盛思琪 謝琳 姜怡鄧 熊建團 楊安寧 吳凱 楊勇 楊曉明
摘要:目的 探討轉(zhuǎn)錄因子EB(TFEB)在衰老心肌細胞自噬中的作用機制。方法 動物實驗:將20只老年Wistar大鼠采取隨機數(shù)字表法分為假手術(shù)組(Sham組)和缺血再灌注組(I/R組)。細胞實驗:(1)體外培養(yǎng)大鼠心肌細胞,采用8 g/L D-半乳糖孵育8 d后分為常氧(Normoxia)組和缺氧/復(fù)氧(H/R)組。(2)在衰老心肌細胞中分別轉(zhuǎn)染過表達和干擾TFEB腺病毒分為過表達對照(Ad-GFP)組、過表達對照+缺氧/復(fù)氧(Ad-GFP+H/R)組、過表達TFEB(Ad-TFEB)組、過表達TFEB+缺氧/復(fù)氧(Ad-TFEB+H/R)組、干擾對照(sh-NC)組、干擾對照+缺氧/復(fù)氧(sh-NC+H/R)組、干擾TFEB(sh-TFEB)組、干擾TFEB+缺氧/復(fù)氧(sh-TFEB+H/R)組。(3)分別用DNMT1、DNMT3a、DNMT3b的特異性抑制劑DC-05、TFD、NA處理缺氧/復(fù)氧后的衰老心肌細胞分為H/R組、DC-05組、TFD組、NA組。(4)在衰老心肌細胞中轉(zhuǎn)染干擾DNMT3b腺病毒分為干擾對照(sh-NC)組、干擾對照缺氧/復(fù)氧(sh-NC+H/R)組、干擾DNMT3b(sh-DNMT3b)組、干擾DNMT3b缺氧/復(fù)氧(sh-DNMT3b+H/R)組。實時熒光定量PCR(qPCR)檢測TFEB的mRNA表達水平;Western blot檢測衰老心肌細胞中自噬相關(guān)蛋白TFEB、LC3B和p62的蛋白表達;巢式甲基化特異性PCR(nMS?PCR)檢測TFEB啟動子區(qū)的DNA甲基化水平。結(jié)果 與Sham組或Normoxia組比較,I/R組和H/R組中TFEB的mRNA和蛋白表達水平降低(P<0.01);過表達TFEB后,與Ad-GFP組比較,Ad-TFEB組LC3B-Ⅱ/Ⅰ的蛋白表達水平降低,p62的蛋白表達水平升高(P<0.01),而干擾TFEB后得到相反的結(jié)果(P<0.01)。與Sham組或Normoxia組比較,I/R組和H/R組中TFEB啟動子區(qū)DNA甲基化水平升高(P<0.05)。與H/R組比較,NA組TFEB mRNA和蛋白表達水平升高(P<0.01);干擾DNMT3b后,與sh-NC組比較,sh-DNMT3b組TFEB mRNA和蛋白表達水平升高(P<0.01)。結(jié)論 DNMT3b通過調(diào)控TFEB啟動子區(qū)DNA甲基化抑制TFEB的表達,進而促進衰老心肌細胞自噬。
關(guān)鍵詞:肌細胞,心臟;細胞衰老;轉(zhuǎn)錄因子EB;細胞自噬;DNA甲基化;DNMT3b
中圖分類號:R542.2文獻標(biāo)志碼:ADOI:10.11958/20220920
Study on the mechanism of transcription factor EB in autophagy of aging cardiomyocytes
SHENG Siqi XIE LinJIANG Yideng XIONG Jiantuan YANG Anning WU Kai YANG Yong YANG Xiaoming
1 School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; 2 NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University; 3 Ningxia Key Laboratory of Vascular
Injury and Repair Research, Ningxia Medical University; 4 Ningxia Hui Autonomous Region People's Hospital
Corresponding Author E-mail: xmyang327@126.com
Abstract: Objective To explore the mechanism of transcription factor EB (TFEB) in autophagy of aging cardiomyocytes. Methods Animal experiment: Twenty aged Wistar rats were randomly divided into the sham operation group (Sham group) and the ischemia-reperfusion injury group (I/R group). Cell experiments: (1) Aging cardiomyocytes were