道處于二級(jí)以上服務(wù)水平的時(shí)間達(dá)到了94.44%。上述結(jié)果說(shuō)明本文所提車道開閉配置方法能夠保障車輛在收費(fèi)站順暢通行。
為進(jìn)一步評(píng)價(jià)上述模型得到的車道開閉配置方案,將其與現(xiàn)行的車道開閉配置方案進(jìn)行對(duì)比分析,圖5(a)和圖5(b)所示分別為工作日和休息日的綜合成本對(duì)比圖。
圖5 工作日與休息日綜合成本對(duì)比
將現(xiàn)行方案的各項(xiàng)成本與本文所提方法得到的成本求差值,并計(jì)算其優(yōu)化的百分比。結(jié)果表明,本文所提方法能夠在一定程度上降低收費(fèi)站的各項(xiàng)成本,相比于現(xiàn)狀方案,工作日平均每小時(shí)的綜合成本能夠減少7.33元,降低了2.30%,其中,運(yùn)營(yíng)成本降低了1.98元,延誤時(shí)間成本降低了5.36元,分別優(yōu)化了2.97%和1.77%;休息日平均每小時(shí)的綜合成本能夠減少25.23元,降低了5.14%。其中,運(yùn)營(yíng)成本降低了1.24元,延誤時(shí)間成本降低了23.99元,分別優(yōu)化了1.89%和5.62%。
按此趨勢(shì)估計(jì),工作日每天可節(jié)約的綜合成本約為175.92元,其中運(yùn)營(yíng)成本和時(shí)間延誤成本分別為47.52元和128.4元;休息日每天可節(jié)約的綜合成本約為605.52元,運(yùn)營(yíng)成本和時(shí)間延誤成本分別為29.76元和575.76元。折算成一年來(lái)看,按照250個(gè)工作日和115個(gè)休息日計(jì)算,綜合成本大約可節(jié)約113 614.8元,其中運(yùn)營(yíng)成本為15 302.4元,延誤時(shí)間成本為98 312.4元。
以高速公路收費(fèi)站收費(fèi)數(shù)據(jù)為基礎(chǔ),針對(duì)收費(fèi)站交通需求的時(shí)變性和收費(fèi)方式的多元化特點(diǎn),基于深度學(xué)習(xí)方法和數(shù)學(xué)建模方法構(gòu)建了BOA-LSTM組合預(yù)測(cè)模型和車道開閉配置模型,并開展了實(shí)例驗(yàn)證。結(jié)果表明,本文所提車道開閉配置方法能夠有效解決收費(fèi)站車道資源分配不均問(wèn)題,具有較大的科研價(jià)值和工程意義,得出如下結(jié)論。
(1)針對(duì)ETC和MTC兩種不同類型收費(fèi)車道共存的現(xiàn)象,在M/G/K模型應(yīng)用于收費(fèi)站方面,提出了一種基于多元收費(fèi)方式M/G/K排隊(duì)模型,分別確定了ETC收費(fèi)車道和MTC收費(fèi)車道的服務(wù)時(shí)間均值和方差計(jì)算方法。提出了使用多元收費(fèi)方式下的平均服務(wù)率計(jì)算收費(fèi)車道通行能力的方法。
(2)在交通流預(yù)測(cè)方面,采用BOA對(duì)LSTM模型的學(xué)習(xí)率和隱藏層節(jié)點(diǎn)數(shù)進(jìn)行尋優(yōu),構(gòu)建了BOA-LSTM組合模型。實(shí)例驗(yàn)證結(jié)果顯示,BOA-LSTM組合模型能夠取得良好的預(yù)測(cè)效果,其中交通量和車型比例的RMSE分別為16.24和0.03,MAPE分別為13.32%和1.77%。
(3)在車道開閉配置方面,構(gòu)建了以綜合成本最小為目標(biāo)的車道開閉配置模型,并結(jié)合高速收費(fèi)站的調(diào)研情況展開了實(shí)例驗(yàn)證。結(jié)果表明,相比于現(xiàn)狀方案,本文所提模型能夠在保證一定服務(wù)水平的前提下,具備更高的時(shí)效性和更低的綜合成本,其中工作日平均每天的綜合成本能夠減少175.92元,降低了2.30%,休息日平均每天的綜合成本能夠減少605.52元,降低了5.14%。