cultured in vitro, incubated with 8 g/L D-galactose for 8 days, and then divided into the normoxia group and the hypoxia/reoxygenation group (H/R group). (2) Aging cardiomyocytes transfected by adenovirus overexpressing and interfering with TFEB were divided into the Ad-GFP group, the Ad-GFP+H/R group, the Ad-TFEB group, the Ad-TFEB+H/R group, the sh-NC group, the sh-NC+H/R group, the sh-TFEB group and the sh-TFEB+H/R group. (3) Aging cardiomyocytes treated with specific inhibitors of DNMT1, DNMT3a and DNMT3b after hypoxia/reoxygenation were divided into the H/R group, the DNMT1 specific inhibitor (DC-05) group, the DNMT3a specific inhibitor (TFD) group and the DNMT3b specific inhibitor (NA) group. (4) Aging cardiomyocytes transfected by adenovirus interfering with DNMT3b were divided into the sh-NC group, the sh-NC+H/R group, the sh-DNMT3b group and the sh-DNMT3b+H/R group. Quantitative real-time PCR (qPCR) was used to detect the mRNA level of TFEB, and Western blot assay was used to detect the autophagy related proteins TFEB, LC3B and p62 in aging cardiomyocytes. The DNA methylation levels of TFEB promoter in aging myocardium and cardiomyocytes were detected by nested methylation specific PCR (nMS-PCR). Results Compared with the Sham group or the normoxia group, the mRNA and protein expression of TFEB were decreased in the I/R group and the H/R group (P<0.01). The protein expression of LC3B-Ⅱ/Ⅰ was decreased in aging cardiomyocytes after overexpression of TFEB in the Ad-TFEB group compared with the Ad-GFP group, while the protein expression of p62 was increased (P<0.01). The opposite results were obtained after interfering with TFEB (P<0.01). Compared with the Sham group or the normoxia group, the DNA methylation level of the TFEB promoter was increased in the I/R group and the H/R group (P<0.05). Compared with the H/R group, it was found that the mRNA and protein expression level of TFEB were increased in the NA group (P<0.01). And the TFEB mRNA and protein expression were increased in aging cardiomyocytes after overexpressed interference with DNMT3b (P<0.01). Conclusion DNMT3b inhibits the TFEB expression by regulating DNA methylation of TFEB promoter, thus to promote autophagy of aging cardiomyocytes.
Key words: myocytes, cardiac; cell aging; transcription factor EB; autophagy; DNA methylation; DNMT3b
目前,心血管疾病的發(fā)病率在全球呈上升趨勢,而心肌缺血再灌注(I/R)損傷是一個復(fù)雜且多因素的病理過程,與急性心肌梗死(AMI)等缺血性心臟病的發(fā)生關(guān)系密切[1-2]。研究發(fā)現(xiàn),在老年人和患病心臟中存在大量衰老細胞,最終促使心臟結(jié)構(gòu)和功能變化,引起左心室肥厚和舒張功能下降,細胞外基質(zhì)重構(gòu)、心肌纖維化增加,傳導(dǎo)阻滯等病理改變[3-4]。缺血性心臟疾病主要以衰老心肌細胞損傷為主,進而引起收縮功能和內(nèi)源性抗不可逆損傷能力的喪失[5-6]。自噬(autophagy)是真核生物細胞內(nèi)溶酶體降解的途徑,通過溶酶體或胞液進行“饑餓”狀態(tài)下的營養(yǎng)動員,從而清除受損蛋白質(zhì),受到自噬相關(guān)蛋白(ATG)和轉(zhuǎn)錄因子的嚴(yán)格調(diào)控[7]。研究顯示,自噬參與I/R損傷病理過程,且與老年個體的心臟功能紊亂、抗損傷能力降低密切相關(guān)[8-9]。轉(zhuǎn)錄因子EB(transcription factor EB,TFEB)可維持細胞自噬穩(wěn)定,與自噬基因的啟動子區(qū)結(jié)合,誘導(dǎo)自噬體的生物合成,并調(diào)控關(guān)鍵因子自噬體-溶酶體的轉(zhuǎn)錄[10-11]。然而,TFEB影響衰老心肌細胞自噬的機制尚不明確,亦鮮見相關(guān)研究。本研究旨在探討TFEB對衰老心肌自噬的影響及可能調(diào)控機制,以期為老年心肌損傷的防治提供新的理論支持。
1 材料與方法
1.1 主要材料 大鼠心肌H9c2細胞購自中國科學(xué)院細胞庫(上海,中國)。20只SPF級雄性Wistar大鼠購自寧夏醫(yī)科大學(xué)實驗動物中心[動物生產(chǎn)許可證號:SCXK(寧)2020-0001],22~24個月,體質(zhì)量600~700 g。胎牛血清、DMEM高糖培養(yǎng)基購自美國Gibco公司;D-(+)半乳糖購自北京金克隆公司;DNMT1特異性抑制劑DC-05、DNMT3a特異性抑制劑(theaflavin 3,3-digallate,TFD)、DNMT3b特異性抑制劑(nanaomycin A,NA)購自美國MCE公司;DNA甲基化修飾試劑盒購自美國ZYMO公司;胰蛋白酶消化液購自上海碧云天公司;BCA蛋白定量試劑盒、蛋白提取試劑盒購自南京凱基公司;實時熒光定量PCR(qPCR)試劑盒、反轉(zhuǎn)錄試劑盒購自日本Takara公司;總RNA提取試劑盒購自北京天根公司;兔源一抗p62、兔源一抗LC3B均購自英國Abcam公司;兔源一抗TFEB購自上海Abmart公司;鼠源一抗內(nèi)參蛋白β-actin、羊抗兔二抗、羊抗鼠二抗購自北京中杉金橋公司;TFEB和GAPDH引物由上海生工公司合成;過表達TFEB腺病毒(Ad-TFEB)、干擾TFEB腺病毒(sh-TFEB)及干擾DNMT3b腺病毒(sh-DNMT3b)購自上海吉瑪制藥技術(shù)有限公司。
1.2 動物實驗 20只大鼠按隨機數(shù)字表法分為假手術(shù)(Sham)組和I/R組,每組10只。I/R組大鼠麻醉后行氣管插管,連接小動物呼吸機,監(jiān)測大鼠心電圖。沿胸骨左緣平左腋線處切開皮膚約2 cm,于左心耳根部下方2 mm處用5-0無創(chuàng)縫合針穿過心肌表層,在肺動脈圓錐旁出針。觀察心電圖,心率穩(wěn)定15 min后,用縫合針的兩頭穿過壓迫管,止血鉗在壓迫管另一頭夾閉,以終止左冠狀動脈前降支血流,30 min后松結(jié)扎線,然后松開止血鉗恢復(fù)血流灌注2 h。心肌缺血成功的標(biāo)志:心電圖Ⅱ?qū)?lián)ST段弓背向上抬高0.4 mV以上。心電監(jiān)護截取缺血波,再灌注波證實模型成功。Sham組只穿線不結(jié)扎,再灌注2 h,2組大鼠均存活。造模結(jié)束后,麻醉處死并取大鼠心尖部,迅速切除并冷凍在液氮中用于后續(xù)實驗。
1.3 細胞實驗
1.3.1 細胞培養(yǎng) H9c2細胞在10%胎牛血清和1%雙抗的DMEM高糖培養(yǎng)基中培養(yǎng)。當(dāng)細胞密度占培養(yǎng)瓶底面積80%時用胰蛋白酶消化進行傳代,傳至第3代時取對數(shù)生長期細胞進行后續(xù)實驗。采用8 g/L D-半乳糖誘導(dǎo)其衰老8 d后,分為常氧(Normoxia)組和缺氧/復(fù)氧(H/R)組,其中H/R組的衰老心肌細胞置于缺氧(1%O2,5%CO2)培養(yǎng)箱中180 min,再復(fù)氧(5%CO2和37 ℃)120 min[12]。
1.3.2 腺病毒轉(zhuǎn)染 (1)TFEB腺病毒轉(zhuǎn)染:將攜帶綠色熒光蛋白(GFP)的Ad-TFEB和sh-TFEB分別轉(zhuǎn)染衰老心肌細胞后,分為過表達對照(Ad-GFP)組、過表達對照+缺氧/復(fù)氧(Ad-GFP+H/R)組、過表達TFEB(Ad-TFEB)組、過表達TFEB+缺氧/復(fù)氧(Ad-TFEB+H/R)組、干擾對照(sh-NC)組、干擾TFEB+缺氧/復(fù)氧(sh-TFEB+H/R)組,用于TFEB表達自身驗證及自噬相關(guān)指標(biāo)檢測。(2)DNMT3b腺病毒轉(zhuǎn)染:將干擾DNMT3b腺病毒(sh-DNMT3b)轉(zhuǎn)染衰老心肌細胞后,分為干擾對照(sh-NC)組、干擾對照缺氧/復(fù)氧(sh-NC+H/R)組、干擾DNMT3b(sh-DNMT3b)組、干擾DNMT3b缺氧/復(fù)氧(sh-DNMT3b+H/R)組,用于TFEB啟動子區(qū)甲基化水平檢測。
1.3.3 藥物處理 分別使用DNMT1特異性抑制劑DC-05、DNMT3a特異性抑制劑TFD、DNMT3b特異性抑制劑NA處理衰老心肌細胞,缺氧/復(fù)氧后分為H/R組、DC-05組、TFD組、NA組,用于TFEB啟動子區(qū)甲基化水平檢測。
1.4 qPCR檢測TFEB表達 提取1.2、1.3.1、1.3.2和1.3.3中各組的總RNA并反轉(zhuǎn)錄為cDNA。使用qPCR試劑盒在FTC3000反應(yīng)系統(tǒng)進行擴增。總反應(yīng)體系:PCR Mix 10 μL、H2O 6 μL、上下游引物各1 μL、cDNA 2 μL,共20 μL。TFEB引物序列:上游5'-GTTCACTTCCAGTCGCCACCAC-3',下游5'-GTTCACTTCCAGTCGCCACCAC-3';GAPDH引物序列:上游5'-GACCTGACCTGCCGTCTA-3',下游5'-AGGAGTGGGTGTCGCTGT-3'。TFEB和GAPDH引物由生工生物工程股份有限公司(中國上海)合成,反應(yīng)條件:95 ℃ 2 min;95 ℃ 5 s,60 ℃ 10 s,共40個循環(huán)。以GAPDH為內(nèi)參,2-ΔΔCt法計算TFEB相對表達量。
1.5 Western blot檢測TFEB、LC3B和p62的蛋白表達 提取1.2和1.3中各組蛋白。根據(jù)BCA法進行蛋白定量調(diào)整上樣體積。每組30 ?g總蛋白進行SDS-PAGE凝膠電泳、轉(zhuǎn)膜,5%脫脂奶粉室溫封閉2 h后,4 ℃一抗孵育過夜:TFEB(1∶500)、p62(1∶10 000)、LC3B(1∶2 000)及β-actin(1∶1 000)。加入辣根過氧化物酶(HRP)標(biāo)記的羊抗兔和羊抗鼠二抗(1∶5 000)室溫孵育2 h,使用ECL化學(xué)發(fā)光試劑顯影曝光。應(yīng)用Image Lab軟件對檢測結(jié)果的灰度值進行分析,以β-actin為內(nèi)參,計算目的蛋白相對表達水平。
1.6 巢式甲基化特異性PCR(nMS-PCR)檢測TFEB啟動子區(qū)DNA甲基化水平 按DNA提取試劑盒說明書分別提取1.2和1.3.1各組中的全基因組DNA,亞硫酸鹽修飾法對全基因組DNA進行甲基化修飾。nMS-PCR法檢測TFEB啟動子區(qū)DNA甲基化水平的改變,反應(yīng)體系:PCR Mix 12.5 μL、H2O 7 μL、上下游引物各1 μL、已修飾的DNA 3.5 μL,共25 μL。外引物擴增的反應(yīng)條件:95 ℃ 5 min;95 ℃ 30 s,56 ℃ 30 s,72 ℃ 30 s,20個循環(huán),72 ℃ 7 min,4 ℃ 保溫。以外引物的PCR產(chǎn)物為模板,進行內(nèi)外引物的擴增,反應(yīng)條件:95 ℃ 5 min;95 ℃ 30 s,59.5 ℃ 30 s,72 ℃ 30 s,20個循環(huán);72 ℃ 7 min,4 ℃ 保溫。取5 μL PCR產(chǎn)物于2%瓊脂糖凝膠上電泳,用凝膠成像分析儀成像分析,按如下公式進行計算:甲基化=(甲基化OD值)/(甲基化OD值+非甲基化OD值)×100%。針對TFEB啟動子區(qū),由在線(http://www.urogene.org/cgi?bin/methprimer/methprimer.cgi)設(shè)計一對外引物及兩對內(nèi)引物,引物序列見表1。
1.7 統(tǒng)計學(xué)方法 采用GraphPad Prism 8.0進行數(shù)據(jù)分析。符合正態(tài)分布的計量資料以x±s表示,2組間比較采用兩獨立樣本t檢驗,多組間比較采用單因素方差分析,組間多重比較采用SNK-q檢驗。P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 TFEB在衰老心肌組織和心肌細胞中的表達情況 動物實驗中,與Sham組(1.785±0.938)比較,I/R組心肌組織TFEB的mRNA(0.509±0.300)表達水平均降低(n=10,t=4.098,P<0.01);與Sham組(0.690±0.178)比較,I/R組心肌組織TFEB蛋白(0.266±0.047)表達水平亦降低(n=10,t=7.276,P<0.01)。細胞實驗中,與Normoxia組(1.375±0.161)比較,H/R組TFEB mRNA(0.790±0.074)表達水平降低(n=3,t=5.713,P<0.01);與Normoxia組(0.674±0.012)比較,H/R組TFEB蛋白(0.231±0.084)表達水平亦降低(n=3,t=9.077,P<0.01),見圖1。
2.2 干擾和過表達TFEB對衰老心肌細胞自噬的影響
2.2.1 過表達和干擾TFEB后自身驗證 細胞實驗中,與Ad-GFP組(0.265±0.012)比較,Ad-TFEB組的TFEB蛋白(0.724±0.167)表達水平增加(n=3,t=4.733,P<0.01);與sh-NC組(1.201±0.044)比較,sh-TFEB組的TFEB蛋白(0.804±0.083)表達水平降低(n=3,t=7.312,P<0.01),見圖2。
2.2.2 TFEB對衰老心肌細胞自噬的影響 過表達TFEB后,與Ad-GFP組比較,Ad-TFEB組中LC3B-Ⅱ/Ⅰ的蛋白表達水平降低,p62的蛋白表達水平升高(P<0.01);與Ad-GFP+H/R組比較,Ad-TFEB+H/R組中LC3B-Ⅱ/Ⅰ表達水平降低,p62的蛋白表達水平升高(P<0.01)。干擾TFEB后,與sh-NC組比較,sh-TFEB組中LC3B-Ⅱ/Ⅰ的蛋白表達水平升高,而p62的蛋白表達水平降低(P<0.01);與sh-NC+H/R組相比,sh-TFEB+H/R組中LC3B-Ⅱ/Ⅰ的表達水平升高,而p62的蛋白表達水平降低(P<0.01),見圖3、表2。
2.3 TFEB啟動子區(qū)的DNA甲基化對TFEB表達的影響
2.3.1 衰老心肌組織和心肌細胞中TFEB啟動子區(qū)的DNA甲基化水平 Methprimer在線預(yù)測發(fā)現(xiàn),TFEB啟動子區(qū)具有3個CPG島,nMS-PCR法檢測結(jié)果顯示:在動物實驗中,與Sham組(0.495±0.040)比較,I/R組TFEB啟動子區(qū)的DNA甲基化水平(0.683±0.078)升高(n=10,t=6.797,P<0.01);在細胞實驗中,與Normoxia組(0.483±0.015)比較,H/R組TFEB啟動子區(qū)的DNA甲基化水平(0.690±0.108)亦升高(n=3,t=3.277,P<0.05),見圖4。
2.3.2 DNA甲基化轉(zhuǎn)移酶抑制劑對衰老心肌細胞中TFEB表達的影響 與H/R組比較,NA組TFEB mRNA和蛋白表達均升高(P<0.05),而DC-05組和TFD組TFEB的mRNA和蛋白水平差異無統(tǒng)計學(xué)意義,見圖5、表3。
2.4 DNMT3b對衰老心肌細胞中TFEB表達的影響 與sh-NC組比較,sh-DNMT3b組的TFEB mRNA和蛋白表達水平均升高(P<0.05);與sh-NC+H/R組比較,sh-DNMT3b+H/R組的TFEB mRNA和蛋白表達水平亦升高(P<0.05),見圖6、表4。
3 討論
隨著我國老齡化進程的加速,老年人心血管事件發(fā)生率增加,探尋防治老年人心血管疾病的潛在靶點是亟待解決的臨床問題[13]。心肌細胞衰老導(dǎo)致的心肌損傷是影響心血管病發(fā)生的主要因素,深入探討衰老心肌損傷的機制具有重要的臨床意義[14]。心肌I/R損傷是心肌長時間缺血后恢復(fù)供血心肌損傷更加嚴(yán)重的一種病理現(xiàn)象[15]。然而,目前尚無有效防治心肌I/R損傷的方法。在心肌I/R損傷過程中,自噬發(fā)揮著重要作用。Li等[16]通過體內(nèi)和體外研究發(fā)現(xiàn),Caspase招募域含蛋白9(CARD9)可激活自噬和恢復(fù)自噬通量,對心肌I/R損傷起保護作用。本課題組前期通過體外培養(yǎng)衰老心肌細胞,缺氧/復(fù)氧后模擬I/R的病理環(huán)境,發(fā)現(xiàn)衰老心肌細胞自噬水平升高,提示抑制其自噬可能是減輕心肌I/R損傷的潛在作用機制[17]。
TFEB是MITF-TFE家族成員之一,屬于堿性螺旋-環(huán)-螺旋亮氨酸拉鏈類轉(zhuǎn)錄因子[18]。研究顯示,TFEB是溶酶體-自噬途徑最重要的轉(zhuǎn)錄調(diào)節(jié)因子,負(fù)責(zé)控制溶酶體生物發(fā)生和功能、自噬和囊泡通量,可直接調(diào)控自噬相關(guān)基因表達[19]。在哺乳動物體內(nèi),TFEB去磷酸化后,核易位激活自噬信號通路,自噬體與溶酶體融合發(fā)揮降解作用,大分子釋放到細胞質(zhì)中被重新利用,維持了細胞內(nèi)環(huán)境的穩(wěn)定[20]。本研究發(fā)現(xiàn),I/R處理的衰老心肌組織和H/R處理的衰老心肌細胞與正常衰老心肌組織和細胞相比TFEB表達水平均降低,提示TFEB可能與衰老心肌細胞自噬有關(guān)。細胞自噬是Atg、Rubicon等多種自噬相關(guān)基因和關(guān)鍵蛋白參與的動態(tài)過程,可通過這些分子的表達水平來評估自噬活性[21]。LC3分為Ⅰ型、Ⅱ型,自噬未發(fā)生時,可溶性的LC3-Ⅰ型蛋白分布于細胞表面;當(dāng)自噬發(fā)生時,位于細胞表面的LC3-Ⅰ與磷脂酰乙醇胺耦聯(lián)形成LC3-Ⅱ并附著在自噬體膜上,由于LC3-Ⅱ始終穩(wěn)定地定位在自噬體膜上,直到與溶酶體融合,理論上可以通過計算LC3-Ⅱ或LC3-Ⅱ/Ⅰ的比值來評價自噬水平的高低[22]。p62也是自噬反應(yīng)發(fā)生過程中的重要銜接分子,其水平變化與自噬強弱呈負(fù)相關(guān),常與LC3共同用于判斷自噬反應(yīng)活性[23]。本研究結(jié)果顯示,在缺氧/復(fù)氧條件下,過表達TFEB后衰老心肌細胞中LC3B-Ⅱ/Ⅰ的表達水平較Ad-GFP+H/R組降低,而p62的蛋白表達水平升高,表明TFEB可以通過調(diào)控自噬標(biāo)志物L(fēng)C3B和p62的表達抑制衰老心肌細胞自噬,進而保護I/R損傷的心肌,但其具體機制還有待進一步研究。
DNA甲基化是一種在原核和真核生物基因組中常見的復(fù)制后表觀遺傳修飾[24]。DNA甲基化常發(fā)生在富含CPG島序列的胞嘧啶5'端,可使被修飾的DNA空間結(jié)構(gòu)或染色體結(jié)構(gòu)發(fā)生改變而導(dǎo)致基因表達改變[25]。本研究通過Methprimer在線預(yù)測TFEB的CPG島發(fā)現(xiàn),TFEB啟動子區(qū)具有3個CPG島,這為TFEB啟動子區(qū)發(fā)生DNA甲基化提供結(jié)構(gòu)基礎(chǔ)。目前,DNA甲基化作為一種調(diào)控TFEB表達的機制日益成為研究的熱點,但是關(guān)于TFEB啟動子區(qū)DNA異常甲基化與衰老心肌細胞自噬的相關(guān)性研究尚屬于全新的領(lǐng)域。本研究發(fā)現(xiàn),I/R處理的衰老心肌組織和H/R處理的衰老心肌細胞中TFEB啟動子區(qū)的DNA甲基化水平與正常衰老心肌組織和細胞相比均提高,提示TFEB的表達水平受到DNA甲基化調(diào)控。DNA甲基化主要是在甲基化轉(zhuǎn)移酶的催化下,DNA序列中的腺嘌呤或胞嘧啶與甲基發(fā)生共價結(jié)合,而哺乳動物細胞中DNA甲基轉(zhuǎn)移酶主要分為DNMT1、DNMT3a和DNMT3b[26]。其中,DNMT1為持續(xù)性甲基轉(zhuǎn)移酶,主要參與DNA復(fù)制新合成鏈的完全甲基化,DNMT3a和DNMT3b主要參與從頭甲基化[27]。本研究中分別用甲基轉(zhuǎn)移酶特異性抑制劑DC-5、TFD、NA處理衰老心肌細胞,發(fā)現(xiàn)用NA處理后,衰老心肌細胞中TFEB的表達上升,提示DNMT3b可參與衰老心肌細胞中TFEB啟動子區(qū)的DNA甲基化,進一步干擾DNMT3b后發(fā)現(xiàn)TFEB的表達亦上升,證實了DNMT3b參與衰老心肌細胞自噬過程中TFEB表達的調(diào)控。
綜上所述,TFEB在衰老心肌細胞自噬過程中表達降低,DNMT3b通過調(diào)節(jié)TFEB啟動子區(qū)的DNA甲基化水平,從而抑制衰老心肌細胞自噬過程中TFEB的表達,TFEB可作為治療心肌I/R損傷的潛在分子靶點,有望為臨床上老年心肌I/R損傷的防治提供更多參考。
參考文獻
[1] GUIEU R,RUF J,MOTTOLA G,et al. Hyperhomocysteinemia and cardiovascular diseases[J]. Ann Biol Clin (Paris),2022,80(1):7-14. doi:10.1684/abc.2021.1694.
[2] 王麗艷,徐哲龍. 線粒體功能障礙在心血管疾病中作用機制的研究進展[J]. 天津醫(yī)藥,2020,48(2):146-151. WANG L Y,XU Z L. Research progress on the mechanism of mitochondrial dysfunction in cardiovascular disease[J]. Tianjin Med J,2020,48(2):146-151. doi:10.13885/j.issn.1000-2812.2022.04.007.
[3] MESQUITA T,LIN Y N,IBRAHIM A. Chronic low-grade inflammation in heart failure with preserved ejection fraction[J]. Aging Cell,2021,20(9):e13453. doi:10.1111/acel.13453.
[4] LYU G,GUAN Y,ZHANG C,et al. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging[J]. Nat Commun,2018,9(1):2560. doi:10.1038/s41467-018-04994-z.
[5] 師瑩,趙莉莉,秦勤. 細胞衰老:心臟疾病治療新思路[J]. 中國分子心臟病學(xué)雜志,2022,22(3):4725-4730. SHI Y,ZHAO L L,QIN Q. Cell senescence:Bew ideas for the treatment of heart disease[J]. Chinese Journal of Molecular Cardiology,2022,22(3):4725-4730. doi:10.16563/j.cnki.1671-6272.2022.06.016.
[6] HU C,ZHANG X,TENG T,et al. Cellular senescence in cardiovascular diseases:a systematic review[J]. Aging Dis,2022,13(1):103-128. doi:10.14336/AD.2021.0927.
[7] XUE X,LI F,CAI M,et al. Interactions between endoplasmic reticulum stress and autophagy:implications for apoptosis and neuroplasticity-related rroteins in palmitic acid-treated prefrontal cells[J]. Neural Plasticity,2021,10(4):8851327. doi:10.1155/2021/8851327.
[8] LI J,LU K,ZHANG X,et al. SIRT3-mediated mitochondrial autophagy in refeedingsyndrome-related myocardial injury in sepsis rats[J]. Ann Transl Med,2022,10(4):211. doi:10.21037/atm-22-222.
[9] YU Y W,QUE J Q,LIU S,et al. Sodium-glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating autophagy[J]. Front Cardiovasc Med,2022,8:768214. doi:10.3389/fcvm.2021.768214.
[10] PARK K,LIM H,KIM J,et al. Lysosomal Ca2+-mediated TFEB activation modulatesmitophagy and functional adaptation of pancreatic β-cells to metabolic stress[J]. Nat Conmmun,2022,13(1):1300. doi:10.1038/s41467-022-28874-9.
[11] KIM S,SONG G,LEE T,et al. PARsylated transcription factor EB (TFEB) regulates the expression of a subset of Wnt target genes by forming a complex with β-catenin-TCF/LEF1[J]. Cell Death Differ,2021,28(9):2555-2570. doi:10.1038/s41418-021-00770-7.
[12] WANG Y,HAO Y,ZHANG H,et al. DNA hypomethylation of miR-30a mediated the protection of hypoxia postconditioning against aged cardiomyocytes hypoxia/reoxygenation injury through inhibiting autophagy[J]. Circ J,2020,84(4):616-625. doi:10.1253/circj.CJ-19-0915.
[13] 劉聘選,張嘉禾,畢金淼,等. 心血管衰老的機制和干預(yù)綜述[J]. 中國基礎(chǔ)科學(xué),2021,23(6):46-58. LIU P X,ZHANG J H,BI J M,et al. Review of cardiovascular aging mechanisms and interventions[J]. China Basic Science,2021,23(6):46-58. doi:10.3969/j.issn.1009-2414.2021.06.005.
[14] CALCINOTTO A,KOHLI J,ZAGATO E,et al. Cellular senescence:Aging,cancer,and injury[J]. Physiol Rev,2019,99(2):1047-1078. doi:10.1152/physrev.00020.2018.
[15] 陳玉,蘇建軍,韓允,等. 富馬酸二甲酯調(diào)控 Nrf2-GPX4 介導(dǎo)的鐵死亡途徑對大鼠心肌缺血/再灌注損傷的保護作用研究[J]. 天津醫(yī)藥,2022,50(6):601-607. CHEN Y,SU J J,HAN Y,et al. Study on the protective effect of dimethyl fumarate regulating Nrf2-GPX4-mediated ferroptosis pathway on myocardial ischemia/reperfusion injury in rats[J]. Tianjin Med J,2022,50(6):601-607. doi:10.11958/20212639.
[16] LI Y,LIANG P,JIANG B,et al. CARD9 promotes autophagy in cardiomyocytes inmyocardial ischemia/reperfusion injury via interacting with rubicon directly[J]. Basic Res Cardiol,2020,115(3):29. doi:10.1007/s00395-020-0790-6.
[17] 王睿,王艷華,柴麗芬,等. 組蛋白去乙酰化酶2在衰老心肌細胞自噬水平降低中的作用[J]. 實用醫(yī)學(xué)雜志,2020,36(9):1157-1163. WANG R,WANG Y H,CHAI L F,et al. The role of histone deacetylase 2 in the reduction of autophagy levels in aging cardiomyocytes[J]. Journal of Practical Medicine,2020,36(9):1157-1163. doi:10.3969/j.issn.1006-5725.2020.09.009.
[18] FANG S,WAN X,ZOU X ,et al. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway[J]. Cell Death Dis,2021,12(1):88. doi:10.1038/c41419-020-03357-1.
[19] NEZICH C L,WANG C,F(xiàn)OGEL A I,et al. MiT/TFE transcription factors are activatedduring mitophagy downstream of Parkin and Atg5[J]. The Journal of cell biology,2015,210(3):435-50. doi:10.1083/jcb.201501002.
[20] GUO H,PU M,TAI Y,et al. Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy[J]. Cell Death Differ,2021,28(1):320-336. doi:10.1038/s41418-020-0602-4.
[21] KMA L,BARUAH T J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation[J]. Biotechnol Appl Biochem,2022,69(1):248-264. doi:10.1002/bab.2104.
[22] VISHNUPRIYA S,PRIYA DHARSHINI L C,SAKTHIVEL K M,et al. Autophagy markers as mediators of lung injury-implication for therapeutic intervention[J]. Life Sci,2020,260:118308. doi:10.1016/j.lfs.2020.118308.
[23] 宋鵬書,張燕華,張奕梅,等. 自噬相關(guān)蛋白LC3-Ⅱ和p62在不明原因復(fù)發(fā)性流產(chǎn)患者絨毛組織中的表達和臨床意義[J]. 國際檢驗醫(yī)學(xué)雜志,2021,42(13):1602-1605. SONG P S,ZHANG Y H,ZHANG Y M,et al. Expression and clinical significance of autophagy-related proteins LC3-II and p62 in villus tissue of patients with unexplained recurrent miscarriage[J]. International Journal of Laboratory Medicine,2021,42(13):1602-1605. doi:10.3969/j.issn.1673-4130.2021.13.016.
[24] K?HLER F,RODRíGUEZ-PAREDES M. DNA methylation in epidermal differentiation,aging,and cancer[J]. J Invest Dermatol,2020,140(1):38-47. doi:10.1016/j.jid.2019.05.011.
[25] MORGAN A E,DAVIAES T J,MCAULEY M T. The role of DNA methylation in ageing and cancer[J]. Proc Nutr Soc,2018,77(4):412-422. doi:10.1017/S0029665118000150.
[26] HUANG J,WANG J,WU Z,et al. Profiling demethylase activity using epigeneticallyin activated DNAzyme[J]. Biosens Bioelectron,2022,207(1):114186. doi:10.1016/j.bios.2022.114186.
[27] MENSAH I,KNORVIL A B,ALABDI L,et al. Misregulation of the expression and activity of DNA methyltransferases in cancer[J]. NAR Cancer,2021,12(1):zcab045. doi:10.1093/narcan/zcab045.
(2022-06-21收稿 2022-08-16修回)
(本文編輯 陸榮展)